
12. Other topics

Objective

Introduce the basic ideas of robust Bayesian analysis and nonparametric
Bayesian methods.

Recommended reading

• Berger, J. (1994) An overview of robust Bayesian analysis (with discussion).
Test, 3, 5–124.

• Ŕıos Insua, D. and Ruggeri, F. (eds.) (2000). Robust Bayesian Analysis.
Springer Verlag.
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Robustness

In any Bayesian analysis, especially when expert priors have been solicited, it
is important to assess the sensitivity of the results to the election of the prior
distribution p(θ).

Sensitivity to the loss function and likelihood function are also considered in
Dey and Micheas (2000), Kadane et al (2000) and Shyamalkumar (2000).

An informal sensitivity analysis considers robustness to the use of various
different prior distributions.
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Example

Example 85
Wilson and Wiper (2000) analyzed the Jelinski Moranda (1972) model for
software reliability.

Let T1, T2, . . . be the times between successive software failures. Then the
Jelinski Moranda model assumes that

Ti|N,φ ∼ E ((N − i + 1)φ)

so that initially, the program contains N faults, each of which has the same
size or importance, φ, and then after each failure, the fault causing the failure
is identified and removed from the program.
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The first m = 86 inter failure times for a program were observed as in the
following diagram.

The objective is to predict the next failure time and the number of bugs left in
the program.

Bayesian Statistics



The likelihood function is

l(N,φ|t) ∝ N !
(N −m)!

φm exp

(
−

[
(N + 1)mt̄−

m∑
i=1

iti

]
φ

)

and semi-conjugate priors are

N ∼ P(λ) where we assume that λ = 100

φ ∼ G(α, β) where α = 1 and β = .0001

Given these priors, it can be shown that E[N |data] ≈ 104 (MLE = 106)
and the posterior median of the distribution of the time to next failure is
2440× 10−2 seconds (MLE = 2177).
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Assume that we contaminate the prior distribution with a long tailed
distribution. We shall consider the class of prior distributions

Γ = {(1− ε)P (N) + εQ(N)}

where P (N) represents the Poisson density and

Q(N) ∝
(

(N − λ +
1
2
)2 + δ

)−1

.

Q is a density with the same mode as the Poisson but with no mean.

The following diagram illustrates the effects of the contamination on the
posterior mean of the number of remaining faults for different values of ε and
δ.
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For ε = 0.2 the posterior median of the time to next failure varies between
2410 and 2440 for 100 ≤ δ ≤ 1000000 but when ε = 1, the median is 1960 in
the worst case, δ = 1000000. We can conclude that the results are relatively
insensitive to small changes in the prior.
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Global sensitivity analysis

In the global approach, the prior is included within a wider class of distributions,
Γ, and the sensitivity of some function of interest such as the posterior mean
is examined. If there are large differences between the maximum and minimum
estimates over the prior class then the inference is sensitive.

Possible classes are:

• ε-contamination classes

Γ = {π : π(θ) = (1− ε)P (θ) + εQ(θ), g ∈ Q}

where Q is a general class of contaminating distributions, e.g. unimodal
distributions.

• Generalized moment classes: that is all distributions with a given set of
specified moments or quantiles.
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• Classes of density bands:

Γ = {π : L(θ) < π(θ) < U(θ)}

for example, L(θ) = (1− ε)f(θ) and U(θ) = (1 + ε)f(θ).
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Example 86
Returning to the previous example, suppose that we wish to maintain the
assumption of prior independence between N and φ. Then, we can define the
class

Γ = {π : π(N,φ) = π1(N)π2(φ)}

where (1 − ε1)P (N) < π1(N) < (1 + ε1)P (N) and (1 − ε2)P (φ) < π2(φ) <
(1 + ε2)P (φ) and P (N) and P (φ) are the Poisson and gamma priors we
assumed earlier.

The diagram illustrates the differences between the upper and lower limits in
the value of the posterior mean of N for 0 < ε1, ε2 < 1.
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The inference is more sensitive to contaminations of the prior of N than to
contaminations in the prior for φ although it is still quite robust to small
contaminations.
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Problems with the global robustness approach

The main difficulty with this approach is that it is not always clear how to
elect a reasonable contamination class. Most standard classes are too large
and include unreasonable choices of prior.

A second problem is that the calculation of the minima and maxima of the
quantity of interest is often very complex except for a very few, relatively
simple contamination classes where analytic results are known.
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Local robustness

An alternative approach is local robustness. In this case, influence measures
based on, for example, the norm of the Frechet derivative of the posterior
distribution relative to the prior are used to reflect the sensitivity to the the
prior distribution. See e.g. Gustafson and Wassermann (1995) for more details.
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Bayesian nonparametrics

Suppose that X|f ∼ f and that given a sample, x, we wish to carry out
inference about f .

