
5. The prior distribution

Objective

Firstly, we study the different methods for elicitation, calibration and
combination of subjective (expert) prior distributions and secondly, we analyze
the different objective Bayesian approaches.

Recommended reading

• Berger, J. (2006). The case for objective Bayesian analysis (with discussion).
Bayesian Analysis, 1, 385–482.

• Goldstein, M. (2006). Subjective Bayesian analysis: principles and practice
(with discussion). Bayesian Analysis, 1, 403–420.

Both articles available from http://ba.stat.cmu.edu/vol01is03.php

Bayesian Statistics



Subjective probability distributions and their elicitation

In many real problems, substantive experts with important information are
available. In such cases, it is important to be able to convert their information
and ideas into probabilities. The techniques for doing this are called probability
elicitation methods.

Garthwaite et al (2005) observe that there should be four stages in any
probability elicitation exercise:

• Setting up: selection and training of experts, investigation of parameters to
make judgements about.

• Elicitation of expert opinions: summaries of the experts probability
distributions for some parameter.

• Distribution fitting: combining and modeling the expert opinions.

• Feedback: presentation of results to experts to see if they agree or not.
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Expert training: problems with the use of expert judgements

Experts often use heuristic methods to make their probability judgements which
can induce biases and incoherence.

• motivational biases.

• cognitive biases:

� availability
� anchoring
� representativeness
� control

An important part of the training is to try to get the experts to recognize such
biases so that they may be eliminated.
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Availability

Example 22
For each of the following pairs, which causes more deaths per year.

• Stomach cancer or car accidents?

• Tuberculosis or fires?

Cause of death Choice
Total yearly death rate

(USA /1000)
# newspaper

articles
cancer 14% 95 46

car accidents 86% 1 137
tuberculosis 23% 4 0

fires 77% 5 0

People have much more information about accidents than about cancer and
therefore, this option is more available. See Russo and Shoemaker (1989)

See Tversky and Kahneman (1973) for more examples of the availability bias.

Bayesian Statistics



Anchoring and adjustment

Example 23
( Tversky y Kahneman 1974).

The researcher wished to elicit an estimation of the percentage of African
countries in the UN. One group of experts were asked the question

Do you think that the percentage is higher or lower than 10%?

and the second group were asked

Do you think that the percentage is higher or lower than 65%?

The members of both groups were then asked to give a point estimate of the
percentage.

The mean estimate in group 1 was 25% and the mean in group 2 was 45%.
A random and irrelevant anchoring point has influenced the estimates of both
groups.
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Representativeness

Example 24
Federico is 35 years old, intelligent but not very imaginative and a bit
boring. In college, he showed a lot of talent in maths but he wasn’t very
good at art.

Order the following statements about Federico in terms of their probability (1
= most probable, 8 = least probable).

1. Federico is a doctor and likes to play cards as a hobby.

2. He is an architect.

3. He is an accountant.

4. He plays a jazz instrument.

5. He reads Marca.

6. He likes mountaineering.

7. He is an accountant and plays a jazz instrument.

8. He is a journalist.
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1. Federico is a doctor and likes to play cards as a hobby.

2. He is an architect.

3. He is an accountant.

4. He plays a jazz instrument.

5. He reads Marca.

6. He likes mountaineering.

7. He is an accountant and plays a jazz instrument.

8. He is a journalist.

Most people say that option 3 is the most probable. Moreover, many people
say that option 7 is more probable than option 4. This is impossible as for any
two events A and B,

P (A ∩B) ≤ min{P (A), P (B)}.

This problem illustrates the representativeness heuristic and also the base rate
fallacy. See Kahneman et al (1982) for more examples.
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The base rate fallacy

Example 25
(Tversky and Kahneman 1980).

A taxi knocks over a pedestrian in Darlington. In Darlington, only two
companies operate taxi services. The first company has green taxis and the
second operates blue taxis. Around 85% of the taxis in Darlington are green.

There is a witness to the accident who says that the taxi was blue. When
tested under the same climatological conditions as the night of the accident,
the witness identifies the two colours correctly in around 80% of the test cases.

