
9. Linear models and regression

AFM Smith

Objective

To illustrate the Bayesian approach to fitting normal and generalized linear
models.
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Introduction: the multivariate normal distribution

Definition 22
A random variable X = (X1, . . . , Xk)T is said to have a multivariate normal
distribution with mean µ and variance / covariance matrix Σ if

f(x|µ,Σ) =
1

(2π)k/2|Σ|12
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
for x ∈ Rk.

In this case, we write X|µ,Σ ∼ N (µ,Σ).

The following properties of the multivariate normal distribution are well known.
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i. Any subset of X has a (multivariate) normal distribution.

ii. Any linear combination
∑k

i=1 αiXi is normally distributed

iii. If Y = a + BX is a linear transformation of X, then Y|µ,Σ ∼
N
(
a + Bµ,BΣBT

)
.

iv. If X =
X1

X2

∣∣∣∣µ,Σ ∼ N
(

µ1

µ2
,

(
Σ11 Σ12

Σ21 Σ22

))
then the conditional

density of X1 given X2 = x2 is

X1|x2,µ,Σ ∼ N
(
µ1 + Σ12Σ−1

22 (x2 − µ2),Σ11 −Σ12Σ−1
22 Σ21

)
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The multivariate normal likelihood function

Suppose that we observe a sample x = (x1, . . . ,xn) of data from N (µ,Σ).
Then the likelihood function is given by

l(µ,Σ|x) =
1

(2π)nk/2|Σ|n2
exp

(
−1

2

n∑
i=1

(xi − µ)TΣ−1(xi − µ)

)

∝ 1
|Σ|n2

exp

(
−1

2

[
n∑

i=1

(xi − x̄)TΣ−1(xi − x̄) + n(µ− x̄)TΣ−1(µ− x̄)

])

∝ 1
|Σ|n2

exp
(
−1

2
[
tr
(
SΣ−1

)
+ n(µ− x̄)TΣ−1(µ− x̄)

])
where x̄ = 1

n

∑n
i=1 xi and S =

∑n
i=1(xi − x̄)(xi − x̄)T and tr(M) represents

the trace of the matrix M.

It is possible to carry out Bayesian inference with conjugate priors for µ,Σ.
We shall consider two cases which reflect different levels of knowledge about
the variance-covariance matrix Σ.
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Conjugate Bayesian inference for the multivariate normal distribution I: Σ = 1
φC

Firstly, consider the case where the variance-covariance matrix is known up
to a constant, i.e. Σ = 1

φC where C is a known matrix. Then, we have

X|µ, φ ∼ N
(
µ, 1

φC
)

and the likelihood function is

l(µ, φ|x) ∝ φ
nk
2 exp

(
−φ

2
[
tr
(
SC−1

)
+ n(µ− x̄)TC−1(µ− x̄)

])
.

Analogous to the univariate case, it can be seen that a multivariate normal-
gamma prior distribution is conjugate.
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The multivariate normal gamma distribution

We say that µ, φ have a multivariate normal gamma prior with parameters
m,V−1, a

2,
b
2 if

µ|φ ∼ N
(
m,

1
φ
V
)

φ ∼ G
(

a

2
,
b

2

)
.

In this case, we write µ, φ ∼ NG
(
m,V−1, a

2,
b
2

)
.

Bayesian Statistics



The marginal distribution of µ

In this case, the marginal distribution of µ is a multivariate, non-central t
distribution.

Definition 23
A (k-dimensional) random variable, T = (T1, . . . , Tk), has a multivariate t
distribution with parameters d, µT ,ΣT if

f(t) =
Γ
(

d+k
2

)
(πd)

k
2 |ΣT |1/2Γ

(
d
2

) (1 +
1
d
(t− µT )TΣ−1

T (t− µT )
)−d+k

2

.

In this case, we write T ∼ T (µT ,ΣT , d).

The following theorem gives the density of µ.

Theorem 34
Let µ, φ ∼ NG

(
m,V−1, a

2,
b
2

)
. Then the marginal density of µ is µ ∼

T
(
m, b

aV, a
)
.
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Proof

p(µ) =

∫ ∞

0

p(µ, φ) dφ

=

∫ ∞

0

p(µ|φ)p(φ) dφ

=

∫ ∞

0

1

(2π)
k
2 |V|

1
2

exp

(
−

φ

2
(µ−m)

TV−1
(µ−m)

) (b
2

)a
2

Γ
(

a
2

)φa
2−1

exp

(
−

b

2
φ

)
dφ

=
1

(2π)
k
2 |V|

1
2

(
b
2

)a
2

Γ
(

a
2

) ∫ ∞

0

φ
a+k

2 −1
exp

(
−

φ

2

[
b + (µ−m)

TV−1
(µ−m)

])
dφ

=
1

(2π)
k
2 |V|

1
2

(
b
2

)a
2

Γ
(

a
2

)Γ(a + k

2

)(
b + (µ−m)TV−1(µ−m)

2

)−a+k
2

and, reordering terms proves the result.
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The posterior distribution of µ, φ
Theorem 35
Let X|µ, φ ∼ N

(
µ, 1

φC
)

and assume the prior distributions µ|φ ∼

N
(
m, 1

φV
)

and φ ∼ G
(

a
2,

b
2

)
. Then, given sample data x, we have

µ|x, φ ∼ N
(
m?,

1
φ
V?

