
Bayesian Inference

Bayes Laplace



Course objective

The aim of this course is to introduce the modern approach to Bayesian
statistics, emphasizing the computational aspects and the differences between
the classical and Bayesian approaches. The course includes Bayesian solutions
to real problems.



Recommended reading

• Lee, P.M. (2004). Bayesian Statistics: An Introduction, (3’rd ed.), Hodder
Arnold.

A basic introduction to Bayesian statistics.

• Bernardo, J.M. and Smith, A.F.M. (1994). Bayesian Theory, Wiley.

The new “bible” of Bayesian statistical theory.

• Gelman, A., Carlin, J.B., Stern, H. and Rubin, D.B. (2003). Bayesian Data
Analysis (2’nd ed.), Chapman and Hall.

An applications oriented text.

• Robert, C.P. and Casella, G. (2004). Monte Carlo Statistical Methods
(2’nd ed.), Springer Verlag.

All about Monte Carlo and MCMC methods.



Course evaluation

This will be based on (an exam), some applied coursework and a final applied
Bayesian project from an area you are interested in.

Some recent course projects have been:

• “Bayesian learning in neural networks”

• “Bayesian arbitrage threshold analysis”

• “A Glance at Game Theory”

• “Bayesian inference for Markovian queues”

• “Estimation of objective market potential . . .”

You may choose (almost) any Bayesian theme you wish.



Course outline

1. Introduction and non-Bayesian inference

• Probability and its interpretations.

• Subjective probability.

• Statistical inference.

• Classical inference. Ideas y criticisms.

• Other approaches: fiducial inference, likelihood based approaches.

• The likelihood principle.



2. Introduction to Bayesian inference: coin tossing problems

• Basic elements of Bayesian inference:

� Bayes theorem and its interpretation
� Prior and posterior distributions.
� Likelihood principle.

• Coin tossing problems:

� Results with a uniform prior.
� Prediction.
� Results with a beta (conjugate) prior.
� What happens when a non-conjugate prior is used.



3. Conjugate families of distributions

• Conjugate families.

• Sufficient statistics and exponential families of distributions.

• Mixtures of conjugate distributions.

• Applications.

• Introduction to Monte Carlo sampling.



4. Gaussian models

• Inference for the normal distribution.

• The use of improper prior distributions.

• Introduction to Gibbs sampling.

• Two sample problems.

• The Behrens–Fisher problem.

• Applications.



5. Choosing a prior distribution

• Subjective prior distributions:

� Methods for soliciting a subjective prior,
� Problems with subjective information.

• Non informative prior distributions:

� Insufficient reason and uniform priors,
� Jeffreys prior distributions,
� Maximum entropy,
� Reference priors,
� Problems with the use of improper and non informative prior distributions.



6. Implementation of Bayesian inference

• Numerical integration.

• Monte Carlo approaches: importance sampling and rejection sampling.

• MCMC algorithms:

� Markov chains,
� The Metropolis Hastings algorithm,
� Gibbs sampling,
� Other algorithms,
� Implementation of Gibbs sampling via WinBugs.

• Applications.



7. Estimation, hypothesis testing and model choice

• Estimation as a decision problem.

• Credible intervals and the differences betwen Bayesian and classical intervals.

• Hypothesis testing:

� Simple and composite tests.
� Lindley’s paradox.

• Bayes factors:

� Approximations,
� Relation to classical criteria,
� Problems with improper priors,
� Generalizations: Intrinsic and fractional Bayes factors.

• Application.



8. Large samples

• A Bayesian central limit theorem.

• Applications of the theorem.

• The Laplace approximation.

• Applications.



9. Regression and linear models

• Linear models.

• The two stage linear model.

• Introduction to hierarchical models and the 3 stage linear model.

• Generalized linear models.

• Applications.



10. Exchangeability and hierarchical models

• Exchangeability.

• De Finetti’s theorems.

• Hierarchical models.

• Empirical Bayes approaches.

• Gibbs sampling for hierarchical models.

• Applications.



11. Time series and dynamic linear models

• Dynamic linear models:

� The closed, constant DLM,
� Relations with classical approaches,
� Modelling trend and seasonality.

• Other approaches to time series.



12. Other topics

Selected from:

• Robustness and sensitivity analysis.

• Bayesian nonparametric methods.

• Graphical models, belief nets and Bayes linear models.

• Decision analysis.



1. Introduction and non-Bayesian
inference

Objective

Introduce the different objective and subjective interpretations of probability.
Examine the various non-Bayesian treatments of statistical inference and
comment on their associated problems.



Recommended reading

• Hájek, A. (2003). Interpretations of Probability. In Stanford Encyclopedia
of Philosophy.

http://plato.stanford.edu/entries/probability-interpret/

• The Wikipedia has a nice page on different interpretations of probability.

http://en.wikipedia.org/wiki/Probability_interpretations

• Bernardo, J.M. and Smith, A.F.M. (1994). Bayesian Theory, Chapter 2.

http://www.uv.es/bernardo/BT2.pdf



Probability

Kolmogorov

Probability theory developed from studies of games of chance by Fermat and
Pascal and may be thought of as the study of randomness. It was put on a
firm mathematical basis by Kolmogorov (1933).



The Kolmogorov axioms

For a random experiment with sample space Ω, then a probability measure P
is a function such that

1. for any event A ∈ Ω, P (A) ≥ 0.

2. P (Ω) = 1.

3. P (∪j∈JAj) =
∑
j∈J P (Aj) if {Aj : j ∈ J} is a countable set of

incompatible events.

The laws of probability can be derived as consequences of these axioms.
However, this is a purely mathematical theory and does not provide a useful
practical interpretation of probability.



Interpretations of probability

There are various different ways of interpreting probability.

• The classical interpretation.

• Logical probability.

• Frequentist probability.

• Propensities.

• Subjective probability.

For a full review, see e.g. Gillies (2000).



Classical probability

Bernoulli

This derives from the ideas of Jakob Bernoulli (1713) contained in the principle
of insufficient reason (or principle of indifference) developed by Laplace
(1814) which can be used to provide a way of assigning epistemic or subjective
probabilities.



The principle of insufficient reason

If we are ignorant of the ways an event can occur (and therefore have no
reason to believe that one way will occur preferentially compared to another),
the event will occur equally likely in any way.

Thus the probability of an event is the coefficient between the number of
favourable cases and the total number of possible cases.

This is a very limited definition and cannot be easily applied in infinite
dimensional or continuous sample spaces.

http://en.wikipedia.org/wiki/Principle_of_indifference



Logical probability

Keynes Carnap

This approach, which extends the classical concept of probability, was developed
by Keynes (1921) and Carnap (1950). The probability of a proposition H
given evidence E is interpreted as the (unique) degree to which E logically
entails H.



Logical probabilities are constructed using the idea of formal languages as
follows:

• Consider a language, L, with predicates H1,H2, . . . and a finite number of
constants e1, e2, . . . , en.

• Define a probability measure P (·) over sentences in L in a way that only
takes into account their syntactic structure.

• Then use the standard probability ratio formula to create conditional
probabilities over pairs of sentences in L.

Unfortunately, as noted by Bernardo and Smith (1994), “the logical view of
probability is entirely lacking in operational content”. Such probabilities are
assumed to exist and depend on the formal language in which they are defined.



Frequentist probability

Venn Von Mises

The idea comes from Venn (1876) and was expounded by von Mises (1919).

Given a repeatable experiment, the probability of an event is the limit of the
proportion of times that the event will occur when the number of repetitions
of the experiment tends to infinity.

This is a restricted definition of probability. It is impossible to assign
probabilities in non repeatable experiments.



Propensities

Popper

This theory was developed by Popper (1957).

Probability is an innate disposition or propensity for things to happen. In
particular, long run propensities seem to coincide with the frequentist definition
of probability whereas it is not clear what individual propensities are, or whether
they obey the probability calculus.



Subjective probability

Ramsey

The subjective concept of probability is as degrees of belief. A first attempt to
formalize this was made by Ramsey (1926).

In reality, most people are irrational in that their own degrees of belief do not
satisfy the probability axioms, see e.g. Kahneman et al (1982) and chapter 5 of
this course. Thus, in order to formalize the definition of subjective probability,
it is important to only consider rational agents, i.e. agents whose beliefs are
logically consistent.



Consistent degrees of belief are probabilities

Cox (1946) formalized the conditions for consistent reasoning by assuming
defining the necessary logical conditions. Firstly, relative beliefs in the truths
of different propositions are assumed to be transitive, i.e. if we believe that
A � B and B � C, for three events A,B,C, then we must believe that
A � C, where A � B means A is at least as likely as B to occur. This
assumption implies that we can represent degrees of belief by numbers, where
the higher the value, the higher the degree of belief.

Secondly, it is assumed that if we specify how much we believe an event A to
be true, then we also implicitly specify how much we believe it to be false.

Finally it is assumed that if we specify how much we believe A to be true and
how much we believe B to be true, given that A is true, then we are implicitly
implying our degree of belief that both A and B are true.

Given these axioms, Cox was able to demonstrate that logical consistency
could only be assured if the numbers used to represent degrees of belief are
probabilities.



Defining subjective probabilities

Cox’s method is non-constructive and does not give a method of defining a
probability for a given event. There are various ways of doing this, usually
based around the ideas of betting.

De Finetti (1937) defines la probability, PE(A|H), of an event A for an agent
E with information H to be the maximum quantity, or fair price, that E would
pay for a ticket in a lottery where they will obtain a (small) unit prize if and
only if A occurs.
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The expected gain in this lottery, is equal to

PE(A|H)× 1 + (1− PE(A|H))× 0 = PE(A|H).

A Dutch book is defined to be a series of bets, each acceptable to the agent,
which collectively imply that the agent is certain to lose money, however the
world turns out.

It can now be shown that in order to avoid a Dutch book, then the agent’s
probabilities must satisfy the usual probability calculus.

Note that the definition proposed by De Finetti depends on the assumption
that the utility of the agent for money is linear. A more general method of
defining probabilities and utilities is provided by Savage (1954). See also O’
Hagan (1988) chapters 1 to 3 for a definition based on betting and odds.



Statistical Inference

A number of different approaches to statistical inference have been developed
based on both the frequentist and subjective concepts of probability.

• Classical (frequentist) inference.

• Likelihood based approaches.

• Fiducial statistics and related methods.

• Bayesian inference.

For full comparisons of the different approaches see e.g. Barnett (1999).



Classical inference

Neyman Pearson

This approach was developed from the ideas of Neyman and Pearson (1933)
and Fisher (1925).



Characteristics of classical inference

• Frequentist interpretation of probability.

• Inference is based on the likelihood function l(θ|x) = f(x|θ).

• We can only quantify (a priori) the uncertainty about X. θ is fixed.

• Inferential procedures are based on asymptotic performance:

� An estimator t = t(X) is defined.
� The plausibility of a given value θ = θ0 is measured by the density

l(θ0|x) ∝ f(t(x)|θ0),

(assuming that t(·) is a sufficient statistic).
� If t does not lie in the tail of f(t|θ0) then θ0 is a plausible value of θ.



Classical estimation and hypothesis tests

Classical point estimation is based on choosing estimators with good asymptotic
properties (unbiasedness, minimum variance, efficiency etc.)

There are a number of possible methods of choosing an estimator, e.g. method
of moments, maximum likelihood, etc. Note that in particular, the maximum
likelihood estimator θ̂ is defined so that l(θ̂|x) > l(θ|x) for all θ 6= θ̂. The
MLE is asymptotically unbiased, efficient etc.

For interval estimation, an interval (l(x), u(x)) is chosen so that

P (l(X) < θ < u(X)|θ) = 1− α

for some fixed probability level α.

Finally, hypothesis testing is based on rejecting θ0 at level α if

P (t(X) > t(x)|θ0) < α.



Principles justifying classical inference

The principle of sufficiency

Definition 1
A statistic t = t(x) is said to be sufficient for θ if

f(x|t,θ) = f(x|t).

The sufficiency principle (Fisher 1922) is as follows.

If a sufficient statistic, t, exists, then for any two samples x1, x2 of the same
size such that t(x1) = t(x2) then the conclusions given x1 and x2 should be
the same.

All standard methods of inference satisfy this principle.



The Fisher-Neyman factorization theorem

This gives a useful characterization of a sufficient statistic which we shall use
in Chapter 3.

Theorem 1
A statistic t is sufficient for θ if and only if there exist functions g and h such
that

l(θ|x) = g(t,θ)h(x).

Proof See e.g. Bernardo and Smith (1994).



The principle of repeated sampling

The inference that we draw from x should be based on an analysis of how
the conclusions change with variations in the data samples, which would be
obtained through hypothetical repetitions, under exactly the same conditions,
of the experiment which generated the data x in the first place.

This principle follows directly from the frequentist definition of probability and
is much more controversial. It implies that measures of uncertainty are just
hypothetical asymptotic frequencies. Thus, it is impossible to measure the
uncertainty about θ a posteriori, given x.



Criticisms of classical inference

Global criticisms

As noted earlier, the frequentist definition of probability restricts the number
of problems which can be reasonably analyzed. Furthermore, classical
inference appears to be a form of cookbook containing many seemingly ad-hoc
procedures.

Specific criticisms

We can also criticize many specific aspects of the classical approach.

Firstly, there are often problems with estimation. An optimal method of
choosing an estimator is not generally available and some typically used
approaches may provide very bad estimators.



One possibility is to attempt to use an unbiased estimator.

Example 1
Let X be an observation from a Poisson distribution: P(λ) and assume that
we wish to estimate φ = e−2λ. Then only one unbiased estimator of φ exists
and takes the value φ̃ = (−1)X = ±1. However 0 < φ ≤ 1 for all λ.



One possibility is to attempt to use an unbiased estimator.

Example 1
Let X be an observation from a Poisson distribution: P(λ) and assume that
we wish to estimate φ = e−2λ. Then only one unbiased estimator of φ exists
and takes the value φ̃ = (−1)X = ±1. However 0 < φ ≤ 1 for all λ.