In order to do this from a Bayesian standpoint, it is necessary to define a prior
distribution over the (infinite dimensional) space of distributions. The simplest
and most studied class of prior distributions is Dirichlet process priors.
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The Dirichlet process

The definition of the Dirichlet process is a generalization of the Dirichlet
distribution. It was first considered by Ferguson (1973).

Definition 30
Suppose that F is a random probability measure and that t F0 is a (known)
distribution function and α a scalar parameter. For any finite partition,
{C1, . . . , Cr}, of the probability space, the Dirichlet process prior distribution
for F , with parameters α and F0 assigns the distribution

{F (C1), . . . , F (Cr)} ∼ D (αF0(C1), . . . , αF0(Cr)) .

In this case, we write F ∼ DP(α, F0).

It is straightforward to show that the Dirichlet process prior is conjugate.
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Theorem 44
If {X}i is a sequence of exchangeable random variables with Xi|F ∼ F and
F ∼ DP(α, F0), then:

• the marginal distribution of Xi is F0.

• the conditional distribution of F given a sample, x = (x1, . . . , xn), is also
a Dirichlet process such that

{F (C1), . . . , F (Cr)}|x ∼ D

(
αF0(C1) +

n∑
i=1

IC1(xi), . . . , αF0(Cr) +
n∑

i=1

ICr(xi)

)

that is F |x ∼ DP
(
α + n, α

α+nF0 + n
α+nF̂

)
where F̂ is the empirical c.d.f.
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Proof Firstly, the marginal c.d.f. of X is

P (X ≤ x) =
∫

P (X ≤ x|F )p(F ) dF

=
∫

F (x)p(F ) dF

=
αF0(x)

α
= F0(x)

Secondly, we have

P (F (C1), . . . , F (Cr)|x) ∝ P (F (C1), . . . , F (Cr))f(x|F (C1), . . . , F (Cr))

∝
r∏

j=1

F (Cj)
αF0(Ci)+

∑n
i=1 ICj

(xi)

which is another Dirichlet distribution and proves the result.
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When n increases, the predictive distribution function of Xn+1 approaches the
empirical c.d.f.

Example 87
20 data were generated from a beta distribution, B(4, 6). A Dirichlet process
prior with α = 1 and F0(x) = x, for 0 < x < 1, i.e. a uniform distribution was
assumed. The following diagram shows the predictive and empirical distribution
functions.
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Mixtures of Dirichlet processes

An important theoretical disadvantage of the Dirichlet process is that it can
be shown that it assigns probability one to discrete probability measures, see
Blackwell (1973). One way of getting around this is to use continuous mixtures
of Dirichlet processes as developed in Antoniak (1974).

This leads to a hierarchical model

Xi|θi ∼ f(x|θi)

θi|P ∼ P (θ)

P ∼ DP(α, P0)

This model can be interpreted as a countably infinite, mixture model, i.e. as
the limit of a finite mixture model, f(x) =

∑k
i=1 wif(x|θi), as the number of

terms, k, goes to infinity.
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One problem is how to choose the conditional density f(x|θ). Most applications
have chosen to use a normal density as a flexible option. See e.g. McEachern
and Muller (1998) or Neal (2000). In this case, inference is then carried out
using MCMC techniques.

Example 88
The following diagram shows a fit of the well known galaxy data using the DP
mixture model.

Bayesian Statistics



Nonparametric regression

A nonparametric regression model can be expressed as

yi = f(xi) + εi

for i = 1, . . . , n where the function f is unknown. A number of classical
estimation techniques are available for fitting such models, e.g. splines, neural
networks or SVM’s.

Bayesian penalized regression splines are implemented in Winbugs by e.g.
Crainiceanu et al (2007) and a review of Bayesian neural nets is given by Lee
(2004). The Bayesian equivalent of an SVM is the Gaussian process.
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The Gaussian process

A Gaussian process defines a distribution over functions, f , where f is a
function mapping some input space, X into R. We shall call this distribution
P (f).

Let f = (f(x1), . . . , f(xn)) be an n dimensional vector of function points
evaluated at x1, . . . ,xn. Then f is a random variable.

Now, P (f) is a Gaussian process if for any finite set, (x1, . . . ,xn) ⊂ X then
the marginal distribution P (f) over that subset has a multivariate Gaussian
distribution.
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Gaussian processes are characterized by a mean value function µ(x) and a
covariance function c(x,x′), so that

P (f(x), f(x′) ∼ N (µ,Σ) where

µ =
(

µ(x)
µ(x′)

)
Σ =

(
c(x,x) c(x,x′)
c(x′,x) c(x′,x′)

)
and similarly. Various forms for the covariance function have been considered,
e.g.

c(xi, xj) = ν0 exp
(
−|xi − xj|α

λ

)
+ ν1 + ν2δij

Some software for Gaussian process regression is available. See e.g.

http://www.gaussianprocess.org/gpml/code/matlab/doc/regression.html
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Example
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