
8. Large samples

Le Cam

Le Cam (1953) was the first to formally demonstrate the asymptotic normality
of the posterior distribution.

Objective

Illustrate the limiting properties of Bayesian distributions.
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Recommended Reading

• Bernardo, J.M. and Smith, A.F.M. (1994), Bayesian Theory, Section 5.3.

• Gelman et al (2003), Chapter 4, Sections 4.1 – 4.3 and Appendix B.
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If the sample size is very large, it seems obvious that the prior parameter values
will have very little influence.

Example 60
X|µ, σ2 ∼ N (µ, σ2). Suppose that we use a conjugate prior distribution.
Then, for example:

E[µ|x] =
cm + nx̄

c + n
→ x̄

when n →∞.

In fact, we should usually expect that the properties of Bayesian posterior
distributions will be similar to those of maximum likelihood estimators in the
limit. The following results illustrate this.
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Asymptotic results when Θ is discrete

The following theorem demonstrates that, in the discrete case, as long as the
prior probability of the true value, θt, is positive, then the posterior probability
density of θ converges to a point mass at θt.

Theorem 30
Let X|θ ∼ f(·|θ) where the parameter space Θ = {θ1,θ2, . . .} is countable.
Suppose that θt ∈ Θ is the true value of θ.

Suppose that the prior distribution is P (θ) where P (θi) > 0 ∀ i and we assume
that ∫

f(x|θt) log
f(x|θt)
f(x|θi)

dx > 0 ∀ i 6= t. Then

limn→∞P (θt|x) = 1 and limn→∞P (θi|x) = 0 ∀ i 6= t.

An interesting extension of this result is that if θt /∈ Θ, then the posterior
distribution converges to a point mass at the point that gives a parametric
model closest (in the sense of Kullback-Liebler distance) to the true model.
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Proof Let x = (x1, . . . , xn).

P (θi|x) =
P (θi)f(x|θi)∑
i P (θi)f(x|θi)

=
P (θi)f(x|θi)/f(x|θt)∑
i P (θi)f(x|θi)/f(x|θt)

=
exp (log P (θi) + Si)∑
i exp (log P (θi) + Si)

where Si =
n∑

j=1

log
f(xj|θi)
f(xj|θt)

.

Conditional on θt, Si is the sum of n i.i.d. random quantities and therefore,
by the strong law of large numbers, we have

lim
n→∞

1
n
Si =

∫
f(x|θt) log

f(x|θi)
f(x|θt)

dx.

This quantity is negative if i 6= t and zero if i = t. Therefore, when n → ∞,
St → 0 y Si → −∞ if i 6= t, which proves the theorem.
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The continuous case

The previous arguments cannot be used in the continuous case, as now, the
probability at any particular value of θ is 0. Instead, we now define θt to be
the value of θ that maximizes the Kullback-Liebler information

H(θ) =
∫

log
ft(x)
f(x|θ)

ft(x) dx

of the distribution f(·|θ) with respect to the true distribution of X, say ft(·).
Now we can demonstrate the following theorem.

Theorem 31
If θ is defined on a compact set and A is a neighbourhood of θt with non-zero
prior probability, then

P (θt ∈ A|x) → 1 as n →∞.

Proof See Gelman et al (2003).

Bayesian Statistics



Convergence to normality

Theorem 32
Under certain regularity conditions, the posterior distribution of θ tends to a
normal distribution with mean θt and variance nJ(θt)−1 where J(θ) is the
Fisher information.

Proof Suppose that θ is univariate and let θ̂ be the posterior mode. Then a
Taylor expansion of log p(θ|x) around the mode is

log p(θ|x) = log p(θ̂|x) +
1
2
(θ − θ̂)2

d2

dθ2
log p(θ|x)|θ=θ̂ + . . .

The first term in this expression is constant and the second term is

(θ − θ̂)2
d2

dθ2
log p(θ|x)|θ=θ̂ = (θ − θ̂)2

d2

dθ2
log

p(θ)f(x|θ)
f(x)

∣∣∣∣
θ=θ̂

= (θ − θ̂)2
(

d2

dθ2
log p(θ̂) +

n∑
i=1

d2

dθ2
log f(xi|θ)|θ=θ̂

)
.
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Now the first bracketed term, d2

dθ2 log p(θ̂) is constant, whereas the second term
(thinking of the xi as variables) is the sum of n i.i.d. random variables with
negative mean.