)
φ|x ∼ G

(
a?

2
,
b?

2

)
where

V? =
(
V−1 + nC−1

)−1

m? = V?
(
V−1m + nC−1x̄

)
a? = a + nk

b? = b + tr
(
SC−1

)
+ mTV−1m + nx̄TC−1x̄−m?V?−1m?.

Proof Exercise. The proof is analogous to the univariate case.
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A simplification

In the case where V ∝ C, we have a simplified result, similar to that for the
univariate case.

Theorem 36
Let µ, φ ∼ NG

(
m, αC−1, a

2,
b
2

)
. Then,

µ|φ,x ∼ N
(

αm + nx̄
α + n

,
1

(α + n)φ
C
)

φ|x ∼ G

a + n

2
,
b + tr

((
S + αn

α+n(m− x̄)(m− x̄)T
)
C−1

)
2

 .

Proof This follows from the previous theorem substituting V = 1
αC.
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Results with the reference prior

Theorem 37
Given the prior p(µ, φ) ∝ 1

φ, then the posterior distribution is

p(µ, φ|x) ∝ φ
nk
2 −1 exp

(
−φ

2
[
tr
(
SC−1

)
+ n(µ− x̄)TC−1(µ− x̄)

])
µ|x, φ ∼ N

(
x̄,

1
nφ

C
)

φ|x ∼ G

(
(n− 1)k

2
,
tr
(
SC−1

)
2

)

µ|x ∼ T

(
x̄,

tr
(
SC−1

)
n(n− 1)k

C, (n− 1)k

)
.

Proof µ, φ|x ∼ NG
(
x̄, 1

nC, (n−1)k
2 ,

tr(SC−1)
2

)
and the rest follows.

Bayesian Statistics



Conjugate inference for the multivariate normal distribution II: Σ unknown

In this case, it is useful to reparameterize the normal distribution in terms of
the precision matrix Φ = Σ−1 when the normal likelihood function becomes

l(µ,Φ|x) ∝ |Φ|n2 exp
(
−1

2
[
tr (SΦ) + n(µ− x̄)TΦ(µ− x̄)

])

It is clear that a conjugate prior for µ and Φ must take a similar form to the
likelihood. This is a normal-Wishart distribution.
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The normal Wishart distribution

Definition 24
A k× k dimensional symmetric, positive definite random variable W is said to
have a Wishart distribution with parameters d and V if

f(W) =
|W|d−k−1

2

2
dk
2 |V |d2π

k(k−1)
4
∏k

i=1 Γ
(

d+1−i
2

) exp
(
−1

2
tr
(
V−1W

))

where d > k − 1. In this case, E[W] = dV and we write W ∼ W(d,V).

If W ∼ W(d,V), then the distribution of W−1 is said to be an
inverse Wishart distribution, W−1 ∼ IW

(
d,V−1

)
with mean E

[
W−1

]
=

1
d−k−1V

−1.
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Theorem 38
Suppose that X|µ,Φ ∼ N

(
µ,Φ−1

)
and let µ|Φ ∼ N

(
m, 1

αΦ−1
)

and
Φ ∼ W(d,W). Then:

µ|Φ,x ∼ N
(

αm + nx̄
α + n

,
1

α + n
Φ−1

)
Φ|x ∼ W

(
d + nk,W−1 + S +

αn

α + n
(m− x̄)(m− x̄)T

)

Proof Exercise.

We can also derive a limiting prior distribution by letting d → 0 when

p(Φ) ∝ |Φ|k+1
2 when the posterior distribution is

µ|Φ,x ∼ N
(
x̄,

1
n
Φ−1

)
Φ|x ∼ W (n(k − 1),S) .
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Semi-conjugate inference via Gibbs sampling

The conjugacy assumption that the prior precision of µ is proportional to the
model precision Σ is very strong in many cases. Often, we may simply wish to
use a prior distribution of form µ ∼ N (m,V) where m and V are known and
a Wishart prior for Φ, say φ ∼ W(d,W) as earlier.

In this case, the conditional posterior distributions are

µ|Φ,x ∼ N
((

V−1 + nΦ
)−1 (

V−1m + nΦx̄
)
,
(
V−1 + nΦ

)−1
)

Φ|µ,x ∼ W
(
d + n,W−1 + S + n(µ− x̄)(µ− x̄)T

)
and therefore, it is straightforward to set up a Gibbs sampling algorithm to
sample the joint posterior, as in the univariate case.
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Aside: sampling the multivariate normal, multivariate t and Wishart distributions

Samplers for the multivariate normal distribution (usually based on the
Cholesky decomposition) are available in most statistical packages such as
R or Matlab. Sampling the multivariate t distribution is only slightly more
complicated. Assume that we wish to sample from T ∼ T (µ,Σ,d). Then
from Theorem 34, the distribution of T is the same as the marginal distribution
of T in the two stage model

T|φ ∼ N
(

µ,
1
φ
Σ
)

φ ∼ G
(

d

2
,
d

2

)
.

