

Chapter 5: Introduction to statistical inference

- 1. Outline and objectives
- 2. Statistics and sampling distribution
- 3. Point estimation
- 4. Interval estimation
- 5. Hypothesis tests: means, proportions, independence

Recommended reading:

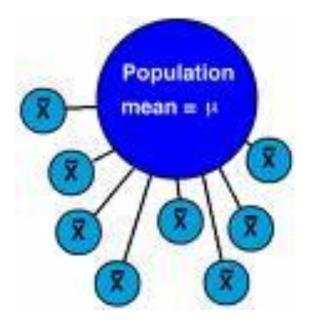
• <u>You tube videos</u> on confidence intervals, hypothesis tests ...

5.1 Outline and objectives

Descriptive statistics: the mean age of a sample of 20 PP voters is 55 with standard deviation 5.

Probability Model: The age of a PP voter follows a normal, N(μ , σ^2), distribution.

Inference: We predict that $\mu = 55$. We reject the hypothesis that $\mu < 50$.



Different samples have different means. Before the sample is taken, the sample mean is a variable.

The mean and variance of the sample mean are

 $E[\bar{X}] = \mu \qquad V[\bar{X}] = \sigma^2/N$

If N is big enough, the sample mean follows a normal distribution.

Have a look at the following page: http://www.stat.tamu.edu/~west/ph/sampledist.html

Introduction to Statistics

5.3 Point estimation

The sample mean \overline{X} is a good estimator of the population mean μ .

Given a sample, \overline{x} is a point estimate of μ .

The sample mean has good statistical properties: unbiased, maximum likelihood, etc.

 S^2 is also a reasonable estimator of σ^2 .

5.4 Interval estimates

We want to find an interval that we are reasonably sure will contain μ .

 Wide interval
 very imprecise

 Narrow interval
 more chance of making a mistake

Probability based approach:

- choose a confidence level, e.g. 95% (or 90% or 99%)
- choose variables $L(X_1,...,X_N)$, $U(X_1,...,X_N)$ such that $P(L < \mu < U) = 95\%$
- given the sample data, the 95% confidence interval is

 $(L(x_1,\ldots,x_N), U(x_1,\ldots,x_N))$

Interpretation

If we construct many 95% confidence intervals this way in lots of experiments, 95% of these intervals will contain the parameter that we want to estimate.

http://www.ruf.rice.edu/~lane/stat_sim/conf_interval/index.html


If we have calculated a 95% confidence interval, it is not true to say that the probability that μ lies in this interval is 0,95.

P

A 95% confidence interval for a normal mean (known variance or large sample)

$$\begin{split} \bar{X} &\sim N\left(\mu, \frac{\sigma^2}{N}\right) \\ &\frac{\bar{X} - \mu}{\sigma/\sqrt{N}} &\sim N(0, 1) \\ P\left(-1.96 < \frac{\bar{X} - \mu}{\sigma/\sqrt{N}} < 1.96\right) &= 0.95 \\ \left(\bar{X} - 1.96\sigma/\sqrt{N} < \mu < \bar{X} + 1.96\sigma/\sqrt{N}\right) &= 0.95 \end{split}$$

Given a sample, $x_1, \dots x_N$, a 95% confidence interval for μ is

$$(\bar{x} - 1.96\sigma/\sqrt{N}, \bar{x} + 1.96\sigma/\sqrt{N})$$

Why 1.96?

What would a 90% confidence interval look like?

In a sample of 20 Catalans, the mean monthly wage was € 2000. Supposing that the standard deviation of monthly wages is Cataluña is € 500, calculate a 95% confidence interval for the true mean wage.

In a sample of 10 politics students, the mean height was 170cm. If the standard deviation of the heights of Spanish adults is 5cm, calculate a 99% confidence interval for the true mean Spanish height.

Computation in Excel

n	20		Data
mean	2000		
sd	500		
alpha	0,05		Computación de z
alpha/2	0,025		
1-alpha/2	0,975		
Z	1,96		DISTR.NORM.ESTAND.INV(0,975)
z*sigma/root(n)	219,13		B8*B3/RAIZ(B1)
interval	1780,87	2219,13	
	B2-B10	B2+B10	

Is there a faster way to do this?

In Excel 2010 you can use INTERVALO.CONFIANZA.NORM

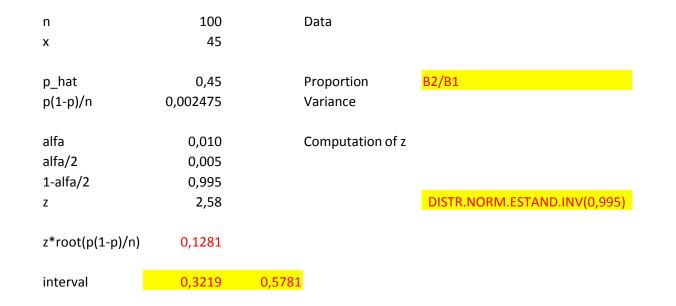
Argumentos de función				? 💌	
INTERVALO.CONFIANZA					
Alfa	0,05	- 🔝	• 0,05		
Desv_estándar	500	<u>-</u>	500		
Tamaño	20	<u>-</u>	: 20		
= 219,1306351 Devuelve el intervalo de confianza para la media de una población. Tamaño es el tamaño de la muestra.					
Resultado de la fórmula = 21 <u>Ayuda sobre esta función</u>	19,1306351		Aceptar Ca	ancelar	