As the posterior mode is a consistent estimator, it follows that if ft(x) = f(x|θt)
is the true distribution, then the mean is −J(θt). Otherwise, the mean is

Eft

[
d2

dθ2 log f(x|θ)
]

evaluated at θ = θt which is also negative by definition of

θt.

Therefore, the coefficient of the second term in the Taylor series increases with
order n. Similarly, the higher order terms can also be shown to increase no
faster than order n.

Letting n → ∞, we thus have that the importance of the higher order terms
of the Taylor expansion fades relative to the quadratic term as the mass of
the posterior concentrates around θt and the normal approximation grows in
precision.

Here, we used the mode as a consistent estimator of θt. We could equally use
the mean or the classical MLE.
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Theorem 33
Let Xi|θ ∼ f(·|θ) with prior distribution f(θ). Given data x, when n →∞,

1. θ|x ≈ N (E[θ|x], V [θ|x]), supposing that the mean and variance of θ exist,

2. θ|x ≈ N (θ̂, I(θ̂)−1) where θ̂ is the mode. I(θ) is the observed information

I(θ) = − d2

dθ2 log(f(θ|x)).

3. θ|x ≈ N (ˆ̂θ, I?(ˆ̂θ)−1) where
ˆ̂
θ is the MLE of θ, supposing this exists and

I?(θ) = − d2

dθ2 log(f(x|θ))

4. θ|x ≈ N (ˆ̂θ, I??(ˆ̂θ)−1) where I??(θ) = −nEX

[
d2

dθ2 log(f(X|θ))
]
.

Proof See Bernardo and Smith (1994) or Gelman et al (2003).
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Approximating a beta posterior distribution

Normally, the first approximation will be better than the second and so on. In
many cases, the posterior mean and variance are difficult to evaluate but it is
much easier to calculate the mode and observed information.

Example 61
Let X|θ ∼ BI(n, θ) and θ ∼ B(α, β). Then, θ|x ∼ B(α + x, β + n− x). If n
is large, we can approximate the posterior distribution of θ. Here we compare
the four approximations given earlier.

Firstly, approximating with a normal using the beta mean and variance we have

θ|x ≈ N
(

α + x

α + β + n
,

(α + x)(β + n− x)
(α + β + n)2(α + β + n + 1)

)
.
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Secondly, we can calculate the mode of the beta distribution.

log p(θ|x) = c + (α + x− 1) log(θ) + (β + n− x− 1) log(1− θ)

d

dθ
=

α + x− 1

θ
−

β + n− x− 1

1− θ

θ̂ =
α + x− 1

α + β + n− 2

is the mode. Also:

d2

dθ2
log(f(θ|x)) = −

α + x− 1

θ2
−

β + n− x− 1

(1− θ)2

I(θ̂) =
α + x− 1

θ̂2
+

β + n− x− 1

(1− θ̂)2

=
(α + β + n− 2)3

(α + x− 1)(β + n− x− 1)
and therefore

θ|x ≈ N
(

α + x− 1

α + β + n− 2
,
(α + x− 1)(β + n− x− 1)

(α + β + n− 2)3

)
Bayesian Statistics



Thirdly, note that the MLE is
ˆ̂
θ = x

n and I?(ˆ̂θ) = n3

x(n−x). Thus

θ|x ≈ N
(

x

n
,
x(n− x)

n3

)
and finally, note that

− d2

dθ2
log(f(X|θ)) =

X

θ2
+

n−X

(1− θ)2

I??(θ) =
nθ

θ2
+

n(1− θ)
(1− θ)2

=
n

θ
+

n

(1− θ)

I??(ˆ̂θ) =
n3

x(n− x)

and we have the same approximation.
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When n >> α + β the approximations will give similar results but in small
samples, the results could be quite different.

Example 62
Suppose that α = β = 2 and x = 20, n = 30. We shall use the different
approximations and estimate P (θ > 0.5|data).

We have θ|x ∼ B(22, 12) and using Matlab, we can show that P (θ > 0.5|x) =
0.95993 is the exact probability.

Now, using the first approximation, we have θ|x ≈ N
(

22
34,

22×12
342×35

)
=

N (0.64706, 0.006525) and we find P (θ > 0.5|x) ≈ P (Z > −1.8206) =
0.9660.

Approximating using the mode, we have θ|x ≈ N
(
21
32,

21×11
323

)
=

N (0.65625, 0.00705) and thus P (θ > 0.5|x) ≈ P (Z > −1.8610) = 0.9686.

