
10. Exchangeability and hierarchical models

Objective

Introduce exchangeability and its relation to Bayesian hierarchical models.
Show how to fit such models using fully and empirical Bayesian methods.

Recommended reading

• Bernardo, J.M. (1996). The concept of exchangeability and its applications.
Far East Journal of Mathematical Sciences, 4, 111–121. Available from

http://www.uv.es/~bernardo/Exchangeability.pdf

• Casella, G. (1985). An introduction to empirical Bayes data analysis. The
American Statistician, 39, 83–87.

• Yung, K.H. (1999). Explaining the Stein paradox. Available from

http://www.cs.toronto.edu/~roweis/csc2515/readings/stein_paradox.pdf
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Exchangeability

Suppose that we have a sequence of variables X1, X2, . . . , Xn. Then, in many
cases, we might wish to assume that the subscripts of each individual variable
are uninformative. For example, in tossing a coin three times, it is natural
to assume that P (0, 0, 1) = P (0, 1, 0) = P (1, 0, 0). This idea underlines the
concept of exchangeability as developed by De Finetti (1970, 1974).

Definition 27
A sequence of random variablesX1, . . . , Xn is said to be (finitely) exchangeable
if the distribution of any permutation is the same as that of any other
permutation, that is if

P (∩ni=1Xπ(i)) = P (∩ni=1Xi)

for all permutation functions π(·).

The definition of exchangeability can be extended to infinite sequences of
variables.
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Definition 28
An infinite sequence, X1, X2, . . . is said to be (infinitely) exchangeable if every
finite subsequence is judged to be exchangeable in the above sense.

Thus, a sequence of variables that are judged to be independent and identically
distributed is exchangeable. However, exchangeability is clearly a weaker
concept more related to symmetry.

For example, if X1, X2, . . . , X5 are the results of 5 draws without replacement
from a pack of cards, then this sequence is exchangeable but clearly, the
variables are not independent.

Typical non exchangeable variables are Markov chains or other time varying
sequences.
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De Finetti’s theorem for 0-1 random variables

Assume that we have an infinitely exchangeable sequence of 0-1 variables. For
example, we may believe that an infinite sequence of tosses of the same coin
is exchangeable. Then, De Finetti derived the following theorem.

Theorem 41
If X1, X2, . . . is any infinitely exchangeable sequence of 0-1 variables with
probability measure F then their exists a distribution function P such that

f(x1, . . . , xm) =
∫ 1

0

n∏
i=1

θxi(1− θ)m−xi dP (θ)

where P (θ) = limn→∞F (Yn/n ≤ θ), Yn =
∑n
i=1Xi and limn→∞ Yn/n = θ.

Proof See Bernardo and Smith (1994).
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Interpretation of De Finetti’s theorem

If a sequence X1, X2, . . . of 0-1 variables is judged to be exchangeable, then
we may interpret this as if

• The Xi are judged to be Bernoulli variables given some random variable θ.

• θ is given a probability distribution P .

• Using the strong law of large numbers, θ = limn→∞ Yn/n which implies that
we can interpret P as representing our beliefs about the limiting frequency
of 1’s.

Thus, P may be interpreted as a prior distribution.

http://en.wikipedia.org/wiki/De_Finetti%27s_theorem
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An immediate consequence of Theorem 41 is that if we define Yn =
∑n
i=1Xi,

then automatically, the distribution of Yn can be represented as

f(Yn = yn) =
∫ 1

0

(
n
yn

)
θyn(1− θ)n−ynP (θ)dθ.

Thus, if we are expressing our beliefs about Yn, then we are justified in acting
as if the likelihood were binomial and with a prior distribution P (θ).

However, a much stronger general representation theorem is available for any
infinitely exchangeable sequence of variables.
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De Finetti’s general theorem

Theorem 42
Let X1, X2, . . . be an infinitely exchangeable sequence of variables with
probability measure F . Then, their exists a probability measure P such
that the joint distribution of X1, . . . , Xn can be represented as

F (x1, . . . , xn) =
∫
G

n∏
i=1

G(xi)dP (G)

where G is the space of distribution functions, P (G) = limn→∞F (Gn) and
Gn is the empirical distribution function defined by X1, . . . , Xn.

