Universidad Carlos III de Madrid

Ingeniería Informática

Examen de Investigación Operativa

4 de febrero de 2003

1. (2.5 puntos) Para el siguiente problema de programación lineal:

maximizar
$$4x_1 + 5x_2$$

sujeto a $x_1 + 3x_2 \le 120$
 $x_1 + x_2 \le 50$
 $x_1 + x_2 \ge 25$
 $x_1 \ge 0, x_2 \ge 0$.

- a) (1 punto) Formula el problema en forma estándar y resuélvelo usando el método Simplex, empezando por el punto (0; 40; 0; 10; 15).
- b) (0.5 puntos) Indica, para cada restricción, si está o no está activa en el óptimo (esto es, si en el óptimo cada restricción se cumple con igualdad).
- c) (1 punto) ¿Existe más de una solución óptima?, ¿por qué?.

Solución. El problema en forma estándar es:

minimizar
$$-4x_1-5x_2$$

sujeto a $x_1+3x_2+s_1=120$
 $x_1+x_2+s_2=50$
 $x_1+x_2-s_3=25$
 $x_1\geq 0, x_2\geq 0, s_1\geq 0, s_2\geq 0, s_3\geq 0.$

- a) La solución se alcanza tras 1 iteración y es $x_1^*=15, x_2^*=35, s_1^*=0, s_2^*=0,$ $s_3^*=25, z^*=235.$
- b) Las restricciones activas son la 1 y la 2. Sus respectivos multiplicadores son $\lambda_1=-0.5$ y $\lambda_2=-3.5$.
- c) Sólo existe una solución óptima ya que $\sigma_N = \begin{pmatrix} s_1 \\ s_2 \end{pmatrix} = \begin{pmatrix} 0.5 \\ 3.5 \end{pmatrix} > 0.$

1

2. (2.5 puntos) Resuelve por el método de *Branch and Bound* el siguiente problema de programación entera.

maximizar
$$5x_1+7x_2$$
 sujeto a $2x_1+x_2\leq 13$ $5x_1+9x_2\leq 41$ $x_1\geq 0,\ x_2\geq 0,$ enteras.

Puedes utilizar métodos gráficos para resolver los subproblemas. Además, para simplificar los cálculos, puedes ramificar sobre la variable x_1 .

Solución. La solución del problema relajado P_0 es $x^* = (5.84; 1.30)$, $z^* = 38.38$, por lo que sabemos que la solución entera tendrá una función objetivo menor que 38.38.

Ramificamos sobre x_1 . La solución del problema relajado P_1 ($x_1 \le 5$) es $x^* = (5; 1,778)$, $z^* = 37,44$. La solución del problema relajado P_2 ($x_1 \ge 6$) es $x^* = (6, 1)$, $z^* = 37$. Como la función objetivo de P_1 es mayor que la de P_2 podamos la rama de P_1 y concluimos que el problema P_2 contiene la solución.

3. (2 puntos) A continuación se muestra la matriz de conectividad de un grafo. Usa el algoritmo de Dijkstra para encontrar el camino más corto desde el nodo 1 al 6. El símbolo ∞ denota la ausencia de un camino.

$$\begin{pmatrix} 0 & 5 & \infty & 6 & \infty & \infty \\ \infty & 0 & 3 & 1 & \infty & 8 \\ \infty & \infty & 0 & \infty & 2 & \infty \\ \infty & \infty & \infty & 0 & 3 & 6 \\ \infty & \infty & \infty & \infty & 0 & 2 \\ \infty & \infty & \infty & \infty & \infty & 0 \end{pmatrix}$$

Solución. El camino más corto se alcanza en 11 unidades mediante: 1-4-5-6 o bien 1-2-4-5-6.

4. (3 puntos) Una empresa de reprografía se plantea comprar una fotocopiadora de alto rendimiento de entre cuatro modelos cuyas características se muestran a continuación.

Modelo	Coste de operación (€/hora)	Velocidad (trabajos/minuto)	
1	15	30/10000	
2	20	36/10000	
3	24	50/10000	
4	27	66/10000	

Los trabajos llegan a la empresa según una distribución de Poisson a razón de 4 trabajos por día de 24 horas. Se supone que el tiempo de reproducción de los trabajos, debido a su

tamaño, se distribuye de forma exponencial. Los contratos con los clientes especifican un coste de penalización por entrega tardía a razón de 80 € por trabajo por día.

Si la empresa quiere que el coste de operación más el coste por entrega tardía sea el menor posible, ¿qué fotocopiadora debería comprar?

Solución. Para la fotocopiadora i = 1, 2, 3, 4, se tiene que

$$CT_i = CS_i + CE_i = C_{1i} \times 24 + 80 \times L_i$$

donde CT denota el coste total, CS el coste de servicio, CE el coste de espera, C_1 el coste de operación y L es el valor esperado del número de trabajos en el sistema.

Se tiene que $\lambda=4$ trabajos por día para todas las fotocopiadoras. El tiempo promedio por trabajo para la fotocopiadora i es $\frac{1}{v_i \times 60}$ horas, donde v denota la velocidad. Por tanto, la tasa de servicio para cada fotocopiadora es:

$$\mu_i = 24 \times v_i \times 60.$$

A continuación se muestran los resultados:

	M1	M2	M3	M4
λ	4	4	4	4
μ	4.32	5.18	7.2	9.5
L	12.5	3.39	1.25	0.73
CT	1360	751.2	676	706.4

Por tanto, a la empresa le interesa comprar el tercer modelo de fotocopiadora.