Using the classical approximations, θ|x ≈ N
(
20
30,

20×10
303

)
=

N (0.66667, 0.00741) and thus, P (θ > 0.5|x) ≈ P (Z > −1.9365) = 0.9735.
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When the theorem cannot be applied

In some situations we cannot apply the results of the theorem. For example

• If θt is a boundary point of Θ,

• If the prior mass density around θt is 0,

• If the posterior density is improper,

• If the model is not identifiable.

Example 63
Suppose that we have the model

f(x|θ1, . . . , θk) = w1f(x|θ1) + . . . + wkf(x|θk)

i.e. a mixture of k densities from the same family.
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Then given the data, the likelihood will be multimodal because the model is
not identifiable. Thus, we need to restrict the parameter space Θ in order to
identify the model.

One possibility is to order the parameters, θ1 < . . . < θk, to identify the model.

See Gelman et al (2003) for more examples.
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The Laplace approximation

Tierney and Kadane (1996) introduced this generalization of the normal
approximation in order for the problem of estimating posterior moments.

Assume that we wish to estimate

E[g(θ)|x] =
∫

g(θ)l(θ|x)p(θ) dθ∫
l(θ|x)p(θ) dθ

where it is supposed that g(·) is non negative.

Then we can write this expectation as

E[g(θ)|x] =
∫

exp(−nh∗(θ)) dθ∫
exp(−nh(θ)) dθ

where

−nh(θ) = log p(θ) + log l(θ|x)

and − nh∗(θ) = log g(θ) + log p(θ) + log l(θ|x).
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Then, we use the Taylor expansion of h (h∗) about the mode θ̂ (
ˆ̂
θ).

−h(θ̂) = max
θ

(−h(θ)) − h∗(ˆ̂θ) = max
θ

(−h∗(θ))

and retain the quadratic terms. We estimate the denominator by∫
exp(−nh(θ)) dθ ≈

√
2πσn−1/2 exp(−nh(θ̂))

where σ =
(

d2

dθ2
h(θ)|θ=θ̂

)−1/2

and similarly for the numerator.

This leads to the following estimate:

E[g(θ|x)] ≈
(

σ∗

σ

)
g(ˆ̂θ)f(ˆ̂θ)l(ˆ̂θ|x)

f(θ̂)l(θ̂|x)
where

σ∗ =
(

d2

dθ2
h∗(θ)|

θ=
ˆ̂
θ

)−1/2

.

Bayesian Statistics



Example 64
Return to Example 61. We have θ|x ∼ B(α + x, β + n− x).

Without loss of generality, suppose that 0 ≤ α, β < 1. If not, simply transform,
x → x + [α] and n → n + [α] + [β].

Writing the beta density as above,

p(θ|x) ∝ θα+x−1(1− θ)β+n−x−1

∝ exp(−nh(θ)) where

h(θ) = −1
n

((α + x− 1) log θ + (β + n− x− 1) log(1− θ))

We can thus show (Exercise) that the Laplace estimate of the posterior mean
will be

(α + x)α+x+1/2

(α + x− 1)α+x−1/2

(α + β + n− 2)α+β+n−1/2

(α + β + n− 1)α+β+n+1/2
.
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For example, if θ|x B(8, 12), setting α = β = 0 and n = 20 the Laplace
estimate of the posterior mean is

E[θ|x] ≈ 88.5

77.5

1819.5

1920.5
≈ .3994

The true value of the mean is 8/20 = 0.4 and approximating the mean by the
mode as in approximation 2 of the theorem, we have E[θ|x] ≈ 7/18 = .3889.
The Laplace approximation is somewhat better.
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Approximating the Bayes factor

Consider the case of two composite hypotheses H0 and H1. The Bayes factor
is

B =
∫

f(x|θ0,H0)f(θ0|H0) dθ0∫
f(x|θ1,H1)f(θ1|H1) dθ1

and both numerator and denominator are positive functions. Therefore we can
apply the Laplace approximation. See Kass and Raftery (1995) for details.
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Properties and problems with the Laplace approximation

• The Laplace approximation is O(1/n2).

• If Θ 6= R, then the model can be reparameterized in order to improve the
approximation.

• The Laplace approximation can be extended to the multivariate situation.

• In order to implement the Laplace approximation, we need to be able to
calculate the MLE of θ.
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