An alternative is to use the method of moments. However, this approach is
not always available.

Example 2
Suppose that we wish to estimate the location parameter θ of a Cauchy
distribution. Then no simple method of moments estimator exists.

Also, method of moments of estimators, when they do exist do not have the
optimality properties of e.g. maximum likelihood estimators.



It is more common to use maximum likelihood estimators. These are justified
asymptotically but can have very bad properties in small samples.

Example 3
Let X ∼ DU [1, θ]. Then given a sample of size 1, the MLE of θ is θ̂ = X.
The bias of the MLE is

E[X]− θ =
θ + 1

2
− θ =

1− θ

2
,

which can be enormous if θ is large.

Whatever the sample size, the MLE is always underestimates the true value in
this experiment.



Example 4
Suppose that Y ∼ N

(
θ, σ2I

)
where dim(θ) = n, and that we wish to estimate

θ given Y = y. Then clearly, the maximum likelihood estimator is θ̂ = y.



Example 4
Suppose that Y ∼ N

(
θ, σ2I

)
where dim(θ) = n, and that we wish to estimate

θ given Y = y. Then clearly, the maximum likelihood estimator is θ̂ = y.

However, if n ≥ 3 then this estimator is inadmissible as the James-Stein

estimator θ̂JS =
(
1− (m−2)σ2

‖y‖2

)
y has lower mean squared error.

We will return to this example in Chapter 10.



A more important problem is interpretation.

Example 5
Suppose that we carry out an experiment and find that a 95% confidence
interval for θ based on the sample data is equal to (1, 3). How do we interpret
this?



A more important problem is interpretation.

Example 5
Suppose that we carry out an experiment and find that a 95% confidence
interval for θ based on the sample data is equal to (1, 3). How do we interpret
this?

This means that if we repeated the same experiment and procedure by which
we constructed the interval many times, 95% of the constructed intervals
would contain the true value of θ.



A more important problem is interpretation.

Example 5
Suppose that we carry out an experiment and find that a 95% confidence
interval for θ based on the sample data is equal to (1, 3). How do we interpret
this?

This means that if we repeated the same experiment and procedure by which
we constructed the interval many times, 95% of the constructed intervals
would contain the true value of θ.

It does not mean that the probability that θ lies in the interval (1, 3) is 95%.



There are often problems in dealing with nuisance parameters in classical
inference.

Example 6
Let Yi,j ∼ N

(
φi, σ

2
)

for i = 1, . . . , n and j = 1, 2.

Suppose that the parameter of interest is the variance, σ2 and that φ =
(φ1, . . . , φn) are nuisance parameters.

The likelihood is l
(
σ2,φ|y

)
∝

σ−2n exp

(
− 1

2σ2

n∑
i=1

(yi,1 − φi)2 + (yi,2 − φi)2
)
.

and now, the most natural way of estimating σ2 is to maximize the profile
likelihood. This is calculated as follows.



Supposing σ2 known, we first maximize the likelihood with respect to φ.

lP (σ
2|y) = sup

φ
l
(
σ

2
,φ|y

)

= σ
−2n

exp

(
−

1

2σ2

n∑
i=1

(yi,1 − ȳi)
2
+ (yi,2 − ȳi)

2

)

= σ
−2n

exp

(
−

1

4σ2

n∑
i=1

(yi,1 − yi,2)
2

)

Secondly, we maximize the profile likelihood with respect to σ2, which implies
that

σ̂2 =
1
2n

n∑
i=1

(yi,1 − yi,2)2.

However,

E
[
σ̂2
]

=
σ2

2
for any value of n and this estimator is inconsistent.



It is also not entirely clear how predictions should be carried out.

Example 7
Let X|θ ∼ f(·|θ). Then typically, the predictive distribution is estimated,
given the sample data, by substituting θ by its MLE, leading to the estimated
predictive density f(x|θ̂). However this procedure clearly underestimates the
predictive uncertainty due to the fact that θ is unknown.



Likelihood based inference

Barnard

This approach is based totally on the likelihood function and derives from
Barnard (1949) and Barnard et al (1962). Firstly, the likelihood principle is
assumed.



The likelihood principle

This principle is originally due to Barnard (1949). Edwards (1992) defines the
likelihood principle as follows.

Within the framework of a statistical model, all the information which the
data provide concerning the relative merits of two hypotheses is contained in
the likelihood ratio of those hypotheses on the data. ...For a continuum of
hypotheses, this principle asserts that the likelihood function contains all the
necessary information.

This is equivalent to supposing that if we have experiments, Ei of the same
size with sample data xi and sampling distributions fi(·|θ) for i = 1, 2, then
the two experiments provide the same evidence (EV) and hence the same
inference about θ if f1(x1|θ, E1) ∝ f2(x2|θ, E2), that is

l(θ|E2,x2) = cl(θ|E1,x1) for some c ⇒ EV [E1,x1] = EV [E2,x2].



A second assumption of likelihood inference is that the likelihood ratio for
l(θ1|x)/l(θ2|x), for any two values θ1 and θ2 is a measure of the evidence
supplied by the data in favour of θ1 relative to θ2.

This is much harder to apply in practice, in particular in the presence of
nuisance parameters. For example, how can we marginalize the likelihood
function?



Stopping rules

Stopping rules are often used in classical statistics (e.g. clinical trials) to make
it possible to stop early if the results are sufficiently favourable or unfavourable.

Frequentist statisticians must choose the stopping rule before the experiment
begins and must stick to it exactly (otherwise the good frequentist properties
of the test are lost).

Example 8
Assume we are interested in testing whether a coin is biased in favour of heads.
Then we may consider various different stopping rules, e.g.

• toss the coin a fixed number, n times.

• toss the coin until the first tail is seen.

• toss the coin until the r’th tail is seen.



The stopping rule principle

The stopping rule principle is the following.

In a sequential experiment, the evidence provided by the experiment about the
value of the unknown parameters θ should not depend on the stopping rule.

This is clearly a consequence of the likelihood principle as the likelihood
function is independent of the stopping rule. However ...



Classical hypothesis tests do not satisfy the stopping rule principle

Example 9
Suppose that θ = P (head). We wish to test H0 : θ = 1/2 against the
alternative H1 : θ > 1/2 at a 5% significance level.

Suppose that we observe 9 heads and 3 tails. This information is not sufficient
for us to write down the likelihood function. We need to know the sampling
scheme or stopping rule.



Suppose that we fix the number of tosses of the coin to be 12. Then

X = # heads|θ ∼ BI(12, θ) and l(θ|x = 9) =
(

12
9

)
θ9(1− θ)3.

Thus, the p-value is

p1 =
1
2

12 [( 12
9

)
+ · · ·+

(
12
12

)]
≈ .075

and we do not reject the null hypothesis.



Suppose now that we decided to calculate the number of heads X until the
third tail occurs. Thus, X|θ ∼ NB(3, θ) and

l(θ|x) =
(

11
9

)
θ9(1− θ)3 and the p-value is

p2 =
(

11
9

)
θ9(1− θ)3 +

(
12
10

)
θ10(1− θ)3 + · · ·

= .0325 and we reject the null hypothesis.



The reason is that in order to carry out a hypothesis test, then we must specify
the sample space or stopping rule. This is different in the two cases that we
have seen:

1. Ω = {(u, d) : u+ d = 12}

2. Ω = {(u, d) : d = 3}



The conditionality principle

Suppose that we have the possibility of carrying out two experiments E1 and
E2 in order to make inference about θ and that we choose the experiment to
carry out by tossing an unbiased coin. Then our inference for θ should only
depend on the selected experiment.

To formalize this, note that the experiment Ei may be characterized as
Ei = (Xi,θ, fi) which means that in this experiment, the variable Xi is
generated from fi(Xi|θ).

Now define the composite experiment E? which consists of generating a
random variable K where P (K = 1) = P (K = 2) = 1

2 and then performing
experiment K so that E? = ((K,XK)︸ ︷︷ ︸

X

,θ, 1
2fK(XK)). Then conditionality

implies that EV [E?,x] =
{
EV [E1,x1] if K = 1 so x = (1,x1)
EV [E2,x2] if K = 2 so x = (1,x2)



Birnbaum (1962) demonstrates the following theorem which relates the
sufficiency, likelihood and conditionality principles.



Birnbaum (1962) demonstrates the following theorem which relates the
sufficiency, likelihood and conditionality principles.

Theorem 2
The likelihood principle is equivalent to the sufficiency principle and the
conditionality principle.

We shall demonstrate that sufficiency plus conditionality ⇒ likelihood. See
Birnbaum (1962) for a full proof.



Proof of the theorem

Proof Let E1, E2 and x1 and x2 be the two experiments and data samples
figuring in the statement of the likelihood principle so that

l(θ|E1,x1) = cl(θ|E2,x2)

for some constant c and define the composite experiment E? = E1 as in the
conditionality principle.

Define the statistic t by

t = t(x) =
{

(1,x1) if K = 2
x otherwise



Now note that if t 6= (1,x1) then

f(x|t,θ) =
{

1 if t = t(x)
0 otherwise

whereas if t = x = (1,x1), then

f(x|t,θ) =
1
2f1(x1|θ)

1
2f1(x1|θ) + 1

2f2(x2|θ)
=

c

1 + c

and if t = (1,x1) but x = (2,x2) then

f(x|t,θ) =
1
2f2(x2|θ)

1
2f1(x1|θ) + 1

2f2(x2|θ)
=

1
1 + c

so f(x|t,θ) = f(x|t) and t is a sufficient statistic.



It follows from the sufficiency principle that

EV [E?, (1,x1)] = EV [E?, (2,x2)]

and then the conditionality principle ensures that

EV [E?,x1] = EV [E1, (1,xi)] = EV [E?, (2,x2)] = EV [E2,x2]

which is the likelihood principle.

In the same way, it can be demonstrated that likelihood + sufficiency ⇒
conditionality or that likelihood + conditionality ⇒ sufficiency.



Fiducial inference and related methods

Fisher

Fiducial inference has the objective of defining a posterior measure of
uncertainty for θ without the necessity of defining a prior measure. This
approach was introduced by Fisher (1930).



Example 10
Let X|µ, σ2 ∼ N (µ, σ2). Suppose that we wish to carry out inference for µ.

We know that T = (X̄−µ)
√
n

S ∼ tn−1. Then for any t, P (T > t) = p(t) where
p(t) is known. Fisher’s idea is to write

p(t) = P (T > t)

= P

(
(X̄ − µ)

√
n

S
> t

)
= P

(
µ < X̄ − St√

n

)

and then define p(t) = P
(
µ < x̄− st√

n

)
to be the fiducial probability that µ

is less than x̄− st√
n
.



Problems with the fiducial approach

• The probability measure is transferred from the sample space to the
parameter space. What is the justification for this?

• What happens if no pivotal statistic exists?

• It is unclear how to apply the fiducial approach in multidimensional problems.

In many cases, fiducial probability intervals coincide with Bayesian credible
intervals given specific non informative prior distributions. In particular,
structural inference, see Fraser (1968) corresponds to Bayesian inference using
so called Haar prior distributions. However we will see that the Bayesian
justification for such intervals is more coherent.
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2. Introduction to Bayesian inference

de Finetti

The Bayesian approach comes originally from the work of Bayes and Laplace
and much of the modern theory comes from de Finetti in the 1930’s.



Recommended reading

• Este art́ıculo de José Bernardo es una buena introducción a la inferencia
bayesiana.

• Lindley (1983) is a useful article to read.

http://www.uv.es/~bernardo/divulgacion.pdf
http://links.jstor.org/sici?sici=0039-0526(198303%2F06)32%3A1%2F2%3C1%3ATAPOBS%3E2.0.CO%3B2-Q


Characteristics of Bayesian inference

Firstly, Bayesian inference depends directly on the subjective definition of
probability.

We can all have our own probabilities for a given event:

P (head), P (rain tomorrow), P (Mike was born in 1962).

Our probabilities may be different as they are our own measures of the likelihood
of given events.

Secondly, given a sample x, and a prior distribution p(θ) for θ, we can update
our beliefs using Bayes theorem:

p(θ|x) =
f(x|θ)p(θ)

f(x)

∝ f(x|θ)p(θ) = l(θ|x)p(θ)



Bayesian inference satisfies the likelihood principle

Proof Suppose that l(θ|x1) ∝ l(θ|x2) and assume a prior distribution p(θ).
Then

p(θ|x1) ∝ p(θ)l(θ|x1)

∝ p(θ)l(θ|x2)

∝ p(θ|x2)

= p(θ|x2).

In the above, we are assuming that the prior distribution is subjective, i.e. that
it is not just chosen via formal rules, e.g. always uniform. In this case, the
likelihood principle can be violated. See chapter 5.



Estimation and credible intervals

For a Bayesian, estimation is treated as a decision problem. In a given situation,
we should elect an estimator in order to minimize the loss that we expect to
incur. Utility theory can be used to choose an optimal estimator. See chapter
7.

A 95% credible interval for θ is an interval [a, b] such that our probability that
θ lies in [a, b] is 95%. See chapter 5 for a formal definition.



Nuisance parameters and prediction

There are no (theoretical) problems in dealing with with nuisance parameters.

If θ = (θ1,θ2) where θ2 are nuisance parameters, then we can write the joint
density as p(θ) = p(θ1|θ2)p(θ2) and therefore,

p(θ1|x) =
∫
p(θ1|θ2,x)p(θ2|x) dθ2.

Note however that if p(θ1|θ2,x) varies a lot given different values of θ2, then
this sensitivity should be taken into account. See Box and Tiao (1992), Section
1.6.

Prediction is also straightforward. If Y is a new observation, then the predictive
distribution of Y is

f(y|x) =
∫
f(y|(x),θ)p(θ|x) dθ



Bayesian analysis of Example 9

Example 11
Suppose that our prior beliefs about θ are represented by a uniform distribution
θ ∼ U(0, 1).