We just have to subtract (and add) this to the mean to calculate the interval.

$$\begin{array}{rcl} X & \sim & Bi(N,p) \Rightarrow \\ X & \approx & N\left(Np,Np(1-p)\right) \\ \hat{p} = \frac{X}{N} & \approx & N\left(p,\frac{p(1-p)}{N}\right) \end{array}$$

Given a sample of size N with sample proportion $\ \hat{p}$, a 95% confidence interval for p is:

$$\left(\hat{p} - 1.96\sqrt{\frac{\hat{p}(1-\hat{p})}{N}}, \hat{p} + 1.96\sqrt{\frac{\hat{p}(1-\hat{p})}{N}}\right)$$


In a sample of 100 voters, 45 of them voted for the PSOE in the last elections. Use this information to estimate the true proportion of PSOE voters in these. Give a point estimate and a 95% confidence interval.

20 out of a sample of 30 Americans were in favour of the death penalty. Estimate the true proportion of Americans who are in favour and give a 90% interval.

Computation en Excel

Could we use INTERVALO.CONFIANZA?

	Argumentos de función		
	INTERVALO.CONFIANZA		
	Alfa	0,01	= 0,01
	Desv_estándar	raíz(0,45*(1-0,45))	= 0,497493719
Yes!	Tamaño	100	= 100
100.	Devuelve el intervalo	de confianza para la media de una poblac Tamaño es el tamaño de la n	
	Resultado de la fórmu	ula =	
	Ayuda sobre esta fur	nción	Aceptar Cancelar

The standard deviation is $\sqrt{(p^x (1-p^))}$.

Subtracting and summing this to 0.45, gives the confidence interval.

The following data come from the last CIS barometer. The ratings are assumed to come from normal distributions with standard deviations as in the table.

		[Desviación	
		Media	típica	(N)
Calculate 95% confidence intervals for the true mean ratings of Alfredo	Enrique Álvarez Sostres Joan Baldoví Roda	2.72	2.38	(133) (104)
Pérez Rubalcaba and Mariano	Uxue Barkos	4.27	2.74	(302)
Rajoy.	Alfred Bosch	3.69	2.78	(211)
rtajoy.	Rosa Díez	4.33	2.50	(1594)
	Josep A. Durán i Lleida	2.63	2.40	(1454)
Is it reasonable to assume that	Josu Erkoreka	2.85	2.53	(491)
these are the same?	Mikel Errekondo	2.50	2.67	(224)
	Francisco Jorquera	3.01	2.48	(216)
	Cayo Lara	3.88	2.62	(1379)
Why?	Ana María Oramas	3.43	2.50	(170)
•	Alfredo Pérez Rubalcaba	3.40	2.57	(2314)
	Mariano Rajoy	2.81	2.69	(2372)
	Carlos Salvador	2.28	2.25	(96)

Y, ¿cree Ud. que la situación económica actual del país es mejor, igual o peor que hace un año?

The following table comes from the CIS barometer of 2011.

PREGUNTA 2

	%	(N)
Mejor	5.3	(130)
Igual	35.1	(865)
Peor	57.6	(1418)
N.S.	1.7	(42)
N.C.	0.3	(8)
TOTAL	100.0	(2463)

Calculate a 95% confidence interval for the true proportion of Spanish adults who think that the economic situation worsened over this year.

The following news item was reported in The Daily Telegraph online on 8th May 2010.

General Election 2010: half of voters want proportional representation

Almost half of all voters believe Britain should conduct future general elections under proportional representation, a new poll has found.

The ICM survey for The Sunday Telegraph revealed that 48 per cent backed PR – a key demand of the Liberal Democrats. Some 39 per cent favoured sticking with the current "first past the post system" for electing MPs.

The public was split when asked how they wanted Britain to be governed after Thursday's general election resulted in a hung parliament, with the Conservatives, on 306 seats, the largest party. Some 33 per cent wanted a coalition government between the Tories and the Liberal Democrats, while 32 per cent thought <u>Nick Clegg's party</u> should team up with Labour. Just 18 per cent favoured a minority Tory government.

*ICM Research interviewed a random sample of 532 adults aged 18+ by telephone on 8 May 2010.

Calculate a 95% confidence interval for the true proportion of adults who are in favour of proportional representation.

The following is taken from *Electrometro.com: La web de encuestas electorales en España*.

The PSdG could renew its coalition with BNG in A Coruña (Antena 3)

Lunes 9 Mayo 2011

According to the results of the <u>survey carried out by TNS-Demoscopia for Antena 3 and Onda Cero</u>, the **PP** will get **38.7%** of the votes in **A Coruña**, which will give them **12-13 councilmen** as opposed to the 10 they have at the moment. On the other hand, the **PSdG** will lose 5.6 point with respect to the previous elections and will obtain **29,4%** of the votes which will give them **9 or 10 councilmen**. The **BNG** will obtain **5 or 6 councilmen** by getting **17.7%** of the votes, 3 points less than four years ago.