Thus, sampling can be undertaken by first generating values of φ and then
generating values of T from the associated normal distribution.
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Sampling from a Wishart distribution can be done in a straightforward way if
the degrees of freedom is a natural number. Thus, assume W ∼ W(d,V)
where d ∈ N. Then the following algorithm generates a Wishart variate.

1. Simulate z1, . . . , zk ∼ N (0,V)

2. Define W =
∑k

i=1 zizT
i .
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Normal linear models

Definition 25
A normal linear model is of form

y = Xθ + ε

where y = (y1, . . . , yn)T , θ = (θ1, . . . , θk)T , and we will assume initially that

ε ∼ N
(
0, 1

φI
)
.

This framework includes regression models, defining, e.g. X =(
1 1 · · · 1
x1 x2 · · · xn

)T

and θ = (α, β)T .

It is easy to see that for such a model, a conjugate, multivariate normal-gamma
prior distribution is available.
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Conjugate Bayesian inference
Theorem 39
Let y = Xθ + ε and assume a multivariate normal-gamma prior distribution
θ, φ ∼ NG

(
m,V−1, a

2,
b
2

)
. Then, the predictive distribution of y is

y ∼ T
(
Xm,

b

a
(XVXT + I), a

)
and the posterior distribution of θ, φ given y is

θ, φ|y ∼ NG
(
m?,V?−1,

a?

2
,
b?

2

)
where

m? =
(
XTX + V−1

)−1 (
XTy + V−1m

)
V? =

(
XTX + V−1

)−1

a? = a + n

b? = b + yTy + mTV−1m−m?TV?−1m?
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Proof First we shall prove the predictive distribution formula. We have
y = Xθ + ε and therefore, the distribution of y|φ is

y|φ ∼ N
(
Xm,

1
φ

(
XVXT + I

))
and the joint distribution of y and φ is multivariate normal-gamma

y, φ ∼ NG
(
Xm,

(
XVXT + I

)−1
,
a

2
,
b

2

)
and therefore, the marginal distribution of y is

y ∼ T
(
Xm,

b

a
(XVXT + I), a

)
.

Now we shall evaluate the posterior distribution
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p(θ, φ|y) ∝ φ
a+k

2 −1
exp

(
−

φ

2

[
b + (θ −m)

TV−1
(θ −m)

])
φ

n
2 exp

(
−

φ

2
(y − Xθ)

T
(y − Xθ)

)
∝ φ

a+n+k
2 −1

exp

(
−

φ

2

[
b + θ

T
(
XTX + V−1

)
θ − 2θ

T
(
XTy + V−1m

)
+ yTy + mTV−1m

])
∝ φ

a?+k
2 −1

exp

(
−

φ

2

[
b + θ

TV?−1
θ − 2θ

T
(
XTy + V−1m

)
+ yTy + mTV−1m

])
∝ φ

a?+k
2 −1

exp

(
−

φ

2

[
b + θ

TV?−1
θ − 2θ

TV?−1V?
(
XTy + V−1m

)
+ yTy + mTV−1m

])
∝ φ

a?+k
2 −1

exp

(
−

φ

2

[
b + θ

TV?−1
θ − 2θ

TV?−1m?
+ yTy + mTV−1m

])
∝ φ

a?+k
2 −1

exp

(
−

φ

2

[
b + (θ −m?

)
TV?−1

(θ −m?
) + yTy + mTV−1m−m?V?−1m?

])
∝ φ

a?+k
2 −1

exp

(
−

φ

2

[
b

?
+ (θ −m?

)
TV?−1

(θ −m?
)
])

which is the kernel of the required normal-gamma distribution.
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Interpretation of the posterior mean

We have

E[θ|y] =
(
XTX + V−1

)−1 (
XTy + V−1m

)
=

(
XTX + V−1

)−1 (
XTX(XTX)−1XTy + V−1m

)
=

(
XTX + V−1

)−1
(
XTXθ̂ + V−1m

)
where θ̂ = (XTX)−1XTy is the maximum likelihood estimator. Thus, this
expression may be interpreted as a weighted average of the prior estimator
and the MLE, with weights proportional to precisions, as we can recall that,
conditional on φ, the prior variance was 1

φV and that the distribution of the

MLE from the classical viewpoint is θ̂|φ ∼ N
(
θ, 1

φ(XTX)−1
)
.
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Relation to ridge regression

The classical least squares regression solution θ̂ = (XTX)−1XTy does not
exist if XTX is not of full rank. In this case, an often employed technique is
to use ridge regression, see Hoerl and Kennard (1970).