The uniform distribution is an example of a beta distribution,

p(φ|α, β) =
1

B(α, β)
φα−1(1− φ)β−1 for 0 < φ < 1

where B(α, β) = Γ(α)Γ(β)
Γ(α+β) is the beta function. Setting α = β = 1 gives the

uniform distribution. This is not a very realistic representation of typical prior
knowledge. It would be more appropriate to use a symmetric beta distribution,
e.g. B(5, 5).

We can now calculate the posterior distribution via Bayes theorem.



Calculation of the posterior distribution

From Bayes theorem, the posterior distribution is

p(θ|x) ∝ 1×
(

12
9

)
θ9(1− θ)3

∝ θ9(1− θ)3 ∝ θ10−1(1− θ)4−1

=
1

B(10, 4)
θ10−1(1− θ)4−1

which implies that θ|x ∼ B(10, 4).

It can now be demonstrated that P (θ ≤ 1/2|x) ≈ .046 and we might choose to
reject the hypothesis that θ ≤ 0.5. Note however that this does not constitute
a formal hypothesis test. These will be analyzed in chapter 7.



The posterior mean as a weighted average

From the properties of the beta distribution, we know that if φ ∼ B(α, β),
then E[φ] = α

α+β .

Thus, in our case, we have

E[θ|x] =
10

10 + 4
=

5
7

and moreover,

5
7

=
1
7
× 1

2
+

6
7
× 9

12
which implies that

E[θ|x] =
1
7
E[θ] +

6
7
θ̂

where E[θ] = 1/(1 + 1) = 1/2 is the prior mean and θ̂ = 9/12 is the MLE of
θ.

Thus, the posterior mean is a weighted average of the prior mean and the
MLE.



Interpretation

One interpretation of this result is that the data have six times the weight of
the prior distribution in determining the posterior distribution.

Equally, we might assume that the information represented in the prior
distribution is equivalent to the information contained in an experiment where a
coin is tossed twice and one head and one tail are observed. This interpretation
will be formalized in the following chapter.



Prediction

Suppose that we wish to predict the number of heads, Y , in ten further tosses
of the same coin. Thus, we have Y |θ ∼ BI(10, θ) and therefore,

f(y|x) =
∫
f(y|x, θ)p(θ|x) dθ =

∫
f(y|θ)p(θ|x) dθ

=
∫ 1

0

(
10
y

)
θy(1− θ)10−y × 1

B(10, 4)
θ10−1(1− θ)4−1 dθ

=
(

10
y

)
1

B(10, 4)
×
∫ 1

0

θ10+y−1(1− θ)14−y−1 dθ

=
(

10
y

)
B(10 + y, 14− y)

B(10, 4)
for y = 0, 1, . . . , 10

which is the so called beta-binomial distribution. The following diagram
illustrates the predictive probability distribution of Y and the binomial predictive
distribution (BI(10, .75)) derived from substituting the MLE, p̂ = 0.75, for p.



The predictive distribution
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The predictive mean and variance

We can calculate the predictive mean of Y |x without having to evaluate the
whole predictive distribution. Thus, for variables Z and Y , we have

E[Z] = E[E[Z|Y ]].

In our example, we have E[Y |θ] = 10θ and E[θ|x] = 5
7 and therefore

E[Y |x] = 10× 5
7
≈ 7.141.

In order to calculate the predictive variance, we can use the formula

V [Z] = E[V [Z|Y ]] + V [E[Z|Y ]].



Beta prior distributions

As noted earlier, the uniform distribution is not a realistic prior distribution in
many cases. In many cases we may have more knowledge that we can express
in the form of a beta distribution.

Suppose that θ ∼ B(5, 5). This prior might be used to express prior belief that
the true probability is near to 1/2.

p(θ|x) ∝ 1
B(5, 5)

θ5−1(1− θ)5−1θ9(1− θ)3

∝ θ14−1(1− θ)8−1

θ|x ∼ B(14, 8)



Suppose now that we think that the coin is likely to be biased in favour of
heads. Then we might assume that θ ∼ B(5, 1). In this case,

p(θ|x) ∝ θ5−1(1− θ)1−1θ9(1− θ)3

and therefore, θ|x ∼ B(14, 4).



Suppose now that we think that the coin is likely to be biased in favour of
heads. Then we might assume that θ ∼ B(5, 1). In this case,

p(θ|x) ∝ θ5−1(1− θ)1−1θ9(1− θ)3

and therefore, θ|x ∼ B(14, 4).

We may think the coin is biased in favour of tails. In this case, we may assume
that θ ∼ B(1, 5), when θ|x ∼ B(10, 8).



Suppose now that we think that the coin is likely to be biased in favour of
heads. Then we might assume that θ ∼ B(5, 1). In this case,

p(θ|x) ∝ θ5−1(1− θ)1−1θ9(1− θ)3

and therefore, θ|x ∼ B(14, 4).

We may think the coin is biased in favour of tails. In this case, we may assume
that θ ∼ B(1, 5), when θ|x ∼ B(10, 8).

In all 4 cases we have considered, the prior and posterior distributions are beta
distributions.



Suppose now that we think that the coin is likely to be biased in favour of
heads. Then we might assume that θ ∼ B(5, 1). In this case,

p(θ|x) ∝ θ5−1(1− θ)1−1θ9(1− θ)3

and therefore, θ|x ∼ B(14, 4).

We may think the coin is biased in favour of tails. In this case, we may assume
that θ ∼ B(1, 5), when θ|x ∼ B(10, 8).

In all 4 cases we have considered, the prior and posterior distributions are beta
distributions.

The beta prior distribution is conjugate to the binomial sampling distribution.
Similar situations will be considered in chapter 3.



The scaled likelihood function

Sometimes, (if θ is one dimensional), it is possible to observe the influence of
the prior distribution and the likelihood function on the posterior distribution.
In order to do this, we define the scaled likelihood as

l(θ|x)∫
l(θ|x) dθ

Note that the scaled likelihood does not always exist. However, when it can be
defined, we can construct a diagram showing the prior, the scaled likelihood
and the posterior together.

The following diagrams illustrate the effects of using the different prior
distributions in this problem. In each graphic, the prior is given as a green
dashed line, the scaled likelihood as a red dash-dot line and the posterior as a
solid blue line.



The results of using different prior distributions
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What if the prior distribution is not beta?

If we do not use a beta prior in the binomial sampling problem, then calculation
of the posterior density and its properties is more complex.

Suppose that we assume a discrete prior distribution

θ P (θ)
0 1/36

0.1 2/36
0.2 3/36
0.3 4/36
0.4 5/36
0.5 6/36
0.6 5/36
0.7 4/36
0.8 3/36
0.9 2/36
1.0 1/36



In this case, we have to use Bayes theorem to calculate all of the probabilities.

θ P (θ) θ9(1− θ)3 θ9(1−θ)3∑
θ9(1−θ)3 P (θ) θ9(1−θ)3∑

θ9(1−θ)3 P (θ|x)

0 1/36 0.0000 0.0000 0.0000 0.0000
0.1 2/36 0.0000 0.0000 0.0000 0.0000
0.2 3/36 0.0000 0.0001 0.0000 0.0001
0.3 4/36 0.0000 0.0019 0.0002 0.0020
0.4 5/36 0.0001 0.0162 0.0022 0.0212
0.5 6/36 0.0002 0.0697 0.0116 0.1097
0.6 5/36 0.0006 0.1841 0.0256 0.2415
0.7 4/36 0.0011 0.3110 0.0346 0.3263
0.8 3/36 0.0011 0.3065 0.0255 0.2412
0.9 2/36 0.0004 0.1106 0.0061 0.0580
1.0 1/36 0.0000 0.0000 0.0000 0.0000

Total 1 0.0035 1 0.1059 1.0000



The diagram shows the prior and posterior probabilities and scaled likelihood.
The posterior mean can be calculated to be E[θ|x] = 0.6824.
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Results with a continuous prior

Suppose that we use a continuous, non-beta prior, for example θ ∼
N
(
0.5, 0.22

)
. In this case, the posterior distribution is

p(θ|x) ∝ exp
(
−(θ − 0.5)2

0.4

)
θ9(1− θ)3

and the integration constant of this distribution must be calculated numerically.

We can do this in MATLAB by defining a function;

function ftheta=myfn(theta)
lik=betapdf(theta,10,4);
prior=normpdf(theta,0.5,0.2)/(normcdf(1,0.5,0.2)-normcdf(0,0.5,0.2));
ftheta=prior.*lik;

and using intconst=quad(@myfn,0,1), which produces the result
intconst=1.1143.



The diagram shows the prior and posterior densities and likelihood.
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The posterior mean and variance etc. also have to be calculated numerically.

function meantheta=myfn2(theta)
lik=betapdf(theta,10,4);
prior=normpdf(theta,0.5,0.2)/(normcdf(1,0.5,0.2)-normcdf(0,0.5,0.2));
meantheta=theta.*prior.*lik;

Then the mean is given by etheta=quad(@myfn2,0,1)/intconst from which
we find E[θ|x] = 0.66.



References
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3. Conjugate families of distributions

Objective

One problem in the implementation of Bayesian approaches is analytical
tractability. For a likelihood function l(θ|x) and prior distribution p(θ), in
order to calculate the posterior distribution, it is necessary to evaluate

f(x) =
∫
l(θ|x)p(θ) dθ

and to make predictions, we must evaluate

f(y|x) =
∫
f(y|θ)p(θ|x) dθ.

General approaches for evaluating such integrals numerically are studied in
chapter 6, but in this chapter, we will study the conditions under which such
integrals may be evaluated analytically.



Recommended reading

• Wikipedia entry on conjugate priors.

http://en.wikipedia.org/wiki/Conjugate_prior

• Bernardo, J.M. and Smith, A.F.M. (1994). Bayesian Theory, Section 5.2.



Coin tossing problems and beta priors

It is possible to generalize what we have seen in Chapter 2 to other coin tossing
situations.

Suppose that we have defined a beta prior distribution θ ∼ B(α, β) for
θ = P (head).

Then if we observe a sample of coin toss data, whether the sampling mechanism
is binomial, negative-binomial or geometric, the likelihood function always takes
the form

l(θ|x) = cθh(1− θ)t

where c is some constant that depends on the sampling distribution and h and
t are the observed numbers of heads and tails respectively.



Applying Bayes theorem, the posterior distribution is

p(θ|x) ∝ cθh(1− θ)t
1

B(α, β)
θα−1(1− θ)β−1

∝ θα+h−1(1− θ)β+t−1

which implies that θ|x ∼ B(α+ h, β + t).

Thus, using a beta prior, guarantees that the posterior distribution is also beta.
In this case, we say that the class of beta prior distributions is conjugate to
the class of binomial (or geometric or negative binomial) likelihood functions.



Interpretation of the beta parameters

The posterior distribution is B(α + h, β + t) so that α (β) in the prior plays
the role of the number of heads (tails) observed in the experiment. The
information represented by the prior distribution can be viewed as equivalent
to the information contained in an experiment where we observe α heads and
β tails.

Furthermore, the posterior mean is given by (α + h)/(α + β + h + t) which
can be expressed in mixture form as

E[θ|x] = w
α

α+ β
+ (1− w)

h

h+ t

= wE[θ] + (1− w)θ̂

where w = α+β
α+β+h+t is the relative weight of the number of equivalent coin

tosses in the prior.



Limiting results

Consider also what happens as we let α, β → 0. We can interpret this as
representing a prior which contains information equivalent to zero coin tosses.

In this case, the posterior distribution tends to B(h, t) and, for example, the
posterior mean E[θ|x] → θ̂, the classical MLE.

The limiting form of the prior distribution in this case is Haldane’s (1931)
prior,

p(θ) ∝ 1
θ(1− θ)

,

which is an improper density. We analyze the use of improper densities further
in chapter 5.



Prediction and posterior distribution

The form of the predictive and posterior distributions depends on the sampling
distribution. We shall consider 4 cases:

• Bernoulli trials.

• Binomial data.

• Geometric data.

• Negative binomial data.



Bernoulli trials

Given that the beta distribution is conjugate in coin tossing experiments, given
a (Bernoulli or binomial, etc.) sampling distribution, f(x|θ), we only need to
calculate the prior predictive density f(x) =

∫
f(x|θ)p(θ) dθ for a beta prior.

Assume first that we have a Bernoulli trial with P (X = 1|θ) = θ and prior
distribution θ ∼ B(α, β). Then:

Theorem 3
If X is a Bernoulli trial with parameter θ and θ ∼ B(α, β), then:

f(x) =

{
α

α+β if x = 1
β

α+β if x = 0

E[X] =
α

α+ β
, V [X] =

αβ

(α+ β)2
.

Given a sample x = (x1, . . . , xn) of Bernoulli data, the posterior distribution
is θ|x ∼ B(α+

∑n
i=1 xi, β + n−

∑n
i=1 xi).



Proof

P (X = 1) =
∫ 1

0

P (X = 1|θ)p(θ) dθ

= E[θ] =
α

α+ β

P (X = 0) = 1− P (X = 1) =
β

α+ β

E[X] = 0× P (X = 0) + 1× P (X = 1) =
α

α+ β

V [X] = E
[
X2
]
− E[X]2

=
α

α+ β
−
(

α

α+ β

)2

=
αβ

(α+ β)2
.

The posterior distribution formula was demonstrated previously.



Binomial data

Theorem 4
Suppose that X|θ ∼ BI(m, θ) with θ ∼ B(α, β). Then, the predictive density
of X is the beta binomial density

f(x) =
(
m
x

)
B(α+ x, β +m− x)

B(α, β)
for x = 0, 1, . . . ,m

E[X] = m
α

α+ β

V [X] = m(m+ α+ β)
αβ

(α+ β)2(α+ β + 1)

Given a sample, x = (x1, . . . , xn), of binomial data, the posterior distribution
is θ|x ∼ B(α+

∑n
i=1 xi, β +mn−

∑n
i=1 xi).