What is your estimated probability that the taxi is blue?
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The typical response is around 80%. However, if A represents the event that
the taxi is blue and a is the event that the witness says it is blue, then from
Bayes Theorem:

P (A|a) =
P (a|A)P (A)

P (a|A)P (A) + P (a|Ā)P (Ā)

=
0.8× 0.15

0.8× 0.15 + 0.2× 0.85
= 0.41

People often ignore the base rate when making their predictions.
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Elicitation

Initially we shall consider the simplest problem of eliciting an expert, E’s
probability, PE(A), that an event occurs. The simplest approach might appear
to be to ask the expert directly for her probability. However, this method does
not allow her to think about her probabilities and if she is not statistically
trained, will be very hard to implement.

There are two basic alternative approaches based on the use of probability
scales or on gambling schemes.
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Probability scales

The simplest form of probability scale is a just a straight, unmarked line where
the right hand end indicates probability one and the left, probability zero.

The expert is asked to mark a point which represents her probability of a given
event.

×

The simple probability scale will not allow the expert to estimate small or large
probabilities well. When we are estimating such probabilities, it is better to use
an odds scale or a logarithmic scale. Also, it is often useful to include certain
guide points on the scale although these might induce anchoring biases.
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Gambling methods

One typical approach is to use a lottery. Recall, from page 30, that De
Finetti (1937) defined subjective probabilities in terms of (certainty equivalent)
lotteries. Another approach is to consider gambles with one big prize and one
negligible prize.

Example 26
Suppose that we wish to elicit a doctor’s probability, pE, that a given patient
has a tumour. Then we might ask the doctor to choose to play one of two
lotteries as in the following diagram.
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holidays

chocolate
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tumour

benign

p
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For a given value of p we can check which lottery is preferred and then
we can vary p until the doctor is indifferent at some point p = pE. Then
P (tumour) = pE is the doctor’s elicited probability that the patient has the
tumour.

There are certain ethical problems with the use of lotteries like this. An
alternative is to use probability wheels.

Example 27
The illustration shows the Spinner probability wheel from Insight c©.

http://www.stanford.edu/~savage/faculty/savage/InsightInfo.xls

We now ask the doctor to say which event is more likely: that the pointer lands
in red or that the patient has a tumour. By varying the size of the coloured
sectors we can arrive at a point of indifference when p = pE is the proportion
of the disc coloured red.
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Both probability wheel and lottery approaches are basically restricted to
assessment of binary probabilities. Also, neither method will work very well if
we wish to estimate very small or very large probabilities.

Alternative approaches have been developed based on frequencies (Price 1998)
or on attempting to translate verbal expressions such as likely, improbable, etc.,
into numerical probabilities (Witteman and Renooij 2003). See e.g. Wallsten
et al (1993) for a fuller review.

These methods can be extended to elicitation of expert distributions. In these
cases, it is most common to elicit quantiles from the expert rather than
the full distribution function. These quantiles can then be fitted to a given
distributional model as required.
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Elicitation of (conjugate) prior distributions

There are many possibilities. The worst would be to ask the expert directly
about the parameters of the prior distribution.

Example 28
Suppose we are interested in estimating a prior distribution for the probability,
p, of heads for a biased coin. In this case, we know that the conjugate prior is
beta, p ∼ B(α, β), and we wish to derive the values of α and β.
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One possibility (Fox 1966) is to ask the expert for a direct estimate of the most
likely value of p, i.e. the expert’s mode, say pE, and to state the probability,
rE, that the true value of p lies in an interval (pE −KpE, pE + KpE) where
the value of K is fixed by the analyst eliciting the information. Then, assuming
that p has a beta prior, p ∼ B(α, β), then we can find the values of α and β
best representing the expert’s judgements by solving

pE =
α− 1

α + β − 2

rE =
∫ pE+KpE

pE−KpE

1
B(α, β)

xα−1(1− x)β−1 dx
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In general, it is preferable to ask the expert about observable quantities.

Chaloner and Duncan (1983) propose asking the expert to state her mode,
xE, for the number of successes, X, that would occur in a given number, n,
of Bernoulli trials and how much less likely it would be that that the number
of successes is one less or one more than the mode, say

cE =
PE(X = xE − 1)

PE(X = xE)
dE =

PE(X = xE − 1)
PE(X = xE)

.