Proof See Bernardo and Smith (1994).

The theorem implies that if the Xi are judged to be exchangeable, then their
exists a variable θ such that

F (x) =
∫
Θ

n∏
i=1

F (xi|θ)dP (θ).
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De Finetti’s theorems provide a theoretical justification of Bayesian inference
based on the assumptions of exchangeability. However, they are generally not
very useful in the practical determination of the form of the prior distribution.

Certain extensions can be used to justify more specific distributional models.
For example if we believe that the sequence X1, X2, . . . is exchangeable and
spherically symmetric, i.e. that the distribution of Xn is the same as the
distribution of AXn for any orthogonal matrix A, then this implies that the
X’s may be interpreted as normally distributed given a prior distribution on
the precision.

See Bernardo and Smith (1994) for details and extensions to other models.
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Hierarchical models

In many models we are unclear about the extent of our prior knowledge.
Suppose we have data x with density f(x|θ) where θ = (θ1, . . . , θk). Often
we may make extra assumptions about the structural relationships between the
elements of θ.

Combining such structural relationships with the assumption of exchangeability
leads to the construction of prior density, p(θ|φ), for θ which depends upon a
further, unknown hyperparameter φ.

In such cases, following Good (1980), we say that we have a hierarchical model.
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Examples of hierarchical models

Example 74
Various individuals i = 1, . . . , n, take an IQ test where it is supposed that the
result is

Yi|θi, φ ∼ N
(
θi,

1
φ

)
where the outcome for subject i is supposed to depend on his or her true
IQ θi. Now if we suppose that the true IQ’s of the people in the study are
exchangeable then we might reasonably assume that

θi|µ, ψ ∼ N
(
µ,

1
ψ

)
where the unknown hyperparameters are µ, representing the mean true IQ in
the population, and ψ.
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Example 75
George et al (1993) analyzed data concerning failures of 10 power plant
pumps. The number of failures Xi at plant i was assumed to follow a Poisson
distribution

Xi|θi ∼ P(θiti) for i = 1, . . . , 10,

where θi is the failure rate for pump i and ti is the length of operation time of
the pump (in 1000s of hours).

It is natural to assume that the failure rates are exchangeable and thus we
might model

θi|α, β ∼ G(α, β)

where α and β are the unknown hyperparameters.
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Fitting hierarchical models

The most important problem in dealing with hierarchical models is how to treat
the hyperparameters φ. Usually, there is very little prior information available
with which to estimate φ.

Thus, two main approaches have developed:

• The natural Bayesian approach is to use relatively uninformative prior
distributions for the hyperparameters φ and then perform a fully Bayesian
analysis.

• An alternative is to estimate the hyperparameters using classical statistical
methods.

This second method is the so-called empirical Bayes approach which we shall
explore below.
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The empirical Bayesian approach

Robbins

This approach is originally due to Robbins (1955). For a full review see

http://en.wikipedia.org/wiki/Empirical_Bayes_method
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Suppose that we have a model X|θ ∼ f(·|θ) with a hierarchical prior p(θ|φ)
where φ is a hyperparameter. Then conditional on φ, we have from Bayes
theorem that

p(θ|x) ∝ f(x|θ)p(θ|φ).

Now suppose that we do not wish to specify a hyperprior distribution for φ.
Then, the empirical Bayes (EB) approach is to use the data to estimate φ
(via e.g. maximum likelihood, the method of moments or some alternative
approach). Then the analysis proceeds as if φ were known so that given
an estimate, φ̂, of the hyperparameter, then we approximate the posterior
distribution of θ by

p(θ|x) ∝ f(x|θ)p(θ|φ̂).
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Multivariate normal example

Example 76
Suppose that

Xi|θi ∼ N (θi, 1)

θi|τ ∼ N
(
0, τ2

)
for i = 1, . . . , n.

Then, it is easy to see that a posteriori, θi|xi, τ ∼ N ((1−B)xi, 1−B) where
B = 1

1+τ2 with posterior mean E[θi|xi, τ ] = (1−B)xi.