The ridge regression estimator is the value of which minimizes

(y −Xθ)2 + α2||θ||2

and the solution can be shown to be

θ̂α = (XTX + αI)−1XTy.

If we use a Bayesian approach with prior, µ|φ ∼ N
(
0, 1

αφI
)
, then the posterior

mean is
E[µ|y] = (XTX + αI)−1XTy

which is equal to the ridge regression estimate.
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Example: an ANOVA type model

Example 65

Consider the ANOVA model: yij = θi + εij where εij|φ ∼ N
(
0, 1

φ

)
, for

i = 1, . . . , k and j = 1, . . . , ni.

Thus θ = (θ1, . . . , θk)T , y = (y11, . . . , y1n1, y21, . . . , y2n2, . . . , yknk
)T ,

X =



1 0 0 . . . 0
... ... ... . . . ...

1n1 0 0 . . . 0
0 1 0 . . . 0
... ... ... . . . ...
0 1 0 . . . 0
0 0 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1


and n =

∑k
i=1 ni is the model dimension.
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If we use conditionally independent normal priors, θi|φ ∼ N
(
mi,

1
αiφ

)
for

i = 1, . . . , k and a gamma prior φ ∼ G
(

a
2,

b
2

)
, then m = (m1, . . . ,mk)T and

V =


1

α1
0 0 . . . 0

0 1
α2

0 . . . 0
... ... . . . . . . ...
0 0 0 . . . 1

αk

 . Also,

XTX =


n1 0 0 . . . 0
0 n2 0 . . . 0
... ... . . . . . . ...
0 0 0 . . . nk



XTX + V−1 =


n1 + α1 0 0 . . . 0

0 n2 + α2 0 . . . 0
... ... . . . . . . ...
0 0 0 . . . nk + αk


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(
XTX + V−1

)−1
=


1

n1+α1
0 0 . . . 0

0 1
n2+α2

0 . . . 0
... ... . . . . . . ...
0 0 0 . . . 1

nk+αk


XTy = (n1ȳ1·, . . . , nkȳk·)T

V−1m = (α1m1, . . . , αkmk)T

XTy + V−1m = (n1ȳ1· + α1m1, . . . , nkȳk· + αkmk)T

(
XTX + V−1

)−1 (
XTy + V−1m

)
=

(
n1ȳ1· + α1m1

n1 + α1
, . . . ,

nkȳk· + αkmk

nk + αk

)T

so

θ|y, φ ∼ N


n1ȳ1·+α1m1

n1+α1
n2ȳ2·+α2m2

n2+α2...
...

nkȳk·+αkmk
nk+αk

,
1
φ


1

n1+α1
0 0 . . . 0

0 1
n2+α2

0 . . . 0
... ... . . . . . . ...
0 0 0 . . . 1

nk+αk


 .

Bayesian Statistics



Now we can calculate the posterior distribution of φ.

yTy =
k∑

i=1

ni∑
j=1

y2
ij

mTV−1m =
k∑

i=1

αim
2
i

m?TV?−1m? =
k∑

i=1

(niȳi· + αimi)2

ni + αi

yty + mTV−1m−m?TV?−1m? =
k∑

i=1

ni∑
j=1

(yij − ȳi·)2 +
k∑

i=1

niαi

ni + αi
(ȳi· −mi)2 so

φ|y ∼ G

(
a + n

2
,
b +

∑k
i=1

∑ni
j=1(yij − ȳi·)2 +

∑k
i=1

niαi
ni+αi

(ȳi· −mi)2

2

)
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Often we are interested in the differences in group means, e.g. θ1 − θ2. Here
we have

θ1− θ2|y, φ ∼ N
(

n1ȳ1· + α1m1

n1 + α1
− n2ȳ2· + α2m2

n2 + α2
,
1
φ

(
1

α1 + n1
+

1
α2 + n2

))
and therefore, a posterior, 95% interval for θ1 − θ2 is given by

n1ȳ1· + α1m1
n1 + α1

−
n2ȳ2· + α2m2

n2 + α2
±

√√√√( 1

α1 + n1
+

1

α2 + n2

) b +
∑k

i=1
∑ni

j=1
(yij − ȳi·)2 +

∑k
i=1

niαi
ni+αi

(ȳi· −mi)
2

a + n
ta+n(0.975).
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Limiting results for the linear model

Assume that we use the limiting prior p(θ, φ) ∝ 1
φ. Then, we have

p(θ, φ|y) ∝ φ
n
2−1 exp

(
−φ

2
(y −Xθ)T (y −Xθ)

)
∝ φ

n
2−1 exp

(
−φ

2

[
θTXTXθ − 2θTXTy + yTy

])
∝ φ

n
2−1 exp

(
−φ

2

[
θTXTXθ − 2θTXTX(XTX)−1XTy + yTy

])
∝ φ

n
2−1 exp

(
−φ

2

[
(θ − θ̂)T (XTX)(θ − θ̂) + yTy − θ̂

T
(XTX)θ̂

])

θ|y, φ ∼ N
(

θ̂,
1
φ
(XTX)−1

)
and φ|y ∼ G

(
n− k

2
,
yTy − θ̂

T
(XTX)θ̂

2

)

θ|y ∼ T
(
θ̂, σ̂2(XTX)−1, n− k

)
where σ̂2 =

yTy − θ̂
T
(XTX)θ̂

n− k
.
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Note that σ̂2 = 1
n−k(y−Xθ̂)T (y−Xθ̂) is the usual classical estimator of σ2.