Then, recalling that the marginal distribution of X supposing a beta prior
is beta-binomial, the parameters may be estimated by solving the following
system of equations for α and β.

cE =
(n− xE)(xE + α)

(xE + 1)(n− xE + β − 1)
and dE =

xE(n− xE + β)
(n− xE + 1)(n− α + 1)

.

Many other approaches have been considered. See e.g. Hughes and Madden
(2002).
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Evaluating the quality of expert forecasts

Typically used criteria (Lichtenstein et al 1982) are the following:

• Honesty : We want the expert to tell the truth.

• Coherence: Her forecasts should satisfy the laws of probability.

• Consistency : If she doesn’t receive new information, then her predictions
shouldn’t change.

• Calibration: It should rain on around 50% of the days when the expert says
P (rain) = 0.5.

• Informativeness: If, in Madrid, it rains on around 50 days per year, an
expert who says

P (rain tomorrow) = 50/364
every day isn’t very informative.
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Honesty and strictly proper scoring rules

Suppose that we wish to elicit the expert’s true probability, pE, that some
event A occurs. One method of encouraging the expert to be honest is to pay
her a quantity R(A, p) which depends upon the occurrence or not of A and
the expert’s stated probability, p.

How should we define R(A, p)?.

We suppose that the expert wishes to maximize her expected income. If pE is
her true probability, her expected income if she states a probability p is

pER(1, p) + (1− pE)R(0, p).

Definition 9
A (strictly) proper scoring rule (Savage 1971) is a scoring rule R(A, p)
whereby the expert maximizes his expected income if (and only if) p = pE.
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Example 29
Suppose that R(A, p) = 1 − |A − p|. Then, the expert’s expected earnings if
she states a probability p are

E[R] = pE (1− |1− p|) + (1− pE) (1− |0− p|)
= pEp + (1− pE)(1− p)

= 1− pE + (2pE − 1)p

Therefore R(A, p) is not a proper scoring rule as the expert maximizes her
expected earnings by stating p = 1 (0) if pE > (<)0.5.
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The Brier score

Example 30
R(A, p) = 1− (A− p)2 is the Brier (1950) score.

E[R] = pE

(
1− (1− p)2

)
+ (1− pE)

(
1− p2

)
= 1− pE + 2ppE − p2

= 1− pE + p2
E − (p− pE)2

which is maximized by setting p = pE. Therefore, R is a strictly proper scoring
rule.

There are many other proper scoring rules, see e.g. Winkler (1986) and proper
scoring rules have also been developed for continuous variables and quantiles.
See e.g. Buehler (1971) and Matheson and Winkler (1976).
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Example 31
Suppose that E is asked to state a point estimator, say e, for a variable X.
Then consider the scoring rule

R(X, e) =
{

a(e− x) if e < x
b(x− e) if e > x

Let pE(x) be the expert’s true distribution for X:

E[R(X, e)] =
∫

R(x, e)pE(x) dx

= a

∫ ∞

e

(e− x)pE(x) dx + b

∫ e

−∞
(x− e)pE(x) dx

= ae(1− FE(e))− a

∫ ∞

e

xpE(x) dx +

b

∫ e

−∞
xpE(x) dx− beFE(e)
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dE[R(X, e)]
de

= a(1− FE(e))− aepE(e) + aepE(e)−

bepE(e)− bFE(e) + bepE(e)

0 = a(1− FE(ê))− bFE(ê)

FE(ê) =
a

a + b

The expert maximizes her experted gains if she states her b/(a + b) × 100%
quantile. See Raiffa and Schlaifer (1961).

The use of proper scoring rules to encourage honesty seems somewhat artificial.
However, they may also be used a posteriori as evaluation tools for expert
probabilities.
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Numerical measures of expert quality

Suppose that the expert supplies probabilities pE for a sequence of Bernoulli
events X1, . . . , Xn. Given the data x, we wish to evaluate the quality of her
predictions.

Consider the Brier score

R(X, pE) = 1− (X − pE)2.

Then, given the data, we can calculate the statistic

R(x,pE) =
1
n

n∑
i=1

R(xi, pEi) = 1−
n∑

i=1

(xi − pEi)
2

which is a measure of the average quality of her predictions.