Proof

f(x) =
∫ 1

0

f(x|θ)p(θ) dθ

=
∫ 1

0

(
m
x

)
θx(1− θ)m−x

1
B(α, β)

θα−1(1− θ)β−1 dθ for x = 0, . . . ,m

=
(
m
x

)
1

B(α, β)

∫ 1

0

θα+x−1(1− θ)β+m−x−1 dθ

=
(
m
x

)
B(α+ x, β +m− x)

B(α, β).

E[X] = E[E[X|θ]]
= E[mθ] remembering the mean of a binomial distribution

= m
α

α+ β
.



V [X] = E[V [X|θ]] + V [E[X|θ]]
= E[mθ(1− θ)] + V [mθ]

= m
B(α+ 1, β + 1)

B(α, β)
+m2 αβ

(α+ β)2(α+ β + 1)

= m
αβ

(α+ β)(α+ β + 1)
+m2 αβ

(α+ β)2(α+ β + 1)

= m(m+ α+ β)
αβ

(α+ β)2(α+ β + 1)
.



Geometric data

Theorem 5
Suppose that θ ∼ B(α, β) and X|θ ∼ GE(θ), that is

P (X = x|θ) = (1− θ)xθ for x = 0, 1, 2, . . .

Then, the predictive density of X is

f(x) =
B(α+ 1, β + x)

B(α, β)
for x = 0, 1, 2, . . .

E[X] =
β

α− 1
for α > 1

V [X] =
αβ(α+ β − 1)
(α− 1)2(α− 2)

for α > 2.

Given a sample, x = (x1, . . . , xn), then θ|x ∼ B(α+ n, β +
∑n
i=1 xi).

Proof Exercise.



Negative binomial data

Theorem 6
Suppose that θ ∼ B(α, β) and X|θ ∼ NB(r, θ), that is

P (X = x|θ) =
(
x+ r − 1

x

)
θr(1− θ)x for x = 0, 1, 2, . . . Then:

f(x) =
(
x+ r − 1

x

)
B(α+ r, β + x)

B(α, β)
for x = 0, 1, . . .

E[X] = r
β

α− 1
for α > 1

V [X] =
rβ(r + α− 1)(α+ β − 1)

(α− 1)2(α− 2)
for α > 2.

Given a sample x = (x1, . . . , xn) of negative binomial data, the posterior
distribution is θ|x ∼ B(α+ rn, β +

∑n
i=1 xi).

Proof Exercise.



Conjugate priors

Raiffa

The concept and formal definition of conjugate prior distributions comes from
Raiffa and Schlaifer (1961).

Definition 2
If F is a class of sampling distributions f(x|θ) and P is a class of prior
distributions for θ, p(θ) we say that P is conjugate to F if p(θ|x) ∈
P ∀ f(·|θ) ∈ F y p(·) ∈ P.



The exponential-gamma system

Suppose that X|θ ∼ E(θ), is exponentially distributed and that we use a
gamma prior distribution, θ ∼ G(α, β), that is

p(θ) =
βα

Γ(α)
θα−1e−βθ for θ > 0.

Given sample data x, the posterior distribution is

p(θ|x) ∝ p(θ)l(θ|x)

∝ βα

Γ(α)
θα−1e−βθ

n∏
i=1

θe−θxi

∝ θα+n−1e−(β+nx̄)θ

which is the nucleus of a gamma density θ|x ∼ G(α+ n, β+ nx̄) and thus the
gamma prior is conjugate to the exponential sampling distribution.



Interpretation and limiting results

The information represented by the prior distribution can be interpreted as
being equivalent to the information contained in a sample of size α and sample
mean β/α.

Letting α, β → 0, then the posterior distribution approaches G(n, nx̄) and
thus, for example, the posterior mean tends to 1/x̄ which is equal to the MLE
in this experiment. However, the limiting prior distribution in this case is

f(θ) ∝ 1
θ

which is improper.



Prediction and posterior distribution

Theorem 7
Let X|θ ∼ E(θ) and θ ∼ G(α, β). Then the predictive density of X is

f(x) =
αβα

(β + x)α+1
for x > 0

E[X] =
β

α− 1
for α > 1

V [X] =
αβ2

(α− 1)2(α− 2)
for α > 2.

Given a sample x = (x1, . . . , xn) of exponential data, the posterior distribution
is θ|x ∼ G(α+ n, β + nx̄).

Proof Exercise.



Exponential families

The exponential distribution is the simplest example of an exponential family
distribution. Exponential family sampling distributions are highly related to
the existence of conjugate prior distributions.

Definition 3
A probability density f(x|θ) where θ ∈ R is said to belong to the one-parameter
exponential family if it has form

f(x|θ) = C(θ)h(x) exp(φ(θ)s(x))

for given functions C(·), h(·), φ(·), s(·). If the support of X is independent of
θ then the family is said to be regular and otherwise it is irregular.



Examples of exponential family distributions

Example 12
The binomial distribution,

f(x|θ) =
(
m
x

)
θx(1− θ)m−x for x = 0, 1, . . . ,m

= (1− θ)m
(
m
x

)
exp

(
x log

θ

1− θ

)
is a regular exponential family distribution.

Example 13
The Poisson distribution,

f(x|θ) =
θxe−θ

x!
= e−θ

1
x!

exp(x log θ) for x = 0, 1, 2, . . .

is a regular exponential family distribution.



Irregular and non exponential family distributions

Example 14
The uniform distribution,

f(x|θ) =
1
θ

for 0 < x < θ

is an irregular exponential family distribution.

Example 15
The Cauchy density,

f(x|θ) =
1

π (1 + (x− θ)2)
for −∞ < x <∞

is not an exponential family distribution.

The Student’s t and Fisher’s F distributions and the logistic distribution are
other examples of non exponential family distributions.



Sufficient statistics and exponential family distributions

Theorem 8
If X|θ is a one-parameter, regular exponential family distribution, then given a
sample x = (x1, . . . , xn), a sufficient statistic for θ is t(x) =

∑n
i=1 s(xi).

Proof The likelihood function is

l(θ|x) =
n∏
i=1

C(θ)h(xi) exp (φ(θ)s(xi))

=

(
n∏
i=1

h(xi)

)
C(θ)n exp (φ(θ)t(x))

= h(x)g(t, θ)

where h(x) = (
∏n
i=1 h(xi)) and g(t, θ) = C(θ)n exp (φ(θ)t(x)) and therefore,

t is a sufficient statistic as in Theorem 1.



A conjugate prior to an exponential family distribution

If f(x|θ) is an exponential family, with density as in Definition 3, then a
conjugate prior distribution for θ exists.

Theorem 9
The prior distribution p(θ) ∝ C(θ)a exp (φ(θ)b) is conjugate to the exponential
family distribution likelihood.

Proof From Theorem 8, the likelihood function for a sample of size n is

l(θ|x) ∝ C(θ)n exp (φ(θ)t(x))

and given p(θ) as above, we have a posterior of the same form

p(θ|x) ∝ C(θ)a
?
exp (φ(θ)b?)

where a? = a+ n and b? = b+ t(x) for j = 1, . . . , n.



The Poisson-gamma system

Suppose that X|θ ∼ P(θ). Then, from Example 13, we have the exponential
family form

f(x|θ) = e−θ
1
x!

exp(x log θ)

and from Theorem 9, a conjugate prior density for θ has form

p(θ) ∝
(
e−θ
)a

exp(b log θ)

for some a, b. Thus, p(θ) ∝ θbe−aθ which is the nucleus of a gamma density,
θ ∼ G(α, β), where α = b+ 1 and β = a.

Thus, the gamma prior distribution is conjugate to the Poisson sampling
distribution.



Derivation of the posterior distribution

Now assume the prior distribution θ ∼ G(α, β) and suppose that we observe a
sample of n Poisson data. Then, we can derive the posterior distribution via
Bayes theorem as earlier.

p(θ|x) ∝ βα

Γ(α)
θα−1e−βθ

n∏
i=1

θxie−θ

xi!

∝ θα+nx̄−1e−(β+n)θ

θ|x ∼ G(α+ nx̄, β + n)



Derivation of the posterior distribution

Now assume the prior distribution θ ∼ G(α, β) and suppose that we observe a
sample of n Poisson data. Then, we can derive the posterior distribution via
Bayes theorem as earlier.

p(θ|x) ∝ βα

Γ(α)
θα−1e−βθ

n∏
i=1

θxie−θ

xi!

∝ θα+nx̄−1e−(β+n)θ

θ|x ∼ G(α+ nx̄, β + n)

Alternatively, we can use Theorem 9. The sufficient statistic is t(x) =
∑n
i=1 xi

and thus, from Theorem 9, we know immediately that

θ|x ∼ G( α︸︷︷︸
b+1

+t(x), β︸︷︷︸
a

+n) ∼ G(α+ nx̄, β + n).



Interpretation and limiting results

We might interpret the information in the prior as being equivalent to a the
information contained in a sample of size β with sample mean α/β.

Letting α, β → 0, the posterior mean converges to the MLE although the
corresponding limiting prior, p(θ) ∝ 1

θ, is improper.



Prediction and posterior distribution

Theorem 10
Let X|θ ∼ P(θ) with θ ∼ G(α, β). Then:

X ∼ NB
(
α,

β

β + 1

)
that is,

f(x) =
Γ(x+ α)
x!Γ(α)

(
β

β + 1

)α( 1
β + 1

)x
for x = 0, 1, 2, . . .

E[X] =
α

β

V [X] =
α(β + 1)

β2
.

Given a sample x = (x1, . . . , xn) of Poisson data, the posterior distribution is
θ|x ∼ G(α+ nx̄, β + n).

Proof Exercise.



The uniform-Pareto system

As noted in Example 14, the uniform distribution is not a regular exponential
family distribution. However, we can still define a conjugate prior distribution.

Let X ∼ U(0, θ). Then, given a sample of size n, the likelihood function is
l(θ|x) = 1

θn, for θ > xmax, where xmax is the sample maximum.

Consider a Pareto prior distribution, θ ∼ PA(α, β), with density

p(θ) =
αβα

θα+1
for θ > β > 0

and mean E[θ] = αβ/(α− 1).

It is clear that this prior distribution is conjugate and that

θ|x ∼ PA (α?, β?)

where α? = α+ n and β? = max{β, xmax}.



Properties and limiting results

The posterior mean in this case is

E[θ|x] =
(α+ n) max{β, xmax}

α+ n− 1

which cannot be represented in a general way as an average of the prior mean
and the MLE (xmax).

We can interpret the information in the prior as being equivalent to a sample
of size α where the maximum value is equal to β. When we let α, β → 0,
then the posterior distribution approaches PA(n, xmax) and in this case, the
posterior mean is

E[θ|x] =
nxmax

n− 1
> xmax = θ̂.

This also corresponds to an improper limiting prior p(θ) ∝ 1/θ.

In this experiment, no prior distribution (except for a point mass at xmax) will
lead to a posterior distribution whose mean coincides with the MLE.



Prediction and posterior distribution

Theorem 11
If X|θ ∼ U(0, θ) and θ ∼ PA(α, β), then:

f(x) =

{
α

(α+1)β if 0 < x < β
αβα

(α+1)xα+1 if x ≥ β

E[X] =
αβ

2(α− 1)
for α > 1

V [X] =
α(α+ 2)β2

12(α− 1)(α− 2)
for α > 2.

Given a sample of size n, then the posterior distribution of θ is θ|x ∼
PA (α+ n,max{β, xmax}).

Proof Exercise.



Higher dimensional exponential family distributions

Definition 4
A probability density f(x|θ) where θ ∈ Rk is said to belong to the k-parameter
exponential family if it has form

f(x|θ) = C(θ)h(x) exp

 k∑
j=1

φj(θ)sj(x)


for given functions C(·), h(·), φ(·), s(·). If the support of X is independent of
θ then the family is said to be regular and otherwise it is irregular.

Example 16
The multinomial density is given by f(x|θ) = m!∏k

j=1 xj!

∏k
j=1 θ

xj
j where

xj ∈ {0, 1, . . . ,m} for j = 1, . . . , k,
∑k
j=1 xj = m and

∑k
j=1 θj = 1.



We can write

f(x|θ) =
m!∏k
j=1 xj!

exp

 k∑
j=1

xj log(θj)


=

m!∏k
j=1 xj!

exp

(m−
k−1∑
j=1

xj) log θk +
k−1∑
j=1

xj log(θj)


=

m!∏k
j=1 xj!

θmk exp

k−1∑
j=1

xj log(θj/θk)


and thus, the multinomial distribution is a regular, k−1 dimensional exponential
family distribution.



It is clear that we can generalize Theorem 8 to the k dimensional case.

Theorem 12
If X|θ is a k-parameter, regular exponential family distribution, then
given a sample x = (x1, . . . ,xn), a sufficient statistic for θ is t(x) =
(
∑n
i=1 s1(xi), . . . ,

∑n
i=1 sk(xi)).

Proof Using the same arguments as in Theorem 8, the result is easy to derive.



A conjugate prior to an exponential family sampling distribution

We can also generalize Theorem 9. If f(x|θ) is an exponential family, with
density as in Definition 4, then a conjugate prior distribution for θ exists.

Theorem 13
The prior distribution p(θ) ∝ C(θ)a exp

(∑k
j=1 φj(θ)bj

)
is conjugate to the

k dimensional exponential family distribution likelihood.

Proof Exercise.



The multinomial-Dirichlet system

Suppose that X|θ ∼ MN (m,θ) is a k- dimensional multinomial sampling
distribution. Then from Example 16, we can express the multinomial density
as

f(x|θ) =
m!∏k
j=1 xj!

θmk exp

k−1∑
j=1

xj log(θj/θk)


and therefore, a conjugate prior distribution is

f(θ) ∝ (θkm)a exp

k−1∑
j=1

bj log(θj/θk)

 for arbitrary a, b1, . . . , bk−1

∝
k−1∏
j=1

θj
bjθ

a−
∑k−1
j=1 bj

k ∝
k∏
j=1

θ
αj−1

j

where αj = bj + 1 for j = 1, . . . , k − 1 and αk = a−
∑k
j=1 bj + 1.