When τ is unknown, this posterior mean estimate is unsatisfactory as it depends
on τ . One possibility is thus to estimate τ from the data.
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In order to do this, note first that

X|τ ∼ N
(
0,
(
1 + τ2

)
In
)

and consider S =
∑n
i=1X

2
i . From a classical viewpoint, we have S 1

Bχ
2
n so

that if we define

B̂ =
n− 2
S

it is easy to show that E[B̂] = B so that B̂ is an unbiased estimator of B.

Substituting B̂ for B, we now proceed as if B were known. Therefore, we have

θi|x, (B = B̂) ∼ N
((

1− B̂
)
xi,
(
1− B̂

))
and therefore

E[θi|x] =
(

1− n− 2∑n
i=1 x

2
i

)
xi

is an EB estimate of the posterior mean.

Bayesian Statistics



Stein’s paradox and the James Stein estimator

From a classical viewpoint, as X ∼ N (θ, In) it would appear that a natural
estimator of θ would be X itself.

However Stein (1955) showed that X is not even an admissable estimator
of θ when n ≥ 3. James and Stein (1960) showed that an estimator which
dominates X is (

1− n− 2∑n
i=1X

2
i

)
X

which is exactly the EB estimator we have just derived.

For a fuller discussion of Stein’s paradox, see Yung (1999).
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Example 77
The batting average of a baseball player is the number of hits Si divided by
the number of times at bat. Supposing that n players have each gone out to
bat k times, then (assuming exchangeability of hits for each player) the batting
average of the i’th player is Si/k ∼ B(k, pi) where pi is the probability that
they hit the ball on a given time at bat.

Then, using an arc sin transformation,

Xi = 2
√
k sin−1

√
Si
k

θi = 2
√
k sin−1√pi

we have that approximately, Xi|θi ∼ N (θi, 1). Now assuming exchangeability
of players, it is reasonable to assume that θi|µ, σ ∼ N

(
µ, σ2

)
.
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The empirical Bayes approach is now to estimate µ and σ from the data.
Noting that the marginal distribution of Xi given the hyperparameters is
Xi|µ, σ ∼ N

(
µ, 1 + σ2

)
then,

E[X̄|µ, σ] = µ E

[
(n− 3)∑n

i=1(Xi − X̄)2

]
=

1
1 + σ2

so we have method of moment estimates µ̂ = x̄ and σ̂2 =
∑n
i=1(xi−x̄)

2

n−3 − 1.

Now, given µ = µ̂ and σ2 = σ̂2, we have θi|x ∼
N
((

1 + 1
σ̂2

)−1 (
xi + 1

σ̂2x̄
)
,
(
1 + 1

σ̂2

)−1
)
.

Thus, the EB estimator for θi takes the form θ̂EBi =
(
1 + 1

σ̂2

)−1 (
xi + 1

σ̂2x̄
)

and inverting of the arc sin law transformation, we have p̂EBi = sin2
(
θ̂EBi
2
√
n

)
.

Efron and Morris (1975) analyzed the batting averages of n = 18 baseball
players over their first 45 at bats and over the remainder of the season. A
table of the data follow.
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Name p̂i(1st 45) pi(Rest) p̂EBi
Clemente 0.400 0.346 0.290

F.Robinson 0.378 0.298 0.286

F.Howard 0.356 0.276 0.282

Johnstone 0.333 0.222 0.277

Berry 0.311 0.273 0.273

Spencer 0.311 0.270 0.273

Kessinger 0.289 0.263 0.268

Alvarado 0.267 0.210 0.264

Santo 0.244 0.269 0.259

Swoboda 0.244 0.230 0.259

Unser 0.222 0.264 0.254

Williams 0.222 0.256 0.254

Scott 0.222 0.303 0.254

Petrocelli 0.222 0.264 0.254

Rodriguez 0.222 0.226 0.254

Campaneris 0.200 0.285 0.249

Munson 0.178 0.316 0.244

Alvis 0.156 0.200 0.239

It can be seen immediately that the EB estimates correspond more closely to
the true batting averages over the season than do the raw estimates.
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Criticisms and characteristics of the empirical Bayes approach

In general, the EB approach leads to compromise (shrinkage) posterior
estimators between the individual (Xi) and group (X̄) estimators.