This measure can be divided into a measure of calibration and a measure of
information.
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Following Murphy (1973), assume that the expert uses the probability pj a
total of nj times, with a frequency of fj successes and a relative frequency of
rj = fj/nj successes for j = 1, . . . k. Then:

R(x,p) = 1− 1
n

k∑
j=1

(
fj(1− pj)2 + (nj − fj)(0− pj)2

)
= 1− 1

n

k∑
j=1

nj

(
rj(1− pj)2 + (1− rj)(0− pj)2

)

Now we can prove the following theorem.
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Theorem 25
R(x,p) = 1− C(x,p)− I(x,p) where

C(x,p) =
1
n

k∑
j=1

nj(rj − pj)2 is a measure of calibration

I(x,p) =
1
n

k∑
j=1

njrj(1− rj) is a measure of information
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Proof

R(x,p) = 1− 1
n

k∑
j=1

nj

(
rj(1− pj)2 + (1− rj)(0− pj)2

)
= 1− 1

n

k∑
j=1

nj

(
rj − 2rjpj + p2

j

)
= 1− 1

n

k∑
j=1

nj

(
rj − r2

j + r2
j − 2rjpj + p2

j

)
= 1− 1

n

k∑
j=1

nj

(
rj(1− rj) + (rj − pj)2

)
= 1− I(x,p)− C(x,p)
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C has the following properties:

• 0 ≤ C ≤ 1

• C = 0 if and only if rj = pj for j = 1, . . . , k.

• For a well calibrated expert, when n →∞, C → 0.

• C is large if the observed relative frequencies ri are very different from the
expert’s stated probabilities pi.
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I has the following properties:

• 0 ≤ I ≤ 0.25.

• I = 0 if, for all pj, the relative frequency rj = 0 or 1.

• I = 0.25 if, for all pj, then rj = 0.5.

Any strictly proper scoring rule can be divided up into calibration and
information measures in a similar way. See e.g. De Groot and Fienberg
(1982).
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Example 32
Wiper (1987,1990) gave 12 experts a set of 50 statements to study. The
experts were asked to state whether each statement was true or false and to
give their probabilities that they were correct as a percentage between 50% (=
no idea) and 99%.

We shall assume here that the experts’ stated probabilities for all events belong
to the class p = {0.53, 0.64, 0.75, 0.86, 0.97}. Then the following table gives
the related absolute and relative frequencies.

E pi 0.53 0.64 0.75 0.86 0.97

2

ni

fi

ri

25

15

0.6

6

4

0.67

6

4

0.67

5

3

0.6

8

8

1.0

3

ni

fi

ri

25

16

0.64

5

1

0.2

10

3

0.3

5

2

0.4

5

4

0.8

10

ni

fi

ri

10

6

0.6

5

2

0.4

15

5

0.3

1

0

1.0

19

15

0.79
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The following table shows the calibration, information and Brier scores for each
expert.

E C I Brier
2 .0093 .1973 .7934
3 .0900 .2132 .6968

10 .1059 .2018 .6923

We can see that expert 2 is better calibrated but less informative than the
other experts.

A visual manner of illustrating expert calibration is provided by the calibration
curve. This is simply a graph of observed frequencies, rj, against the different
probabilities used, pj.
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The calibration curve
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0.9
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p

r

For a well calibrated expert, the curve approximates the 45 degree line.
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Example 33
Returning to Example 32, the calibration curves of experts 2 and 10 are given
in the following figure.
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Cooke’s approach

Cooke et al (1988) and Cooke (1991) have developed alternative measures of
calibration and information based on classical p-values which can be applied
to predictions for both discrete and continuous variables.

Suppose that an expert uses the probability pj a total of nj times for
j = 1, 2, . . . , k. Theoretically, if the expert is well calibrated, about the total
frequency of events {X = 1} that occur should be around nj × pj.

A χ2 test can be set up to test whether the observed relative frequencies
r1, . . . , rk could be generated from the theoretical distribution p1, . . . , pk.

Thus, to test H0 : r ∼ p against the alternative H1 : r � p we calculate the
chi-squared statistic

S =
k∑

j=1

nj
(rj − pj)2

rj
.

The hypothesis that the expert is well calibrated can then be accepted or
rejected by comparing S with tables of the χ2

k distribution.