The Dirichlet distribution

Definition 5
A random variable, θ = (θ1, . . . , θk) is said to have a Dirichlet distribution,
θ ∼ D(α1, . . . , αk) if

p(θ) =
Γ
(∑k

j=1αj

)
∏k
j=1 Γ(αj)

k∏
j=1

θ
αj−1

j

for 0 < θj < 1,
∑k
j=1 θj = 1.

The Dirichlet distribution may be thought of as a generalization of the beta
distribution. In particular, the marginal distribution of any θj is beta, that is

θj ∼ B(αj, α0 − αj), where α0 =
∑k
j=1αj.



Also, the moments of the Dirichlet distribution are easily evaluated:

E[θj] =
αj
α0

V [θj] =
αj(α0 − αj)
α2

0(α0 + 1)

Cov[θiθj] = − αiαj
α2

0(α0 + 1)



Prediction and posterior distribution

Theorem 14
Let X|θ ∼MN (m,θ) and θ ∼ D(α1, . . . , αk). Then:

P (X = x) =
m!Γ (α0)

Γ (m+ α0)

k∏
j=1

Γ(xj + αj)
xj!Γ(αj)

for xj ≥ 0,
∑k
j=1 xj = m

where α0 =
∑k
j=1αj. Also

E[Xj] = m
αj
α0

V [Xj] = m(α0 +m)
αj(α0 − αj)
α2

0(α0 + 1)

Cov[Xi, Xj] = −m(α0 +m)
αiαj

α2
0(α0 + 1)



Given a sample, x = (x1, . . . ,xn) of multinomial data, then

θ|x ∼ D

α1 +
n∑
j=1

x1j, . . . , αk +
n∑
j=1

xkj

 .

Proof Exercise



Canonical form exponential family distributions

Suppose that we have a standard exponential family distribution

f(x|θ) = C(θ)h(x) exp

 k∑
j=1

φj(θ)sj(x)

 .

Define the transformed variables Yj = sj(X) and transformed parameters
φj = φj(θ) for j = 1, . . . k. Then the density of y|φ is of canonical form.

Definition 6
The density

f(y|φ) = D(y) exp

 k∑
j=1

yjφj − e(φ)


is called the canonical form representation of the exponential family distribution.



Conjugate analysis

Clearly, a conjugate prior for φ takes the form

p(φ) ∝ exp

 k∑
j=1

bjφj − ae(φ)

 ∝ exp

 k∑
j=1

aBjφj − ae(φ)


where Bj = bj

a for j = 1, . . . , k. We shall call this form the canonical prior
for φ. If a sample of size n is observed, then

p(φ|y) ∝ exp

 k∑
j=1

aBj + nȳ·j
a+ n

φj − (a+ n)e(φ)


∝ exp

(
aB + nȳ
a+ n

T

φ− (a+ n)e(φ)

)

The updating process for conjugate models involves a simple weighted average
representation.



The posterior mean as a weighted average

Suppose that we observe a sample of n data from a canonical exponential family
distribution as in Definition 6 and that we use a canonical prior distribution

p(φ) ∝ exp

 k∑
j=1

aBjφj − ae(φ)

 ∝ exp
(
aBTφ− ae(φ)

)
.

Then we can demonstrate the following theorem.

Theorem 15
E [Oe(φ)] = aB+nȳ

a+n where [Oe(φ)]j = ∂
∂φj

e(φ).

Proof As we have shown that the prior is conjugate, it is enough to prove
that, a priori, E[Oe(φ)] = B. However,

a (B− E[Oe(φ)]) =
∫
a (B− Oe(φ)) p(φ) dφ =

∫
Op(φ) dφ



Example 17
Let X|θ ∼ P(θ). Then, from Example 13, we can write

f(x|θ) = e−θ
1
x!

exp(x log θ) =
1
x!

exp(x log θ − θ) =
1
x!

exp
(
xφ− eφ

)
,

where φ = eθ, in canonical exponential family form. We already know that the
gamma prior density θ ∼ G(α, β) is conjugate here. Thus,

p(θ) ∝ θα−1e−βθ ⇒
p(φ) ∝ (log φ)αφ−β

∝ exp
(
β
α

β
φ− βeφ

)
in canonical form. Now Oφ = d

dφe
φ = eφ = θ. Thus, from Theorem 15, we

have E[θ|x] = β
β+n

α
β + n

α+nx̄, a weighted average of the prior mean and the
MLE.



Example 18
Consider the Bernoulli trial f(x|θ) = θx(1− θ)1−x for x = 0, 1. We have

f(x|θ) = (1− θ)
(

θ

1− θ

)x
= exp

(
x log

θ

1− θ
− log

1
1− θ

)
= exp

(
xφ− log(1 + eφ)

)
in canonical form, where φ = log θ

1−θ.

Thus, the canonical prior for φ must take the form ,

p(φ) ∝ exp
(
aBφ− a log(1 + eφ)

)
∝ (1 + eφ)−a exp(aBφ).



This implies, using the standard change of variables formula, that

p(θ) ∝ (1− θ)a
(

θ

1− θ

)aB 1
θ(1− θ)

∝ θaB−1(1− θ)a(1−B)−1

which we can recognize as a beta distribution, B(α, β), with parameters
α = aB and β = a(1−B).

Now O log(1 + eφ) = eφ

1+eφ
= θ and so, from Theorem 15, given a sample of n

Bernoulli trials, we have

E[θ|x] =
aB + nx̄

a+ n
= w

α

α+ β
+ (1− w)x̄

where w = α+β
α+β+n.

We previously derived this formula by standard Bayesian analysis on page 95.



Mixtures of conjugate priors

Suppose that a simple conjugate prior distribution p(·) ∈ P does not well
represent our prior beliefs. An alternative is to consider a mixture of conjugate
prior distributions

k∑
i=1

wipi(θ)

where 0 < wi < 1 and
∑k
i=1wi = 1 and pi(·) ∈ P.

Note that Dalal and Hall (1983) demonstrate that any prior density for an
exponential family can be approximated arbitrarily closely by a mixture of
conjugate distributions.

It is easy to demonstrate that given a conjugate prior mixture distribution the
posterior distribution is also a mixture of conjugate densities.



Proof Using Bayes theorem, we have

p(θ|x) ∝ f(x|θ)
k∑
i=1

wipi(θ)

∝
k∑
i=1

wipi(θ)f(x|θ)

∝
k∑
i=1

wi

(∫
pi(θ)f(x|θ)dθ

)
pi(θ)f(x|θ)∫
pi(θ)f(x|θ)dθ

∝
k∑
i=1

wi

(∫
pi(θ)f(x|θ)dθ

)
pi(θ|x)

where pi(·|x) ∈ P because it is assumed that pi(·) is conjugate and therefore

p(θ|x) =
∑k
i=1w

?
i pi(θ|x) where w?i =

wi(
∫
pi(θ)f(x|θ)dθ)∑k

j=1wj(
∫
pj(θ)f(x|θ)dθ).



Example 19
In Example 11, suppose that we use a mixture prior distribution:

θ ∼ 0.25B(1, 1) + 0.75B(5, 5).

Then, the posterior distribution is given by

p(θ|x) ∝
(

0.25× 1 + 0.75× 1
B(5, 5)

θ5−1(1− θ)5−1

)
θ9(1− θ)3

∝ 0.25θ10−1(1− θ)4−1 + 0.75
1

B(5, 5)
θ14−1(1− θ)8−1

∝ B(10, 4)
1

B(10, 4)
θ10−1(1− θ)4−1 + 3

B(14, 8)
B(5, 5)

1
B(14, 8)

θ14−1(1− θ)8−1

= w?
1

B(10, 4)
θ10−1(1− θ)4−1 + (1− w?)

1
B(14, 8)

θ14−1(1− θ)8−1



where w? = B(10,4)
B(10,4)+3B(14,8)/B(5,5) = 0.2315.

Thus, the posterior distribution is a mixture of B(10, 4) and B(14, 8) densities
with weights 0.2315 and 0.7685 respectively.



Software for conjugate models

Some general software for undertaking conjugate Bayesian analysis has been
developed.

• First Bayes is a slightly dated but fairly complete package

• The book on Bayesian computation by Albert (2009) gives a number of R
routines for fitting conjugate and non conjugate models all contained in the
R LearnBayes package.

http://www.tonyohagan.co.uk/1b/
http://cran.r-project.org/web/packages/LearnBayes/index.html
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Application I: Bayesian inference for
Markovian queuing systems

A queue of children

We will study inference for the M/M/1 queueing system, as developed by
Armero and Bayarri (1994a).



The M/M/1 queueing system

The M(λ)/M(µ)/1 system is a queue with a single server and exponential
inter-arrival and service times with rates λ and µ respectively.

Under this model, clients arrive at the checkout according to a Markov process
with rate λ and if the server is empty, they start an exponential service time
process with rate µ. If the server is busy, the client joins the queue of customers
waiting to be served.



Stability and equilibrium distributions

In practical analysis, it is of particular importance to study the conditions under
which such a queueing system is stable, i.e. when the queue length does not
go off to infinity as more customers arrive. It can be shown that the system is
stable if the traffic intensity, defined by ρ = λ/µ is strictly less than 1.

In the case that the system is stable, it is interesting to consider the equilibrium
or stationary distribution of the queue size, client waiting times etc.

It can be shown that the equilibrium distribution of the number of clients in
the system, N is geometric;

P (N = n|ρ) = (1− ρ)ρn for N = 0, 1, 2, . . . with meanE[N |ρ] =
ρ

1− ρ
.

Also, the limiting distribution of the time, W , spent in the system by a
customer is exponential; W |λ, µ ∼ E(µ− λ), with mean E[W |λ, µ] = 1

µ−λ.

The distributions of other variables of interest such as the duration of a busy
period are also well known. See e.g. Gross and Harris (1985).



Experiment and inference

In real systems, the arrival and service rates will be unknown and we
must use inferential techniques to estimate these parameters and the system
characteristics. A first step is to find a reasonable way of collecting data.

The simplest experiment is that of observing nl inter-arrival times and ns
service times. In this case, the likelihood is

l(λ, µ|x,y) ∝ λnle−λtlµnse−µts

where tl and ts are the sums of inter-arrival and service times respectively.

If we use conjugate, independent gamma prior distributions,

λ ∼ G(αl, βl) µ ∼ G(αs, βs),

then the posterior distributions are also gamma distributions:

λ|x ∼ G(αl + nl, βl + tl) µ|y ∼ G(αs + ns, βs + ts).



Estimation of the traffic intensity

It is straightforward to estimate the mean of the traffic intensity ρ. We have

E[ρ|x,y] = E

[
λ

µ

∣∣∣∣x,y]
= E[λ|x]E

[
1
µ

∣∣∣∣y]
=

αl + nl
βl + tl

βs + ts
αs + ns − 1

We can also evaluate the distribution of ρ by recalling that if φ ∼ G
(
a
2,
b
2

)
,

then bφ ∼ χ2
a is chi-square distributed.



The probability that the system is stable

Thus, we have

2(βl + tl)λ|x ∼ χ2
2(αl+nl)

2(βs + ts)µ|y ∼ χ2
2(αs+ns)

and therefore, recalling that the ratio of two independent χ2 variables divided
by their degrees of freedom is an F distributed variable, we have

(βl + tl)(αs + ns)
(αl + nl)(βs + ts)

ρ|x,y ∼ F2(αl+nl)
2(αs+ns)

.

The posterior probability that the system is stable is

p = P (ρ < 1|x,y)

= P

(
F <

(βl + tl)(αs + ns)
(αl + nl)(βs + ts)

)
where F ∼ F2(αl+nl)

2(αs+ns)

which can be easily evaluated in e.g. Matlab or R.



Estimation of the queue size in equilibrium

If p is large, it is natural to suppose that the system is stable. In this case,
it is interesting to carry out prediction for the equilibrium distribution of the
number of clients in the system. We have

P (N = n|x,y, equilibrium) = P (N = n|x,y, ρ < 1)

=
∫ 1

0

(1− ρ)ρnp(ρ|x,y, ρ < 1) dρ

=
1
p

∫ 1

0

(1− ρ)ρnp(ρ|x,y) dρ

We will typically need numerical methods to evaluate this integral. One
possibility is to use simple numerical integration. Another technique is to use
Monte Carlo sampling.



Aside: Monte Carlo sampling

Suppose that we wish to estimate an integral

E[g(X)] =
∫
g(x)f(x) dx

where X is a random variable with density f(·). Then, if we draw a sample,
say x1, . . . , xM of size from f(·) then, under certain regularity conditions, as
M →∞, we have

ḡ =
1
M

M∑
i=1

g(xi) → E[g(X)].

In order to assess the precision of a Monte Carlo based estimator, a simple
technique is to calculate the confidence band ḡ ± 2sg/

√
M where s2g =

1
M

∑M
i=1 (g(xi)− ḡ)2 is the sample variance of g(·). The Monte Carlo sample

size can be increased until the size of the confidence band goes below a certain
preset precision ε.

We will discuss Monte Carlo methods in more detail in chapter 6.



Using Monte Carlo to estimate the system size distribution

We can set up a generic algorithm to generate a Monte Carlo sample.

1. Fix a large value M.

2. For i = 1, . . . ,M:

(a) Generate λi ∼ G(αl + nl, βl + nl) and µi ∼ G(αs + ns, βs + ns).
(b) Set ρi = λi/µi.
(c) If ρi > 1, go to a).

Given the Monte Carlo sampled data, we can then estimate the queue
size probabilities, P (N = n|x,y, equilibrium) ≈ 1

M

∑M
i=1(1 − ρi)ρni for n =

0, 1, 2, . . . and the waiting time distribution, P (W ≤ w|x,y, equilibrium) ≈
1− 1

M

∑M
i=1 e

−(µi−λi).