In this case, Bayesian credible intervals, estimators etc. will coincide with their
classical counterparts.

One should note however that the propriety of the posterior distribution in this
case relies on two conditions:

1. n > k,

2. XTX is off full rank.

If either of these two conditions is not satisfied, then the posterior distribution
will be improper.
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Example 66
In Example 65, suppose that we use the reference prior p(θ, φ) ∝ 1

φ. Then, we
have

θ|y ∼ N


ȳ1·
ȳ2·
...
...

ȳk·

,
1
φ


1
n1

0 0 . . . 0
0 1

n2
0 . . . 0

... ... . . . . . . ...
0 0 0 . . . 1

nk




φ|y ∼ G
(

n− k

2
,
(n− k)σ̂2

2

)

where σ̂2 = 1
n−k

∑k
i=1

∑ni
j=1(yij − ȳi·)2 is the classical variance estimate for

this problem.

A 95% posterior interval for θ1−θ2 is given by ȳ1·−ȳ2·±σ̂
√

1
n1

+ 1
n2

tn−k(0.975)
which is equal to the usual, classical interval.
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Simple linear regression

Example 67
Consider the simple linear regression model, yi = α+βxi+εi, for i = 1, . . . , n,

where εi ∼ N
(
0, 1

φ

)
and suppose that we use the limiting prior p(α, β, φ) ∝ 1

φ.

Then, we have

α
β

∣∣∣∣y, φ ∼ N
(

α̂

β̂
,

1
φnSxx

( ∑n
i=1 x2

i −nx̄
−nx̄ n

))
φ|y ∼ G

(
n− 2

2
,
Syy(1− r2)

2

)
α
β

∣∣∣∣y ∼ T
(

α̂

β̂
,
σ̂2

n

1
Sxx

( ∑n
i=1 x2

i −nx̄
−nx̄ n

)
, n− 2

)

where α̂ = ȳ−β̂x̄, β̂ = Sxy

Sxx
, Sxx =

∑n
i=1(xi−x̄)2, Sxy =

∑n
i=1(xi−x̄)(yi−ȳ),

Syy =
∑n

i=1(yi − ȳ)2, r = Sxy√
SxxSyy

and σ̂2 = Syy(1−r2)
n−2 .
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Thus, the marginal distributions of α and β are

α|y ∼ T
(

α̂, σ̂2

∑n
i=1 x2

i

nSxx
, n− 2

)
β|y ∼ T

(
β̂,

σ̂2

Sxx
, n− 2

)
and therefore, for example, a 95% credible interval for β is given by

β̂ ± σ̂√
Sxx

tn−2(0.975)

equal to the usual classical interval.
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Suppose now that we wish to predict a future observation ynew = α+βxnew +
εnew. Then

E[ynew|φ,y] = α̂ + β̂xnew

V [ynew|φ,y] =
1
φ

(∑n
i=1 x2

i

nSxx
+

x2
new

nSxx
− 2

xnewx̄

nSxx
+ 1
)

=
1
φ

(
(xnew − x̄)2

nSxx
+

1
n

+ 1
)

ynew|y ∼ T
(

α̂ + β̂xnew, σ̂2

(
(xnew − x̄)2

nSxx
+

1
n

+ 1
)

, n− 2
)

and thus, a 95% credible interval for ynew is

α̂ + β̂xnew ± σ̂

(
(xnew − x̄)2

nSxx
+

1
n

+ 1
)

tn−2(0.975)

which coincides with the usual, classical interval.
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The normal body temperature example again

Example 68
In Example 20, we studied the average body temperatures of humans and we
saw in Example 21 that these were different for men and women. Now we
shall consider the effects of introducing a covariate. In the following diagram,
temperature is plotted against heart rate (beats per minute) for male (blue)
and female (red) subjects
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It is reasonable to assume that body temperature would be related to heart
rate. Thus, we might assume the global linear model, Ti = α + βHεi,
independent of temperature. Fitting this model with a non-informative prior
leads to the estimated regression equation

E[T |H,data] = 96.31 + 0.021H.
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However, earlier we supposed that gender also influenced body temperature
and therefore, a model taking gender into account might be considered. Thus,
we assume

Tij = αi + βHij + εij

where Tij represents the temperature of subject j in group i = 1 (men) or

i = 2 (women) and Hij is the subject’s heartrate and εij ∼ N
(
0, 1

φ

)
is a

random error.