Bayesian Statistics



Example 34
The following table shows the p-values for each expert in Example 32.

E 2 3 10
p .7 .00 .00

It seems that only expert 2 is reasonably well calibrated.

Cooke (1991) derives a theory of scoring rules based on combining the p-value
with a measure of information. When the expert makes forecasts for continuous
variables, then an alternative is a Kolmogorov Smirnov test. See Wiper et al
(1994).
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Objective Bayesian methods

Sometimes we wish to use a prior distribution which does not include (much)
subjective information, because

• we don’t know anything about the problem at hand,

• we would like to be objective.

In such situations, we should choose a non-informative prior distribution.

However, there are many possible elections. Which is the most useful?
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Uniform priors

Bayes (1763) and Laplace (1812) generally employed uniform prior distributions,
as justified by the principle of insufficient reason, see page 23. This is fine
in finite dimensional problems, but if the parameter space Θ is continuous or
uncountable, then such prior distributions are improper. In practice, this is not
a serious problem, as long as the posterior distribution as calculated via Bayes
theorem can be shown to exist.

An important problem with the general use of uniform priors however is lack
of invariance to transformation.
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Example 35
Suppose that we set p(θ) ∝ 1 and define the transformed variable φ = 1

θ. Then
the implied prior distribution for φ is

p(φ) ∝ 1
φ2

which is not uniform. Thus, the use of the uniform distribution to represent
lack of knowledge is inconsistent. If we know nothing about θ, then we should
know nothing about φ.
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Jeffreys priors

Jeffreys

Jeffreys (1946) introduced a prior distribution which possesses an invariance
property.
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Definition 10
Let X|θ ∼ f(·|θ) where θ is one dimensional. The Jeffreys prior for θ is

p(θ) ∝
√

I(θ)

where I(θ) = −EX

[
d2

dθ2 log f(X|θ)
]

is the expected Fisher information.

The following theorem shows that if the Jeffreys prior for θ is used, then the
implied prior for the transformed parameter φ = φ(θ) is the Jeffreys prior for
φ.

Theorem 26
If φ = φ(θ), and p(θ) is the Jeffreys prior for θ, then the implied prior for φ is
the Jeffreys prior

p(φ) ∝
√

I(φ)

where I(φ) = −EX

[
d2

dφ2 log f(X|φ)
]

is the expected Fisher information when

the distribution of X is reparameterized in terms of φ.
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Proof Firstly, we shall prove that E
[

d
dθ log f(X|θ)

]
= 0.

EX

[
d

dθ
log f(X|θ)

]
=

∫ [
d

dθ
log f(x|θ)

]
f(x|θ) dx

=
∫

f ′(x|θ)
f(x|θ)

f(x|θ) dx

=
∫

f ′(x|θ) dx

=
d

dθ

∫
f(x|θ) dx = 0.

Secondly we shall prove that

E

[
d2

dθ2
log f(X|θ)

]
= −E

[(
d

dθ
log f(X|θ)

)2
]

.

Bayesian Statistics



We have

EX

[
d2

dθ2
log f(X|θ)

]
=

∫
d2

dθ2
log f(x|θ) dx

=
∫

d

dθ

[
d

dθ
log f(x|θ)

]
f(x|θ) dx

=
∫

d

dθ

f ′(x|θ)
f(x|θ)

f(x|θ) dx

=
∫ [

f ′′(x|θ)
f(x|θ)

−
(

f ′(x|θ)
f(x|θ)

)2
]

f(x|θ) dx

=
∫

d2

dθ2
f(x|θ) dx−

∫ (
d

dθ
log f(x|θ)

)2

f(x|θ) dx

= −E

[(
d

dθ
log f(X|θ)

)2
]
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Now finally, we have that

p(φ) = p (θ)
∣∣∣∣dθ

dφ

∣∣∣∣ and squaring,

p(φ)2 = p (θ)2
∣∣∣∣dθ

dφ

∣∣∣∣2
∝ −E

[(
d

dθ
log f(X|θ)

)2
] ∣∣∣∣dθ

dφ

∣∣∣∣2

∝ E

[(
d

dφ
log f(X|φ)

)2
]

p(φ) ∝
√

I(φ).
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Example 36
X|θ ∼ BI(n, θ).