One problem with the EB approach is that it clearly ignores the uncertainty
in φ. Another problem with this approach is how to choose the estimators
of the hyperparameters. Many options are possible, e.g. maximum likelihood,
method of moments, unbiased estimators etc. and all will lead to slightly
different solutions in general.

This is in contrast to the fully Bayesian approach which requires the definition
of a hyperprior but avoids the necessity of selecting a given value of the
hyperprior.
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Fully hierarchical modeling

In order to implement a fully hierarchical model, we need to specify a hyperprior
distribution p(φ). Then, we have

p(θ|x) ∝
∫
f(x|θ)p(θ|φ)p(φ) dφ

p(φ|x) ∝
∫
f(x|θ)p(θ|φ)p(φ) dθ.

In many cases, these integrals cannot be evaluated analytically. However,
often a Gibbs sampling approach can be implemented by sampling from the
conditional posterior distributions

p(θ|x,φ) ∝ f(x|θ)p(θ|φ)

p(φ|x,θ) = p(φ|θ) ∝ p(θ|φ)p(φ)

which often do have conjugate forms.
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Example 78
Consider Example 74 and suppose initially that the values of φ and ψ are
known and that we use a uniform distribution for µ. Then:

p(µ,θ|y) ∝ exp

(
−φ

2

∑
i

(yi − θi)2 −
ψ

2

∑
i

(θi − µ)2
)
.

Integrating with respect to µ, we have θ|y ∼ N (m,W) where

W−1 =
1

φ+ ψ
I +

ψ

nφ(φ+ ψ)
J and Wm = φy

and the posterior mean of θ is given by

E[θ|y] =
φ

φ+ ψ
y +

ψ

ψ + φ
1ȳ

which is a weighted average of the MLE and the global mean.
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Suppose now that both φ and ψ are unknown and that we use the usual
improper priors p(φ) ∝ 1

φ and p(ψ) ∝ 1
ψ. Then it is easy to show that

θ|y, µ, φ, ψ ∼ N
(
φy + ψµ1
φ+ ψ

,
1

φ+ ψ
I
)

µ|y,θ, φ, ψ ∼ N
(
θ̄,

1
nψ

)
φ|y,θ, µ, ψ ∼ G

(
n

2
,

∑
i(yi − θi)2

2

)
ψ|y,θ, µ, φ ∼ G

(
n

2
,

∑
i(µ− θi)2

2

)
and a Gibbs sampling algorithm could be set up. However, it is possible to
demonstrate that the joint posterior distribution is improper.

It is important to check the propriety of the posterior distribution when
improper hyperprior distributions are used. An alternative (as in for example
Winbugs) is to use proper but high variance hyperprior distributions.
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Directed acyclic graph representations

Hierarchical models are often well represented by directed acyclic graphs or
DAGs as used in Winbugs.

Example 79
A DAG representing the model and prior structure of Example 75 is as below.
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Here we can see that Xi depends directly upon its rate λi which depends on
ti and θi through a logical relation (λi = tiθi).

In Winbugs, this can be converted into code for a Gibbs sampler.

model
{

for (i in 1 : N) {
theta[i] ~ dgamma(alpha, beta)
lambda[i] <- theta[i] * t[i]
x[i] ~ dpois(lambda[i])

}
alpha ~ dexp(1)
beta ~ dgamma(0.1, 1.0)

}
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George et al (1993) give the following table of pump failure data.

Pump ti xi
1 94.5 5
2 15.7 1
3 62.9 5
4 126 14
5 5.24 3
6 31.4 19
7 1.05 1
8 1.05 1
9 2.1 4
10 10.5 22

George et al (1993) assume a hierarchical prior distribution

α ∼ E(1)

β ∼ G(0.1, 1)
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The following table gives the posterior means and variances of the different
parameters estimated via Winbugs
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The last diagram shows a kernel density estimate of the posterior density of
θ1.
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