FICHA TÉCNICA: 500 interviews carried out on 3rd and 4th of May by TNS-Demoscopia for Antena 3 and Onda Cero.

Calculate a 95% confidence interval for the percentage of votes that the Partido Popular (PP) will obtain in A Coruña, given the survey results..

Additional Material

A 95% confidence interval for a normal mean (unknown variance)

Until now, we have assumed a known variance when constructing a confidence interval. In practice, this may be unrealistic.

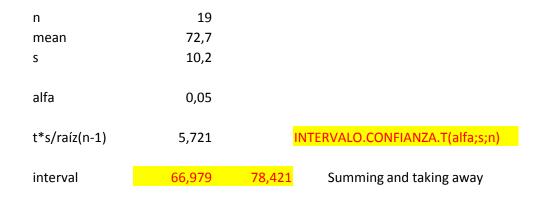
What should we do?

If the sample size is large (> 30), we can construct the same, normal, confidence interval as earlier, simply substituting the true standard deviation by the sample standard deviation.

If the sample is small, we can use a Student's t interval.

What is t?
$$\bar{x} \pm \frac{s}{\sqrt{n}} t_{n-1}(0,975)$$

This looks tough, but is easy with Excel 2010 ...



Data are available on the prison sentences of 19 murderers in Spain. The mean and standard deviation of the prison sentences are 72.7 and 10.2 months respectively.

Calculate a 95% interval for the mean duration of murder sentences in Spain

We can use the function INTERVALO.CONFIANZA.T

The interval is from 66.98 to 78.42 months.

With the original data it is even easier ...

A small survey was carried out in order to estimate the mean wage of Spanish bankers. A sample of 10 bankers gave the following results (in thousands of euros).

1200, 1000, 1500, 800, 750, 2400, 1000, 1600, 700, 600

Calculate a 95% confidence interval for the true mean wage of Spanish bankers.

We can use the Descriptive Statistics option in Data Analysis in Excel.

Columna1				
Media	1155,00			
Error típico	173,92			
Mediana	1000,00			
Moda	1000,00			
Desviación estándar	549,97			
Varianza de la muestra	302472,22			
Curtosis	1,95			
Coeficiente de asimetría	1,40			
Rango	1800,00			
Mínimo	600,00			
Máximo	2400,00			
Suma	11550,00			
Cuenta	10,00			
Nivel de confianza(95,0%)	393,43			

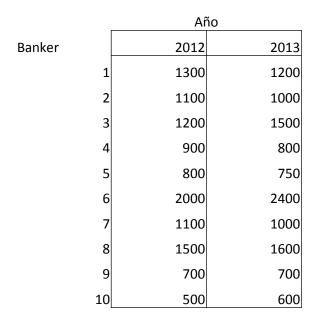
761,57

1548,43

Estadística descriptiva		? ×
Entrada Rango de <u>e</u> ntrada: Agrupado por: <u>R</u> ótulos en la primera fila	\$A\$1:\$A\$10 E ilas	Aceptar Cancelar Ayuda
Opciones de salida Rango de <u>s</u> alida: En una <u>h</u> oja nueva: En un libro nuevo		
 Resumen de estadísticas Nivel de confianza para la r K-ésimo mayor: K-ésimo menor: 	nedia: 95 %	

Summing and taking away gives the interval.

(€761570, €1548430)



A 95% interval for the difference between two normal means (paired data)

What are paired data?

Example

We have the wages for the same bankers in 2012 and 2013. Suppose that we wish to estimate the average increase of bankers' wages in this period.

Year			
Banker	2012	2013	Difference
1	1300	1200	-100
2	1100	1000	-100
3	1200	1500	300
4	900	800	-100
5	800	750	-50
6	2000	2400	400
7	1100	1000	-100
8	1500	1600	100
9	700	700	0
10	500	600	100
	1110	1155	45

Calculate the average wage each year and calculate the difference:

1155-1110 = 45

or calculate the wage increases and calculate the mean:

 $(-100 - 100 + 300 + \dots + 100)/10 = 45$

A reasonable point estimate of the average increase in bankers' wages is €45000. How can we calculate a confidence band?

Banker		Difference	
	1		-100
	2		-100
	3		300
	4		-100
	5		-50
	6		400
	7		-100
	8		100
	9		0
	10		100
			45

Just look at the sample of differences.

We have a single sample and we can just use a Student's t interval.

Columna1

Media	45,00
Error típico	56,98
Mediana	-25,00
Moda	-100,00
Desviación estándar	180,20
Varianza de la muestra	32472,22
Curtosis	0,21
Coeficiente de asimetría	1,15
Rango	500,00
Mínimo	-100,00
Máximo	400,00
Suma	450,00
Cuenta	10,00
Nivel de confianza(95,0%)	128,91

The interval is $45 \pm 128,91$ thousands of euros, i.e. (- $\in 83910, \in 173910$).

It seems plausible that there has been no real changes in bankers' mean wages in this period.