Estimating the mean of the equilibrium system size distribution

It is easier to evaluate the predictive moments of N . We have

E[N |x,y, equilibrium] = E[E[N |ρ]|x,y, ρ < 1]

= E

[
ρ

1− ρ

∣∣∣∣x,y, ρ < 1
]

=
1
p

∫ 1

0

ρ

1− ρ
p(ρ|x,y) dρ = ∞

and thus, these moments do not exist.

This is a general characteristic of inference in queueing systems with Markovian
inter-arrival or service processes. The same thing also happens with the
equilibrium waiting time or busy period distributions. See Armero and Bayarri
(1994a) or Wiper (1998).

The problem stems from the use of (independent) prior distributions for λ and
µ with p(λ = µ) > 0 and can be partially resolved by assuming a priori that
P (λ ≥ µ) = 0. See Armero and Bayarri (1994b) or Ruggeri et al (1996).



Example

Hall (1991) gives collected inter-arrival and service time data for 98 users
of an automatic teller machine in Berkeley, USA. We shall assume here that
inter-arrival and service times can be modeled as exponential variables.
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The sufficient statistics are na = ns = 98, ta = 119.71 and ts = 81.35 minutes
respectively. We will assume the improper prior distributions p(λ) ∝ 1

λ and
p(µ) ∝ 1

µ which we have seen earlier as limiting cases of the conjugate gamma

priors. Then λ|x ∼ G(98, 119.71) and µ|y ∼ G(98, 119.71).



The posterior distribution of the traffic intensity

The posterior expected value of ρ is E[ρ|x,y] ≈ 0.69 and the distribution
function F (ρ|x,y) is illustrated below.
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The posterior probability that the system is stable is 0.997.



The posterior distribution of N

We used a large Monte Carlo sample to estimate the posterior density of N .
There is only a very small probability that there are more than 15 clients in
the system.
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The posterior distribution of W

There is only a very small probability that a client spends over 5 minutes in
the system.
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Extensions

• Calculation of busy period and transient time distributions.

• Extension to other queueing systems:

� Markovian systems with various or unlimited numbers of servers, e.g.
Armero and Bayarri (1997).

� Networks of queues. Armero and Bayarri (1999).
� Non Markovian systems. See e.g. Wiper (1998), Auśın et al (2004).
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4. Gaussian models

Box Tiao

Objective

Introduce Bayesian inference for one and two sample problems with normally
distributed data, illustrating the differences and similarities between Bayesian
solutions and classical solutions.



Recommended reading

• Box, G.E. and Tiao, G.C. (1992). Bayesian inference in statistical
analysis, Chapter 2.

• Lee, P.M. (2004). Bayesian Statistics: An Introduction, Chapter 2.

• Wiper, M.P., Girón, F.J. and Pewsey, A. (2008). Objective Bayesian
inference for the half-normal and half-t distributions. Communications in
Statistics: Theory and Methods, 37, 3165–3185.

http://docubib.uc3m.es/WORKINGPAPERS/WS/ws054709.pdf



Introduction: one sample inference problems

Initially, we shall consider the problem of estimating the mean, µ, and/or
variance, σ2, of a single normal population, X|µ, σ2 ∼ N

(
µ, σ2

)
, with density

f
(
x|µ, σ2

)
=

1
σ
√

2π
exp

(
− 1

2σ2
(x− µ)2

)
from a Bayesian perspective.

We shall consider three different scenarios:

a) inference for µ when σ2 is known,

b) inference for σ2 when µ is known,

c) joint inference for µ, σ2.

and will assume throughout that we observe a sample, x, of size n.



Inference for µ when σ is known

In order to develop a conjugate prior, we must first represent the normal
distribution in exponential family form. We have:

f(x|µ) = exp
(
− µ2

2σ2

)
︸ ︷︷ ︸

C(µ)

1
σ
√

2π
exp

(
− x2

2σ2

)
︸ ︷︷ ︸

h(x)

exp

 µ

σ2︸︷︷︸
φ(µ)

x︸︷︷︸
s(x)


which is a one-parameter exponential family representation as in Definition 3.



A conjugate prior distribution

Given this exponential family representation, from Theorem 9, we can derive
the form of a conjugate prior distribution as

p(µ) ∝ C(µ)a exp(φ(µ)b)

∝ exp
(
− µ2

2σ2

)a
exp

( µ
σ2
b
)

∝ exp
(
− 1

2σ2

[
aµ2 − 2bµ

])
∝ exp

(
− a

2σ2

[
µ− b

a

]2)

which is also a normal distribution, µ ∼ N
(
m, τ2

)
, where m = b

a and τ2 = σ2

a .



The predictive and posterior distributions

Theorem 16
Let X|µ ∼ N

(
µ, σ2

)
with prior distribution µ ∼ N

(
m, τ2

)
. Then the

predictive distribution of X is

X ∼ N
(
m,σ2 + τ2

)
.

Given a sample x = (x1, . . . , xn), the posterior distribution is µ|x ∼
N
(
m?, τ?2

)
where

m? =
1
τ2m+ n

σ2x̄
1
τ2 + n

σ2

τ?2 =
(

1
τ2

+
n

σ2

)−1

.



Derivation of the predictive distribution

Proof We can write X = µ+ ε where µ ∼ N
(
m, τ2

)
and ε ∼ N

(
0, σ2

)
are

independent. Thus, the marginal distribution of X is

X ∼ N
(
m+ 0, σ2 + τ2

)
and the result follows.

We can derive the posterior distribution either directly via Bayes theorem, or
alternatively via Theorem 9. In order to apply Bayes theorem, it is first useful
to give a general expression for the normal likelihood function.



The normal likelihood function

Theorem 17
If a sample, x, of size n is taken from the normal distribution X|µ, σ2 ∼
N
(
µ, σ2

)
, then the likelihood function is

l(µ, σ|x) = (2π)−
n
2σ−n exp

(
− 1

2σ2

[
(n− 1)s2 + n(µ− x̄)2

])

where s2 = 1
n−1

∑n
i=1(xi − x̄)2.



Proof

l(µ, σ|x) =
n∏
i=1

1
σ
√

2π
exp

(
− 1

2σ2
(xi − µ)2

)

= (2π)−
n
2σ−n exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2
)

= (2π)−
n
2σ−n exp

(
− 1

2σ2

n∑
i=1

(xi − x̄+ x̄− µ)2
)

= (2π)−
n
2σ−n exp

(
− 1

2σ2

[
n∑
i=1

(xi − x̄)2 + n(µ− x̄)2
])

and the result follows.

Now the posterior distribution can be derived from Bayes theorem in the usual
way.



Derivation of the posterior distribution via Bayes Theorem

Proof

p(µ|x) ∝ p(µ)l(µ|x)

∝ exp
(
− 1

2τ2
(µ−m)2

)
σ−n

(
− 1

2σ2

[
(n− 1)s2 + n(µ− x̄)2

])
∝ exp

(
−1

2

[(
µ−m

τ

)2

+ n

(
µ− x̄

σ

)2
])

∝ exp
(
−1

2

[(
1
τ2

+
n

σ2

)
µ2 − 2

(m
τ2

+
nx̄

σ2

)
µ

])

∝ exp

−1
2

(
1
τ2

+
n

σ2

)[
µ−

m
τ2 + n

σ2x̄
1
τ2 + n

σ2

]2


which is a normal density; µ|x ∼ N
(

m
τ2

+ n
σ2 x̄

1
τ2

+ n
σ2
,
(

1
τ2 + n

σ2

)−1
)

.



Derivation via Theorem 9

Proof In deriving the prior distribution, we found that m = b/a and τ2 = σ2/a
where f(µ) ∝ C(µ)a exp(φ(µ)b) is the conjugate representation of the prior in
Theorem 9. Therefore, a = σ2/τ2 and b = mσ2/τ2. Also, we have s(x) = x
in our exponential family representation, which implies that, a posteriori,

a? = a+ n =
σ2

τ2
+ n = σ2

(
1
τ2

+
n

σ2

)
b? = b+

n∑
i=1

s(xi) = m
σ2

τ2
+ nx̄ = σ2

(
1
τ2
m+

n

σ2
x̄

)
,

so that the posterior distribution is given by µ|x ∼ N
(
m?, τ?2

)
where

m? =
b?

a?
=

m
τ2 + n

σ2x̄
1
τ2 + n

σ2

, τ?2 =
σ2

a?
=
(

1
τ2

+
n

σ2

)−1

.



How to remember the updating formulae

There is a simple way of remembering the normal updating formulae. Note
firstly that the maximum likelihood estimator for µ is

X̄ ∼ N
(
µ,
σ2

n

)
.

Now, the posterior precision is given by 1
τ?2

= 1
τ2 + n

σ2 where 1
τ2 is the prior

precision and n
σ2 is the precision of the estimator X̄ so,

posterior precision = prior precision + precision of MLE.

Also, the posterior mean is simply a weighted average, m? = wm+ (1−w)x̄,
where w = 1/τ2

1
τ2

+ n
σ2

is proportional to the prior precision.

posterior mean = prior precision × prior mean + precision of MLE × MLE
prior precision + precision of MLE .



Interpretation

Write τ2 = σ2/α so that the prior distribution is µ ∼ N
(
m, σ

2

α

)
and the

posterior distribution is

µ|x ∼ N
(
αm+ nx̄

α+ n
,
σ2

α+ n

)
.

Thus we can interpret the information in the prior as being equivalent to the

information in a sample of size α = σ2

τ2 with sample mean m.



Limiting results and comparison with classical results

Suppose that we let α → 0 (or equivalently, τ2 → ∞). Then the posterior
distribution tends to

µ|x ∼ N
(
x̄,
σ2

n

)
and the posterior mean is equal to the MLE and, for example, a posterior 95%
credible interval

µ± 1.96
σ√
n

is (numerically) equal to the classical 95% confidence interval.

The limiting (improper) prior distribution in this case is uniform,

p(µ) ∝ 1.



Inference for σ when µ is known

In order to find a conjugate density for σ (or σ2), we can again represent the
normal density in one-dimensional exponential family form as

f(x|σ) =
1
σ︸︷︷︸

C(σ)

1√
2π︸︷︷︸

h(x)

exp

− 1
2σ2︸ ︷︷ ︸
φ(σ)

(x− µ)2︸ ︷︷ ︸
s(x)

 .

This implies that a conjugate prior for σ takes the form

p(σ) ∝ σ−c exp
(
− d

2σ2

)
for some values of c, d. This is not a well known distributional form, although
we can derive a simple prior distribution using a transformation.



A conjugate prior for the precision φ

It is much easier to work in terms of the precision φ = 1
σ2. In this case, we

have X|φ ∼ N
(
µ, 1

φ

)
and

f(x|φ) =

√
φ

2π
exp

(
−φ

2
(x− µ)2

)
which is already in exponential family form and implies that a conjugate prior
density for φ is

p(φ) ∝
(√

φ
)c

exp
(
−φ

2
d

)
for some c, d, which is a gamma density, φ ∼ G

(
a
2,
b
2

)
, where a = c + 2 and

b = d.

Note that using the change of variables formula on the prior for σ, we could
also show that the implied prior for φ has the same structure.



Inference for φ when µ is known

Theorem 18
Let X|φ ∼ N

(
µ, 1

φ

)
and suppose that φ ∼ G

(
a
2,
b
2

)
for some a, b. Then, the

marginal distribution of X is

X − µ√
b/a

∼ Ta

and given a sample x = (x1, . . . , xn), the posterior distribution of φ is

φ|x ∼ G
(
a+ n

2
,
b+ (n− 1)s2 + n(µ− x̄)2

2

)
.



Proof of the predictive distribution

Proof Define Z =
√
φ(X − µ) ∼ N (0, 1) and Y = bφ ∼ χ2

a and therefore,
from standard distribution theory we know that Z√

Y/a
∼ Ta, is a Student’s t

distributed random variable with a degrees of freedom and transforming back,
we have

Z√
Y/a

=
X − µ√
b/a

which proves the predictive distribution formula.

In order to demonstrate the formula for the posterior distribution, it is first
convenient to give the formula for the reparameterized normal likelihood
function.



The reparameterized normal likelihood function

Theorem 19
If a sample, x, of size n is taken from the normal distribution X| ∼ N

(
µ, 1

φ

)
,

then the likelihood function is

l(µ, φ|x) = (2π)−
n
2φ

n
2 exp

(
−φ

2
[
(n− 1)s2 + n(µ− x̄)2

])

where s2 = 1
n−1

∑n
i=1(xi − x̄)2.

Proof This follows immediately by substituting φ = 1/σ2 in Theorem 17.

Given this form for the normal likelihood function, the posterior distribution in
Theorem 18 can be derived immediately from Bayes Theorem by combining
prior and likelihood.



Interpretation

In this case, we can interpret the information in the prior as equivalent
to the information in a sample y of size a where the sufficient statistic∑n
i=1(yi − µ)2 = b.

Limiting results

Letting a, b→ 0, we have the limiting improper prior f(φ) ∝ 1
φ and the limiting

posterior distribution

φ|x ∼ G
(
n

2
,

∑n
i=1(xi − µ)2

2

)
so that E[φ|x] =

(
1
n

n∑
i=1

(xi − µ)2
)−1

which is the classical MLE of φ. Note however that

E

[
1
φ

∣∣∣∣x] = E
[
σ2|x

]
=
∑n
i=1(xi − µ)2

n− 2

which is not the MLE of σ2.



Interval estimation for σ (or σ2)

Theorem 20
Let φ ∼ G

(
a
2,
b
2

)
and define σ = 1/

√
φ. Then the constant, c, such that

p = P (σ < c) = P (σ2 < c2), for given p, is c =
√

b
χ2
a(1−p)

.

Proof

p = P (σ < c) = P
(
σ2 < c2

)
= P

(
φ >

1
c2

)
= P

(
bφ >

b

c2

)
= P

(
Y >

b

c2

)
where Y ∼ χ2

a

b

c2
= χ2

a(1− p)

c =

√
b

χ2
a(1− p)

.