Representing this model in linear form, we have θ = (α1, α2, β)T , y =
(T11, . . . , T1n1, T21, . . . , T2n2)

T where n1 and n2 are the numbers of men and
women sampled respectively and

XT =

 1 . . . 1 0 . . . 0
0 . . . 0 1 . . . 1

H11 . . . H1n1 H21 . . . H2n2


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Assume that we use the prior p(α1, α2, β, φ) posterior mean parameter values
for α, β are

E[α1|T] = 96.2508

E[α2|T] = 96.5202

E[β|T] = 0.0253

The posterior distribution of φ is φ|y ∼ G
(
127
2 , 62.5

2

)
. The following

diagram shows the results of fitting the simple and combined models.
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It is interesting to assess whether or not the difference between the sexes is
still important. Thus, we can calculate the posterior distribution of α1 − α2.

We have α1 − α2|y, φ ∼ N
(
−0.2694, 0.031

φ

)
and therefore a 95% posterior

credible interval is

−0.2694±
√

0.031 ∗ 62.5/127 ∗ t127(0− 975) = (−0.5110,−0.0278).

Thus, it seems likely that the combined model is superior to the simple
regression model.

Note that in order to undertake a formal analysis of this, we could use fractional
or intrinsic Bayes factors as the prior distributions in this case were improper.
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Including covariance in the linear model

It is possible to fit a more general linear model where we do not assume that
the model variance is proportional to the identity. One possibility is to assume
that the model variance is proportional to a known matrix (C). Lindley and
Smith (1972) then demonstrate the following theorem.

Theorem 40
Let y = Xθ + ε where ε|φ ∼ N

(
0, 1

φC
)

with prior distribution θ, φ ∼
NG

(
m,V−1, a

2,
b
2

)
. Then, the predictive distribution of y is

y ∼ T
(
Xm,

b

a

(
XVXT + C

)
, a

)
and the posterior distribution of µ, φ|y is

θ|y, φ ∼ N
(
m?,

1
φ
V?

)
φ|y ∼ G

(
a?

2
,
b?

2

)
where
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m? =
(
XTC−1X + V−1

)−1 (
XTC−1y + V−1m

)
,

V? =
(
XTC−1X + V−1

)−1

a? = a + n

b? = b + yTC−1y + mTV−1m−m?TV?−1m?

Proof Exercise.

In the limiting case, given the prior p(θ, φ) ∝ 1
φ, it is easy to show that these

posterior distributions converge to produce posterior distributions which lead
to the same numerical results as in standard classical inference, e.g.

θ|y, φ ∼ N
((

XTC−1X
)−1

XTC−1y,
1
φ

(
XTC−1X

)−1
)

and the posterior mean is the classical MLE of θ.
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The SUR model

A more general approach is to assume an unknown model variance-covariance
matrix Σ and set an inverse Wishart prior distribution, e.g. Φ = Σ−1 ∼
W(d,W).

Example 69
Seemingly unrelated regression (SUR) is a well known econometric model. In
the traditional SUR model, we have M equations of form

yi = Xiβi + εi

for i = 1, . . . ,M where yi is an N dimensional vector of observations on a
dependent variable, Xi is a (N×Ki) matrix of observations on Ki independent
variables, βi is a Ki dimensional vector of unknown regression coefficients and
εi is an N dimensional, unobserved error vector.
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The M equations can be written as
y1

y2
...

yM

 =


X1

X2
. . .

XM




β1

β2
...

βM

+


ε1

ε2
...

εM


and written compactly as

y = Xβ + ε

where y has dimension (NM × 1), X has dimension (NM × K) where

K =
∑M

i=1 Ki, β is (K × 1) and ε has dimension (NM × 1). Assume the
distribution of ε is

ε ∼ N (0,Σ⊗ IN) .
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The likelihood function is now

l(β,Σ|y) ∝ Σ−N
2 exp

(
−1

2
(y −Xβ)TΣ−1 ⊗ IN(y −Xβ)

)
∝ Σ−N

2 exp
(
−1

2
tr(AΣ−1)

)
where A is a (M ×M) matrix with (i, j)’th element

(A)ij = (yi −Xiβi)
T (yj −Xjβj)
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A natural, uninformative prior is p(Σ) ∝ |Σ|−M+1
2 and then, given this prior,

we have immediately that

β|y,Σ ∼ N
(
β̂,
[
XT (Σ−1 ⊗ IN)X

]−1
)

Σ ∼ IW (N,A)

where β̂ =
[
XT (Σ−1 ⊗ IN)X

]−1
XT (Σ−1 ⊗ IN)y is the standard, least

squares estimator.
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The three stage linear model and ideas of hierarchical models

Up to now, we have used direct priors on the regression parameters θ, φ.
In some cases, it may be more appropriate to use hierarchical priors. One
example is the three stage linear model of Lindley and Smith (1972) who
propose the structure

y = Xθ + ε

θ ∼ N (Aβ,V)

β ∼ N (m,W)

so that the prior distribution of θ is defined hierarchically in two stages. Lindley
and Smith (1972) demonstrate how to calculate the posterior distribution in
this case when all the variances are known.
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Example 70
In Example 65, we assumed direct, independent priors on the group mean
parameters θi. Often however, we may have little information about these
paramaters except that we have no prior evidence that they are different. This
would suggest the use of a hierarchical prior, for example,

θi|θ0, φ ∼ N
(

θ0,
1

αφ

)
p(θ0, φ) ∝ 1

φ
.