log f(X|θ) = c + X log θ +

+(n−X) log(1− θ)

d

dθ
log f(X|θ) =

X

θ
− (n−X)

(1− θ)

d2

dθ2
log f(X|θ) = −X

θ2
− (n−X)

(1− θ)2

E

[
d2

dθ2
log f(X|θ)

]
= −n

(
1
θ

+
1

1− θ)

)
I ′′(θ) ∝ 1

θ(1− θ)

Therefore, the Jeffreys prior is p(θ) ∝
√

1
θ(1−θ), that is θ ∼ B(1/2, 1/2). This

is a proper prior, unlike Haldane’s prior which we saw earlier.
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Example 37

X|µ ∼ N
(
µ, 1

φ

)
, with φ known.

log f(X|µ) = c− φ

2
(X − µ)2

d

dµ
log f(X|µ) = φX − φµ

d2

dµ2
log f(X|µ) = −φ

We have p(µ) ∝ 1, a uniform distribution.
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Example 38

Suppose now that X|φ ∼ N
(
µ, 1

φ

)
where µ is known.

log f(X|φ) ∝ 1
2

log φ− φ
(X − µ)2

2
d

dφ
log f(X|φ) =

1
2φ

+
(X − µ)2

2

d2

dφ2
log f(X|φ) = − 1

2φ2

and the Jeffreys prior for φ is

p(φ) ∝ 1
φ
.

If σ is the standard deviation, then φ = 1
σ2 and dφ

dσ = − 2
σ3 so the Jeffreys prior

for σ is

p(σ) ∝ σ2 2
σ3
∝ 1

σ
.
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Jeffreys priors in multivariate problems

It is possible to extend the definition of a Jeffreys prior to the case when
θ = (θ1, . . . , θk) is multivariate, by defining p(θ) ∝

√
I(θ) as earlier, where

the expected Fisher information is now given by

I(θ) = |EX [J(θ)]| where

Jij =
d2

dθidθj
log f(X|θ).

In some cases, the multivariate Jeffreys prior seems reasonable.
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Example 39
Let X|θ ∼MN (m,θ) have a (k dimensional) multinomial distribution. Then

log f(X|θ) = c +

k∑
i=1

xi log θi

d

dθi

log f(X|θ) =
Xi

θi

d2

dθ2
i

log f(X|θ) = −
Xi

θ2
i

d2

dθidθj

log f(X|θ) = 0 for i 6= j.

E

[
d2

dθ2
i

log f(X|θ)

]
= −

m

θi

I(θ) =
mk∏k
i=1 θi

and the Jeffreys prior is p(θ) ∝
∏k

i=1
1√
θi

which is Dirichlet, θ ∼ D
(
1
2, . . . ,

1
2

)
.
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In many more cases, the multivariate Jeffreys prior is less natural.
Example 40

Let X|µ, φ ∼ N
(
µ, 1

φ

)
. Then, from Examples 37 and 38,

d2

dµ2
log f(X|µ, φ) = −φ

d2

dφ2
log f(X|µ, φ) = − 1

2φ2
and also

d2

dµdφ
log f(X|µ, φ) = −(X − µ)

E[J] = −
(

φ 0
0 1

2φ2

)

and therefore, the Jeffreys prior is p(µ, φ) ∝ 1√
φ

which is not the prior we have

used earlier.
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Maximum entropy priors

Jaynes

The idea (Jaynes 1968,1983) is to find the least informative prior distribution
in the presence of partial information.
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Entropy

Assume that θ is univariate and discrete. If p(θ) is any distribution for θ, then
we can define

e(p) = −
∑
i∈Θ

p(θi) log p(θi)

to be the entropy of the distribution.

If p(θ = θi) = 1 for some value θi ∈ Θ, then, e(p) = 0 and there is zero
uncertainty or minimum entropy. On the contrary, if p(θi) = 1/|Θ|, i.e. a
uniform distribution, then

e(p) = −
∑
i∈Θ

1
|Θ|

log
1
|Θ|

= log |Θ|,

the maximum entropy.

Maximum entropy (maxent) distributions are minimum information
distributions.
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In many practical situations, we may only wish to fix certain characteristics of
the prior distribution, e.g. quantiles or moments and apart from this, let the
prior be as uninformative as possible.