Limiting case posterior interval estimation of σ and σ2

Theorem 21
Let X|φ ∼ N (µ, 1/φ) with (improper) prior distribution f(φ) ∝ 1/φ. Then

φ|x ∼ G
(
n

2
,

∑n
i=1(xi − µ)2

2

)
.

Moreover, let σ = 1/
√
φ. Then a 100(1− p)% credible interval for σ is√∑n
i=1(xi − µ)2

χ2
n

(
1− p

2

) < σ <

√∑n
i=1(xi − µ)2

χ2
n

(
p
2

)
and a 100(1− p)% credible interval for σ2 is∑n

i=1(xi − µ)2

χ2
n

(
1− p

2

) < σ2 <

∑n
i=1(xi − µ)2

χ2
n

(
p
2

) ,

which are equal to the classical 100(1− p)% confidence intervals for σ and σ2.



Proof We have already given the posterior density for φ and the credible
intervals follow immediately from Theorem 20 by setting a = n and b =∑n
i=1(xi − µ)2.



Joint inference for µ and φ

When both parameters are unknown, it is again convenient to model in terms
of the precision, φ, instead of the variance. Representing the normal density in
exponential family form, we have

f(x|µ, φ) =
√
φ exp

(
−φµ

2

2

)
︸ ︷︷ ︸

C(µ,φ)

1√
2π︸︷︷︸

h(x)

exp

 φµ︸︷︷︸
φ1(µ,φ)

x︸︷︷︸
s1(x)

−φ
2︸︷︷︸

φ2(µ,φ)

x2︸︷︷︸
s2(x)


so that a conjugate prior for µ, φ can be found as

p(µ, φ) ∝
(√

φ exp
(
−φµ

2

2

))a
exp

(
b1φµ− b2

φ

2

)
for some a, b1, b2

∝ φ
a
2 exp

(
−φ

2
[
aµ2 − 2b1µ+ b2

])
∝ φ

a
2 exp

(
−φ

2
[
d+ a(µ− c)2

])
where c = b1/a and d = b2 − b21/a. This is a normal-gamma distribution.



The normal-gamma distribution

Definition 7
Let Y = (Y1, Y2) and suppose that Y1|Y2 ∼ N

(
θ, 1
λY2

)
and Y2 ∼ G(δ, κ).

Then the distribution of Y is called a normal-gamma distribution, Y ∼
NG(θ, λ, δ, κ). The normal-gamma density function is

f(y) =
κδ

Γ(δ)

√
λ

2π
y

2δ−1
2

2 exp
(
−y2

2
[
2κ+ λ(y1 − θ)2

])
for −∞ < y1 <∞, y2 > 0.

The following theorem gives the properties of the marginal distribution of Y1.

Theorem 22
If Y = (Y1, Y2) ∼ NG(θ, λ, δ, κ), then Y1−θ√

κ/(λδ)
∼ T2δ. Furthermore, E[Y1] = θ

if δ > 1
2 and V [Y1] = κ

λ(δ−1) if δ > 1.



Proof

f(y1) =
∫
f(y1, y2) dy2

=
κδ

Γ(δ)

√
λ

2π

∫ ∞

0

y
2δ−1

2
2 exp

(
−y2

2
[
2κ+ λ(y1 − θ)2

])
dy2

∝
∫ ∞

0

y
2δ+1

2 −1
2 exp

(
−y2

2
[
2κ+ λ(y1 − θ)2

])
dy2

∝
(
2κ+ λ(y1 − θ)2

)2δ+1
2 ∝

1 +
1
2δ

(
y1 − θ√
κ/(λδ)

)2


2δ+1
2

and defining T = Y1−θ√
κ/(λδ)

, we see that f(t) ∝
(
1 + 1

2δt
2
)2δ+1

2 which is the

nucleus of a Student’s t density with 2δ degrees of freedom. The mean and
variance formulae follow from writing Y1 = θ +

√
κ/(λδ)T and noting that

E[T ] = 0 for 2δ > 1 and V [T ] = 2δ
2δ−2 = δ

δ−1 for 2δ > 2.



Conjugate inference for µ, φ given a normal-gamma prior

Theorem 23
Let X|µ, φ ∼ N

(
µ, 1

φ

)
and µ, φ ∼ NG

(
m,α, a2,

b
2

)
so that µ|φ ∼ N

(
m, 1

αφ

)
and φ ∼ G

(
a
2,
b
2

)
. Then the marginal distribution of X is

X −m√
(α+ 1)b/(αa)

∼ Ta.

Given a sample, x, the posterior distribution of µ, φ is

µ, φ ∼ NG
(
m?, α?,

a?

2
,
b?

2

)
where

m? =
αm+ nx̄

α+ n
α? = α+ n

a? = a+ n

b? = b+ (n− 1)s2 +
αn

α+ n
(m− x̄)2.



Proof Note first that

X|φ ∼ N
(
m,

(
1 +

1
α

)
1
φ

)
.

Therefore, X and φ have a normal gamma distribution.

X,φ ∼ NG

(
m,

(
1 +

1
α

)−1

, a/2, b/2

)

and the marginal distribution of X follows immediately from Theorem 22

setting (θ, λ, δ, κ) =
(
m,
(
1 + 1

α

)−1
, a/2, b/2

)
. In order to calculate the

posterior distribution, we can use Bayes theorem:



p(µ, φ|x) ∝ p(µ, φ)l(µ, φ|x)

∝ φ
a−1
2 exp

(
−φ

2
[
b+ α(µ−m)2

])
φ
n
2 exp

(
−φ

2
[
(n− 1)s2 + n(µ− x̄)2

])
∝ φ

a+n−1
2 exp

(
−φ

2
[
b+ (n− 1)s2 + (α+ n)µ2 − 2(αm+ nx̄)µ+ αm2 + nx̄2

])
∝ φ

a+n−1
2 exp

(
−φ

2

[
b+ (n− 1)s2 + (α+ n)

(
µ− αm+ nx̄

α+ n

)2

+ αm2 + nx̄2−

−(αm+ nx̄)2

α+ n

])
∝ φ

a+n−1
2 exp

(
−φ

2

[
b+ (n− 1)s2 +

αn

α+ n
(m− x̄)2+

(α+ n)
(
µ− αm+ nx̄

α+ n

)2
])

which is the nucleus of the given normal-gamma density.



Results with the limiting prior

Suppose that we use the improper prior p(µ, φ) ∝ 1
φ. Then,

p(µ, φ|x) ∝ 1
φ
φ
n
2 exp

(
−φ

2
[
(n− 1)s2 + n(µ− x̄)2

])
∝ φ

(n−1)−1
2 exp

(
−φ

2
[
(n− 1)s2 + n(µ− x̄)2

])
so that

µ, φ|x ∼ NG
(
x̄, n,

n− 1
2

,
(n− 1)s2

2

)



Now, from Theorem 22, we have that

µ− x̄√
(n− 1)s2/(n(n− 1))

=
µ− x̄

s/
√
n
∼ Tn−1.

Therefore, for example, a 100(1-p)% posterior credible interval for µ is

x̄± s√
n
Tn−1

(
1− p

2

)
which is equal to the classical confidence interval.



Semi-conjugate inference via Gibbs sampling

The fully conjugate, normal-gamma prior distribution is slightly unnatural from
the point of view of real prior choice, in that the distribution of µ depends
on the unknown model precision φ. An alternative is to assume that µ and φ
have independent prior distributions, say

µ ∼ N
(
m,

1
ψ

)
φ ∼ G

(
a

2
,
b

2

)
where m,ψ, a, b are all known.

In this case, the joint posterior distribution given a sample, x, is

p(µ, φ|x) ∝ φ
a+n

2 −1 exp
(
−1

2
[(
b+ (n− 1)s2

)
φ+ nφ(µ− x̄)2 + ψ(µ−m)2

])
.



The marginal distributions of µ and φ are

p(µ|x) ∝ exp
(
−ψ

2
(µ−m)2

)(
b+ (n− 1)s2 + n(µ− x̄)2

)−a+n2

p(φ|x) ∝ φ
a+n

2 −1

√
nφ+ ψ

exp
(
−φ

2

[
b+ (n− 1)s2 +

nψ

nφ+ ψ
(m− x̄)2

])
.

Neither the joint posterior density or the marginal posterior densities has a
standard form. One possible solution is to use numerical integration techniques
to estimate the integration constants, moments etc. of these densities.

Another possibility is to use a Monte Carlo approach. In this case, direct
Monte Carlo sampling cannot easily be applied. However, an indirect approach
is available.



Note firstly that the conditional posterior densities of µ|φ,x and of φ|µ,x are
available in closed form. We have

µ|φ,x ∼ N
(
nφx̄+ ψm

nφ+ ψ
,

1
nφ+ ψ

)
φ|µ,x ∼ G

(
a+ n

2
,
b+ (n− 1)s2 + n(µ− x̄)2

2

)
It is straightforward to sample from these distributions. Therefore, we can set
up a Gibbs sampler to give an approximate Monte Carlo sample from the joint
posterior distribution.



Aside: The (two variable) Gibbs sampler

Assume that we wish to sample from the density of X = (X1, X2). Suppose
that the conditional densities, p(·|X2) and p(·|X1) are known. Then the (two
variable) Gibbs sampler (Geman and Geman 1984) is a scheme for iteratively
sampling these conditional densities as follows.

1. t = 0. Fix an initial value x
(0)
1 .

2. Sample x
(t)
2 ∼ p

(
x2|x(t−1)

1

)
.

3. Sample x
(t)
1 ∼ p

(
x1|x(t)

2

)
.

4. Set t = t+ 1.

5. Go to 2.



As t increases, it can be demonstrated that the sampled values approximate a
Monte Carlo sample from the joint density, p(X) and can be used in the same
way as any other Monte Carlo sample.

The Gibbs sampler is an example of a Markov chain Monte Carlo (MCMC)
algorithm and will be discussed in full in chapter 6.



Applying the Gibbs sampler to sampling p(µ, φ|x)

In our case, we can implement the Gibbs sampler as follows.

1. t = 0. Fix an initial value µ(0).

2. Generate φ(t) ∼ G

(
a+n

2 .
b+(n−1)s2+n

(
µ(t−1)−x̄

)2

2

)
.

3. Generate µ(t) ∼ N
(
nφ(t)x̄+ψm

nφ(t)+ψ
, 1
nφ(t)+ψ

)
4. Set t = t+ 1.

5. Go to 2.

In order to estimate the marginal density of µ, for example, we can recall that
p(µ|x) =

∫
p(µ|φ,x)p(φ|x) ≈ 1

T

∑T
t=1 p

(
µ|φ(t),x

)
.



Normal body temperature example

Example 20
The normal core body temperature, T , of a healthy adult is supposed to be
98.6 degrees fahrenheit or 37 degrees celsius on average. As temperature can
very around the mean, depending on given conditions, a normal model for
temperatures, say T |µ, φ ∼ N (µ, 1/φ), has been proposed.

Mackowiak et al (1992) measured the core body temperatures of 130 individuals
and a histogram of the results is given below.
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The sample mean temperature is x̄ = 98.2492 fahrenheit with sample standard
deviation s = 0.7332. Thus, a classical 95% confidence interval for the true
mean temperature is

98.2492± 1.96× 0.7332/
√

130 = (98.1232, 98.3752)

and the hypothesis that the true temperature is 98.6 degrees is clearly rejected.

From a Bayesian viewpoint, we will analyze using two different prior
distributions. Firstly, we assume the limiting prior p(µ, φ) ∝ 1

φ and
secondly, we assume independent priors with relatively large variances, that is
µ ∼ N (98.6, 1) and φ ∼ G

(
1
2,

1
2

)
.

Given the limiting prior, we know that the posterior density of µ is µ−98.2492

0.7332/
√

130
∼

T129 and a 95% posterior credible interval for µ coincides with the classical
confidence interval.

Given the independent priors, the Gibbs sampler was run for 10000 iterations,
starting at µ(0) = 98.2492. The following diagram shows a plot of the
estimated posterior mean of µ versus the number of iterations.
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The estimated mean appears to have converged after 2000 iterations or less.
The estimated posterior mean of µ was E[µ|x] ≈ 98.2512.



The following diagram shows the posterior densities of µ given the limit and
independent priors.
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It can be seen that the posterior probability that µ is bigger than 98.6 fahrenheit
is virtually zero.



The final diagram shows the predictive density of T given the observed data
and the independent prior distributions.
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The fit of the normal distribution is reasonable although it might be improved
by incorporating other covariates, e.g. sex or heart rate.



A simple MATLAB code for executing the Gibbs sampler is as below.

n=length(temp); xbar=mean(temp); s=std(temp); % Summary statistics.
a=1; b=1; m=98.6; psi=1; % Priors for phi and mu.
iters=10000;mu=zeros(1,iters);phi=zeros(1,iters); % Sample
murange=98+[0:1000]/1000;pmu=zeros(1,length(murange));pmuuninf=pmu % initialization
xrange=min(temp)+[0:1000]*(max(temp)-min(temp))/1000; fx=zeros(1,length(xrange));

% Start of Gibbs sampler
mu(1)=xbar; phi(1)=gamrnd((a+n)/2,2/(b+(n-1)*s*s+n*((mu(1)-xbar)^2)));
for t=2:iters

mu(t)=normrnd((psi*m+n*phi(t-1)*xbar)/(psi+n*phi(t-1)),1/sqrt(psi+n*phi(t-1)));
phi(t)=gamrnd((a+n)/2,2/(b+(n-1)*s*s+n*((mu(t)-xbar)^2)));
pmu=pmu+normpdf(murange,(psi*m+n*phi(t)*xbar)/(psi+n*phi(t)),1/sqrt(psi+n*phi(t)));
fx=fx+normpdf(xrange,mu(t),1/sqrt(phi(t)));

end
pmu=pmu/iters; fx=fx/iters; %Normalization.

pmuuninf=normpdf(murange,xbar,s/sqrt(n)); %Posterior density given 1/phi prior.
% Plots
figure; plot([1:iters],cumsum(mu)./[1:iters]); figure;
plot(murange,pmuuninf); hold on; plot(murange,pmu,’-.r’); hold off;
figure; histadjusted(temp,10); hold on; plot(xrange,fx); hold off;



Two sample problems

Various two sample problems have been studied.