We shall illustrate how Bayesian inference using hierarchical priors can be
carried out in the following chapter.
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Generalized linear models

The generalized linear model (Nelder and Wedderburn 1972) generalizes the
normal linear model by allowing the possibility of non-normal error distributions
and by allowing for a non-linear relationship between y and x.

Definition 26
A generalized linear model is specified by two functions:

i a conditional, exponential family density function of y given x, parameterized
by a mean parameter, µ = µ(x) = E[Y |x] and (possibly) a dispersion
parameter, φ > 0 that is independent of x,

ii a (one-to-one) link function, g, which relates the mean, µ = µ(x) to the
covariate vector, x, as g(µ) = xθ.
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Example 71
The logistic regression model is often used for predicting the occurrence of an
event given covariates. It is assumed that

Yi|pi ∼ BI(ni, pi) for i = 1, . . . ,m, and

log
pi

1− pi
= xiθ

Example 72
In Poisson regression, it is supposed that

Yi|λi ∼ P(λi)

log λi = xiθ

In both examples, we have assumed the canonical link function which is
the natural parameterization to leave the exponential family distribution in
canonical form.
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The Bayesian specification of a GLM is completed by defining (typically
normal or normal gamma) prior distributions p(θ, φ) over the unknown model
parameters. As with standard linear models, when improper priors are used, it
is then important to check that these lead to valid posterior distributions.

Clearly, these models will not have conjugate posterior distributions, but,
usually, they are easily handled by Gibbs sampling.

In particular, the posterior distributions from these models are usually log
concave and are thus easily sampled via adaptive rejection sampling, see e.g.
Gilks and Wild (1992).
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Example 73
The table shows the relationship, for 64 infants, between gestational age of the
infant (in weeks) at the time of birth (x) and whether the infant was breast
feeding at the time of release from hospital (y).

x 28 29 30 31 32 33
#y = 0 4 3 2 2 4 1
#y = 1 2 2 7 7 16 14

Let xi represent the gestational age and ni the number of infants with this
age. Then we can model the probability that yi infants were breast feeding at
time of release from hospital via a standard binomial regression model.
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It is easy to set this model up in Winbugs.

for(i IN 1 : I)

theta1

y[i]

p[i]

n[i]

mu[i]

theta0

x[i]
mu[i]

name: mu[i] type: logical link: identity
value: theta0+theta1*x[i]
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The doodle gives the following model:

model; {
theta0 ~ dnorm( 0.0,1.0E-6)
theta1 ~ dnorm( 0.0,1.0E-6)
for( i in 1 : I ) {

mu[i] <- theta0+theta1 * x[i]
}
for( i in 1 : I ) {

logit(p[i]) <- mu[i]
}
for( i in 1 : I ) {

y[i] ~ dbin(p[i],n[i])
}

}

and we can read in the data using

list(I=6,x=c(28,29,30,31,32,33),n=c(6,5,9,9,20,15),
y=c(2,2,7,7,16,14))
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In this case, we set the initial values to theta0=theta1=1. Given 30000
iterations to burn in and 30000 in equilibrium we have the following posterior
estimates for p and theta.

node mean sd MC error 2.5% median 97.5%
p[1] 0.3783 0.1376 0.008533 0.1332 0.3714 0.6544
p[2] 0.5089 0.1118 0.00595 0.2842 0.5117 0.7173
p[3] 0.646 0.07742 0.002298 0.484 0.6501 0.7858
p[4] 0.7636 0.0577 9.063E-4 0.6435 0.7667 0.8673
p[5] 0.8483 0.05263 0.002359 0.7332 0.8528 0.9374
p[6] 0.9032 0.04844 0.002742 0.789 0.9108 0.9747
theta0 -16.85 6.479 0.4591 -30.71 -16.42 -5.739
theta1 0.5823 0.2112 0.01497 0.2222 0.567 1.036

The posterior mean values are quite close to the sample proportions.
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Application V: Inference for Lanchester’s combat models

Lanchester

Lanchester (1916) developed a system of equations for modeling the losses of
combating forces.
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Lanchester’s equations

The Lanchester equations for modern warfare (aimed combat, without
reinforcements) between armies of size x(t) and y(t) are

∂x

∂t
= −αy

∂y

∂t
= −βx

for x(t), y(t) > 0.