Suppose that we have partial information about θ in the form

E[gk(θ)] =
∑
i∈Θ

p(θi)gk(θi) = µk

for k = 1, . . . ,m. This includes fixed moments, e.g. g1(θ) = θ and quantiles

gk(θ) = I(−∞,zk] ⇒ E[gk(θ)] = p(θ ≤ zk).

Given these restrictions, the following theorem provides the form of the
maximum entropy prior.
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Theorem 27
Given the partial information

E[gk(θ)] =
∑
i∈Θ

p(θi)gk(θi) = µk

for k = 1, . . . ,m, then the maxent prior is

p(θi) =
exp (

∑m
k=1 λkgk(θi))∑

j∈Θ exp (
∑m

k=1 λkgk(θj))

where the constants λk can be determined from the information.

Proof See Jaynes (1968).
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Example 41
Let X|N ∼ BI(N, 1/2). Suppose that we know that N ≥ 1 and that we fix
the mean to be E[N ] = 10.

We shall try to calculate the maxent distribution for N .

P (N = n) =
exp (λ1n)∑∞
j=1 exp (λ1j)

= exp (λ1n)
1− exp(λ1)

exp(λ1)

= (1− eλ1) exp (λ1(n− 1))

Thus, N − 1 has a geometric density with parameter 1− eλ1 and therefore

E[N ] = 1 +
eλ1

1− eλ1

and fixing E[N ] = 10, we have eλ1 = 9
10, i.e. the maxent prior for N is

N − 1 ∼ GE(9/10).
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Maxent priors for continuous variables

The extension to continuous variables is more complicated because the
definition of entropy

e(p) = −
∫

p log p dµ

depends on the base measure µ.

One possibility (Jaynes 1968) is to define

e(p) = −
∫

p(θ) log
p(θ)
p0(θ)

dθ

where p0(θ) is the Jeffreys prior for θ. Then, given the restrictions E[gk(θ)] =
λk, the maxent prior is

p(θ) =
p0(θ) exp (

∑m
k=1 λkgk(θ))∫

p0(θ) exp (
∑m

k=1 λkgk(θ)) dθ

analogous to the discrete case.
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Unfortunately, in some cases, it is possible that no maxent prior distribution
exists.

Example 42
Let X|µ ∼ N (µ, 1) and suppose that we fix the prior mean to be E[µ] = m.
We have seen in Chapter 4 that the Jeffreys prior is p(µ) ∝ 1. Therefore, the
maxent distribution is

p(µ) =
exp(λ1µ)∫∞

−∞ exp(λ1µ)dµ

and there is no solution to this integral.
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Reference priors

Bernardo

This, the most general approach, was developed by Bernardo (1979). It is
based on maximizing the expected information about θ to be provided by a
given experiment.
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Consider first the case when θ is one dimensional.

Then, given the prior distribution p(θ), the expected information about θ to
be gained by observing a sample X of size n, where X|θ ∼ f(·|θ) is defined by

I(p(θ)) =
∫

f(x)
∫

p(θ|x) log
p(θ|x)
p(θ)

dθ dx

where f(x) =
∫

f(x|θ)p(θ) dθ and p(θ|x) = f(x|θ)p(θ)
f(x) .

Then, the reference prior is defined to be the prior p(θ), within the class
of admissible priors, which maximizes the asymptotic limit of the expected
information I(p(θ)) as the sample size n goes to infinity.

It can be shown that the maximum entropy and Jeffreys priors correspond to
particular cases of reference priors.
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Reference priors in multivariate problems

Suppose that θ = (θ1, θ2), where θ1 is the parameter of interest and θ2 is a
nuisance parameter. Then the reference prior approach has two steps:

1. Calculate the reference prior p(θ2|θ1) as above.

2. If this is proper, then θ2 can be integrated out of the density of X and the
reference prior of θ1 can be found as above. If not, then the procedure can
be performed in a limiting way. See Bernardo (1979).
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Other non-informative prior distributions

There are a number of other approaches to defining non-informative priors:

• Limiting forms of conjugate priors.

This is the method we used in chapters 2 and 3.

• Priors based on the data translated likelihood. Box and Tiao (1973).

This approach shows how to define the transformation φ = φ(θ) so that
a uniform prior for φ is justified. The resultant distributions are Jeffreys
priors.

• Methods based on symmetry, e.g. Haar priors.

• Others: see Yang and Berger (1997) and Kass and Wassermann (1996).
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Problems with the use of non-informative prior distributions

There are various theoretical and practical difficulties with the use of non-
informative priors. Firstly, when improper prior distributions are used, it is
important to show that the posterior distribution is proper.

Example 43
Let X|θ ∼ BI(n, θ) and suppose we use Haldane’s prior p(θ) ∝ 1

θ(1−θ). Then,

if we observe X = 0 or X = n, then the posterior distribution is improper.

This is particularly important in modern Bayesian models where high
dimensional integration is often carried out using Gibbs sampling or MCMC.
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Example 44
Consider the simple random effects model

yij = β + µi + εij where

εij|φε ∼ N
(

0,
1
φε

)

for i = 1, . . . , k and j = 1, . . . , ni where
∑k

i=1 ni = n, and suppose that we
use the improper priors

p(β) ∝ 1, µ ∼ N
(
0,

1
φµ

I
)

p(φε) ∝
1
φε

, p(φµ) ∝ 1
φµ

.
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Then, given the sample data, y, we can show that the conditional posterior
distributions are

β|y,µ, φε, φµ ∼ N

(
ȳ − 1

n

k∑
i=1

niµi,
1

nφε

)

µ|y, β, φε, φµ ∼ N




n1φε(ȳ1−β)
n1φε+φµ

...
nkφε(ȳk−β)

nkφε+φµ

 ,


1

n1φε+φµ
0 . . . 0

. . . ... ... ...
0 . . . 0 1

nkφε+φµ




φε|y, β,µ, φµ ∼ G

(
n

2
,

∑k
i=1

∑ni
j=1(yij − β − µi)2

2

)

φµ|y, β,µ, φε ∼ G

(
k

2
,

∑k
i=1 µ2

i

2

)

where ȳ = 1
n

∑k
i=1

∑ni
j=1 yij and ȳi = 1

ni

∑ni
j=1 yij.
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Now, a Gibbs sampler could be set up by sampling sequentially from the various
conditional distributions. However, the results do not make sense as the joint
posterior distribution in this case can be shown to be improper. See e.g. Hill
(1965).

There are a number of published papers using MCMC methods where the
results are, in reality, meaningless as the posterior distributions are really
improper.
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The likelihood principle

The use of Jeffreys priors does not satisfy the likelihood principle.

Example 45
Suppose that we are going to generate binomial data X|θ ∼ BI(n, θ). Then,
from Example 36 we know that the Jeffreys prior is θ ∼ B(1/2, 1/2). Now
suppose that we change the experimental design so that we will now generate
negative binomial data. Therefore:

log f(X|θ) = c + r log θ + X log(1− θ)

∂ log f(X|θ)
∂θ

=
r

θ
− X

1− θ

∂2 log f(X|θ)
∂θ2

= − r

θ2
− X

(1− θ)2

−E

[
∂2 log f(X|θ)

∂θ2

]
=

r

θ2
+

r

θ(1− θ)
=

r

θ2(1− θ)
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The Jeffreys prior is

p(θ) ∝ 1
θ(1− θ)1/2

.

Thus, Jeffreys prior depends on the experimental design and, if we observe
9 heads in 12 tosses of the coin, we need to know the design before the
posterior distribution can be calculated. The posterior is θ|x ∼ B(9.5, 3.5)
given binomial data and B(9, 3.5) given negative binomial data.
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Other problems

• Inadmissibility: Bayesian inference (with proper priors) leads to admissible
estimators, but the use of improper priors can lead to inadmissible estimators.

Example 46
Suppose that X|θ ∼ N

(
θ, σ2I

)
and that we use a uniform prior p(θ) ∝ 1.

Then given an observation, x, the posterior is θ|x ∼ N (x, σ2I) and the
posterior mean, x is an inadmissable estimate of θ if the dimension of X is
greater than 2.

• Marginalization paradoxes (Dawid et al 1973), strong inconsistency and
incoherence (Stone and Dawid 1972, Stone 1982).
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