These equations lead to the well-known Lanchester square law

α
(
x(0)2 − x(t)2

)
= β

(
y(0)2 − y(t)2

)
.

This law has been fitted to some real combat situations such as the battle of
Iwo Jima (Engel 1954).
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Different types of warfare

A more general system of differential equations which includes the square law
can be used to represent different forms of warfare as follows

∂x

∂t
= −βxφ1yφ2

∂y

∂t
= −αyφ1xφ2

Here, φ = (0, 1) gives the square law, φ = (1, 1) gives a linear law representing
unaimed fire combats, φ = (0, 0) leads to a different linear law representing
hand-to hand combats and φ = (1, 0) leads to a logistic law which has been
used to represent large scale combats such as the American Civil War. See
e.g. Weiss (1966).

Bayesian Statistics



Introducing uncertainty

In modeling combat situations, interest lies in:

• classifying battle types (historical analysis),

• assessing relative fighting strengths of the two armies (i.e. the ratio α/β),

• predicting casualties,

• predicting who will win the battle.

However, the basic Lanchester models are deterministic and thus, for instance,
the battle winner is predetermined given the model parameters. Thus, we need
to introduce a random element into the Lanchester systems.

One possibility is to consider stochastic Lanchester models based on Poisson
process type assumptions, see e.g. Clark (1969), Goldie (1977) or Pettit et
al (2003). Following Wiper et al (2000), an alternative is to discretize time,
linearize the Lanchester systems and fit a regression model.
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Discretization and Linearization

Given daily casualty data, we can discretize the Lanchester equations to give:

∆xt ≈ βxφ1
t−1y

φ2
t−1 ∆yt ≈ αyφ1

t−1x
φ2
t−1

where ∆xt and ∆yt are the daily casualties recorded in the two armies.

Bracken (1995) attempted to fit this model directly to combat data from the
Ardennes campaign. However, it seems more natural to linearize the model.
Taking logs and introducing an error term, we have:

zt = θ + Pt−1φ + εt

where zt are the logged casualties of the two armies on day t, φ = (φ1, φ2)T

and Pt−1 =
(

log yt−1 log xt−1

log xt−1 log yt−1

)
.

Assuming that the error distribution is normal, εt|Φ ∼ N
(
0,Φ−1

)
, then we

have a (multivariate) linear model.
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Analysis of the Ardennes campaign data

The Battle of the Bulge

The Battle of the Bulge in 1944, was one of the largest battles in the Second
World War involving, for example, over 250000 US troops with nearly 20000
US casualties and even more German casualties. The Germans launched an
initial surprise offensive under cloud cover and attacked during 5 days when
the allied troops mounted a counterattack which lead to the eventual defeat
of the German army 23 days later.

For a full description, see:

http://en.wikipedia.org/wiki/Battle_of_the_Bulge
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The forces involved in the battle were troops, cannons and tanks and for the
purposes of this analysis, we consider a composite force for each army which
is a weighted measure of these components.

As it seems likely that casualties may be affected by whether an army is
attacking or not, the general regression model was modified to include a factor
δ which indicated which army was attacking so that the full model is

zt = θ + Pt−1φ + Itδ + εt.

Here It =
(

1 0
0 −1

)
if the Germans were attacking on day t and It =(

−1 0
0 1

)
if the Americans were attacking.
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Relatively informative prior distributions were used, with a Wishart prior
structure for Φ. The model was then fitted using Gibbs sampling. The
posterior mean parameter estimates are given below.

Parameter Mean (standard deviation)
θ 7.88 (.09) 8.04 (.08)
φ 0.84 (.41) 0.27 (.40)
δ −0.38 (.09) −0.01 (.09)

There is no clear evidence in favour of any one of the standard Lanchester
laws as against any other although, using Bayes factors to compare the specific
models φ = (0, 1), (0, 0), (1, 0) and (1, 1) suggests that the logistic law,
φ = (1, 0) is the most likely.

There is strong evidence that the American casualties were typically higher
when the Germans were attacking although the German casualties did not
seem to be influenced by this.

Bayesian Statistics



Goodness of fit

In order to assess the fit of the model, we calculated the predicted errors
zt−E[zt|data]. A plot of these errors for the first American (left) and German
(right) armies is given below.

There is slight evidence of lack of fit for the German forces. More complex
models might be preferable. See e.g. Lucas and Turkes (2003).
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Conclusions and Extensions

• Bayesian inference for Lanchester models is straightforward to implement.

• There is high colinearity in these models and proper prior information is
necessary.

• Many models fit the Ardennes data almost equally well.

• The Lanchester model has been proposed as a model for competition
between ants, see e.g. McGlynn (2000) and for business competition, see
e.g. Campbell and Roberts (2006).

• The Lanchester equations are similar to the Lotka-Volterra equations for
predator prey systems. It is possible to extend the approach to these
systems.
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