1. Paired data samples: difference in means.

2. Unpaired samples:

(a) Difference of two population means: variances known,
(b) Difference of two population means: variances unknown but equal,
(c) Difference of two population means: unknown variances,
(d) Ratio of two population variances.

We shall consider Bayesian inference for each situation in turn.



Paired data

As in classical inference, by considering the differences of each pair, this reduces
to a single normal sample inference problem.

Unpaired data: known variances

Assume that we have X|µX ∼ N
(
µX, σ

2
X

)
and Y ∼ N

(
µY , σ

2
Y

)
where σ2

X

and σ2
Y are known. Suppose also that we use independent, uniform priors for

µX and µY . Then, given samples x and y of sizes nX and nY respectively,
we know that the posterior distributions are independent normal

µX|x ∼ N
(
x̄,
σ2
X

nX

)
µY |y ∼ N

(
ȳ,
σ2
Y

nY

)
.

Therefore, if we define δ = µX−µY to be the difference in the two population
means, then the posterior distribution of δ is

δ|x,y ∼ N
(
x̄− ȳ,

σ2
X

nX
+
σ2
Y

nY

)
.



In this case, a 95% credible interval for δ is

x̄− ȳ ± 1.96

√
σ2
X

nX
+
σ2
Y

nY

which is equal to the corresponding classical confidence interval.

It is, of course, straightforward to generalize this result to the case when proper
priors for µX and µY are used.



Unpaired data: unknown, equal variances

Suppose now that X|µX, φ ∼ N
(
µX,

1
φ

)
and Y |µY , φ ∼ N

(
µY ,

1
φ

)
have

common, unknown precision φ and that we observe samples x and y of sizes
nX and nY respectively. Consider the joint prior distribution

p(µX, µY , φ) ∝ 1
φ
.

Then, the joint posterior distribution is

p(µX, µY , φ|x,y) ∝ φ
nX+nY

2 −1 exp
(
−φ

2
[
(nX − 1)s2X + (nY − 1)s2Y+

nX(µX − x̄)2 + nY (µY − ȳ)2
])

.

Given this joint distribution, we can see that

µX|φ,x,y ∼ N
(
x̄,

1
nXφ

)
µY |φ,x,y ∼ N

(
ȳ,

1
nY φ

)
.



Integrating out µX and µY successively from the joint distribution, we have

φ|x ∼ G
(
nX + nY − 2

2
,
(nX − 1)s2X + (nY − 1)s2Y

2

)
.

Also, from the previous slide, if δ = µX − µY , then

δ|φ,x,y ∼ N
(
x̄− ȳ,

1
φ

(
1
nX

+
1
nY

))
.

Thus, the joint posterior distribution of δ and φ is normal-gamma

δ, φ|x,y ∼ NG

(
x̄− ȳ,

(
1
nX

+
1
nY

)−1

,
nX + nY − 2

2
,
(nX − 1)s2X + (nY − 1)s2Y

2

)
.



Therefore, the marginal posterior distribution of δ is Student’s t:

δ − (x̄− ȳ)√
(nX−1)s2

X
+(nY−1)s2

Y(
1
nX

+ 1
nY

)−1
(nX+ny−2)

=
δ − (x̄− ȳ)√(

1
nX

+ 1
nY

)
(nX−1)s2

X
+(nY−1)s2

Y
nX+ny−2

∼ TnX+nY−2.

Now, a 95% credible interval for δ is given by

x̄− ȳ ± TnX+ny−2(0.975)

√(
1
nX

+
1
nY

)
sc

where s2c is the (classical) combined variance estimator

s2c =
(nX − 1)s2X + (nY − 1)s2Y

nX + ny − 2
.

This is equal to the usual, classical confidence interval.



The Behrens-Fisher problem

Now assume that X|µX, φX ∼ N
(
µX,

1
φX

)
and Y |µY , φY ∼ N

(
µY ,

1
φY

)
where all parameters are unknown. Given the (improper) prior distributions

p(µX, φX) ∝ 1
φX

and p(µY , φY ) ∝ 1
φY

then we know that the marginal posterior distributions of µX and µY are
independent, shifted, scaled t distributions:

µX − x̄

sX/
√
nX

∼ TnX−1
µY − ȳ

sY /
√
nY

∼ TnY−1.

Thus, if δ = µX − µY , we have

δ = TnX−1
sX√
nX

− TnY−1
sY√
nY

− (x̄− ȳ)

where Td represents a t distributed variable with d degrees of freedom.



We could try to derive the density formula of δ directly from this expression.
However, it is more straightforward to work in terms of a transformed variable.

Theorem 24
Let δ′ = δ−(x̄−ȳ)√

s2
X
/nX+s2

Y
/nY

. Then we can write

δ′ = TnX−1 sinω − TnY−1 cosω

where ω = tan−1 sX/
√
nX

sY /
√
nY

.

Proof From the previous page, we have

δ = TnX−1
sX√
nX

− TnY−1
sY√
nY

− (x̄− ȳ)

δ − (x̄− ȳ)√
s2X/nX + s2Y /nY

=
TnX−1

sX√
nX√

s2X/nX + s2Y /nY
−

TnY−1
sY√
nY√

s2X/nX + s2Y /nY

and the result follows by observing that the squares of the coefficients on the
right hand side sum to 1.



The Behrens-Fisher distribution

Definition 8
The distribution of

Y = Tν1 sinω − Tν2 cosω

where Tν1 and Tν2 are standard Student’s t variables with ν1 and ν2 degrees of
freedom, is the Behrens-Fisher distribution, (Behrens 1929) with parameters
ν1, ν2 and ω. In this case, we write Y ∼ BF(ν1, ν2, ω).

Thus, from Theorem 24, we have

δ′|x,y ∼ BF
(
nX − 1, nY − 1 tan−1 sX/

√
nX

sY /
√
nY

)
.

Note that this Bayesian solution to the Behrens-Fisher problem corresponds to
the fiducial solution and was first developed in this context by Fisher (1935).



Patil’s approximation and other appoximate methods

Tables of the percentage points of the Behrens-Fisher distribution are available
for given values of ω, see e.g. Kim and Cohen (1996). For other values, Patil’s
(1965) approximation may be applied.

If Y ∼ BF(ν1, ν2, ω) then we have Y/a ≈ Tb where

b = 4 +
(
ν1 cos2 ω
ν1 − 2

+
ν2 sin2 ω

ν2 − 2

)2 [
ν2
1 cos4 ω

(ν1 − 2)2(ν1 − 4)
+

ν2
2 sin4 ω

(ν2 − 2)2(ν2 − 4)

]−1

a =
b

b− 2

[
ν1 cos2 ω
ν1 − 2

+
ν2 sin2 ω

ν2 − 2

]−1

Alternative approximation methods are given by Ghosh (1975) or Willink
(2004).



A Monte Carlo approach

Another approach is to use Monte Carlo sampling to approximate a Behrens
Fisher distribution as follows. Suppose that Y ∼ BF(ν1, ν2, ω). Then we can
generate a sample from the Behrens Fisher distribution as follows:

1. Fix some large M.

2. For i = 1, . . . ,M

(a) Generate t
(i)
1 ∼ Tν1 and t

(i)
2 ∼ Tν2.

(b) Define y(i) = t
(i)
1 cosω − t

(i)
2 sinω.

Then, approximate 95% credible intervals for Y could be estimated using the
sample quantiles. If M is increased sufficiently, the accuracy of these estimates
can be derived to any fixed precision.



The frequentist approach to the Behrens-Fisher problem

No equivalent solution exists in frequentist inference because in this case, the
sampling distribution of δ′ depends upon the ratio, φX/φY , of the unknown
precisions.

The usual frequentist approximation to this sampling distribution is:

δ′ ≈ Tr where r =
(s2X/nX + s2Y /nY )2(
s4
X
/n2

X
nX−1 + s4

Y
/n2

Y
nY−1

)

However, we cannot know how good this approximation is for any given sample.



Another look at the normal body temperature example

Example 21
The sample contained 122 males and 22 females. The following two histograms
illustrate the temperature distributions for both groups.
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We may wish to question whether or not the mean body temperatures are the
same in both groups.



The means (and standard deviations) for males and females are 98.1046
(0.6988) and 98.3938 (0.7435) respectively.

In this case, an approximate classical 95% confidence interval for the mean
difference δ is given by (−0.5396,−0.0388) and there is strong evidence that
the mean body temperature is higher in females than in males.

Using a Bayesian approach with improper priors as outlined earlier, a 95%
posterior credible interval for δ is given by (−0.5359,−0.0426) which is slightly
narrower than the classical interval.



Also, the fitted predictive posterior densities for both groups are given in the
following diagram. The normal fits appear to have improved somewhat.
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Comparing two population variances

Suppose as earlier that X|µX, φX ∼ N
(
µX,

1
φX

)
and Y |µY , φY ∼

N
(
µY ,

1
φY

)
with the usual improper priors;

p(µX, φX) ∝ 1
φX

p(µY , φY ) ∝ 1
φY

.

Then, from earlier, given samples of sizes nX and nY , we know that

φX|x ∼ G
(
nX − 1

2
,
(nX − 1)s2X

2

)
φY |y ∼ G

(
nY − 1

2
,
(nY − 1)s2Y

2

)
and therefore,

(nX − 1)s2XφX ∼ χ2
nX−1 (nY − 1)s2Y φY ∼ χ2

nY−1.



Recalling that the ratio of two chi-squared distributions divided by their degrees
of freedom is F distributed, we thus have

s2X
s2Y

φX
φY

∼ FnX−1
nY−1

and Bayesian and classical credible intervals will coincide.



Application II: Bayesian inference for the
half-normal distribution

We will follow the analysis of Wiper et al (2008).

The half-normal distribution

If Z ∼ N (0, 1) then X = |Z| has a half-normal distribution, X ∼ HN (0, 1),
with probability density function

f(x) = 2φ(x) for x > 0, where

φ(x) =
1√
2π

exp
{
−x

2

2

}
is the standard normal pdf.



The generalized half-normal distribution

In this case, we allow the location and scale parameters to vary. Thus, let
X = ξ + η|Z| where Z is a standard normal random variable as earlier. Then
we say that X has a generalized half-normal distribution, X|ξ, η ∼ HN (ξ, η),
with density

f(x|ξ, η) =
2
η
φ

(
x− ξ

η

)
for x > ξ.



Applications

The half-normal distribution is a model for truncated data with applications in
various areas:

• measuring body fat indices in athletes (Pewsey 2002, 2004).

• stochastic frontier modeling (Aigner et al 1977, Meeusen and van den
Broeck, 1977).

• fluctuating asymmetry modeling (Palmer and Strobeck 1986).

• fibre buckling (Haberle 1991).

• blowfly dispersion (Dobzhansky and Wright 1947).



Classical inference for the half-normal distribution

Suppose we have a sample x = (x1, . . . , xn) from HN (ξ, η) and that we wish
to estimate ξ (and η). Now from Pewsey (2002,2004):

• The MLE for ξ is ξ̂ = x(1), the minimum of the data.

• Uncorrected and bias corrected estimators for η are

η̂ =

√√√√1
n

n∑
i=1

(xi − x(1))2 η̂BC =
√

n

n− 1
η̂

• An (asymptotic) 95% confidence interval for ξ:

x(1) + log(α)η̂Φ−1

(
1
2

+
1
2n

)
< ξ < x(1).



Bayesian inference for the half-normal distribution

Inference is similar to the usual normal case. First we reparameterize by
defining τ = 1

η2 so that

f(x|ξ, τ) = 2
√
τφ
(√
τ(x− ξ)

)
.

Now we can define a generalized version of the normal-gamma prior distribution,
that is the right-truncated normal-gamma distribution.



The right-truncated normal-gamma distribution

We say that, ξ, τ have a RTNG with parameters ξ0,m, α, a, b,

ξ, τ ∼ RT NG
(
ξ0,m, α,

a

2
,
b

2

)
if

p(ξ, τ) =
1

Φa

(
ξ0−m√
b/(αa)

)(b/2)a/2

Γ(a/2)

√
α

2π
τ
a+1
2 −1 exp

{
−τ

2
[
b+ α(ξ −m)2

]}

for ξ < ξ0 where Φd(·) is the Student’s t cdf with d degrees of freedom;

Φd(z) =
∫ z

−∞
φd(y) dy and

φd(y) =
Γ
(
d+1
2

)
Γ
(
d
2

) 1√
πd

(
1 +

y2

d

)−d+1
2



What is the motivation for this density?

p(ξ, τ) =
1

Φa

(
ξ0−m√
b/(αa)

)(b/2)a/2

Γ(a/2)

√
α

2π
τ
a+1
2 −1 exp

{
−τ

2
[
b+ α(ξ −m)2

]}

p(ξ, τ) =
1

Φa

(
ξ0−m√
b/(αa)

) (b/2)a/2

Γ(a/2)

√
α

2π
τ
a+1
2 −1 exp

{
−τ

2
[
b+ α(ξ −m)2

]}
︸ ︷︷ ︸

the usual normal gamma density

p(ξ, τ) =
1

Φa

(
ξ0−m√
b/(αa)

)
︸ ︷︷ ︸

from the truncation

(b/2)a/2

Γ(a/2)

√
α

2π
τ
a+1
2 −1 exp

{
−τ

2
[
b+ α(ξ −m)2

]}



The marginal density of ξ

p(ξ) =
1

Φa

(
ξ0−m√
b/(aα)

)Γ
(
a+1
2

)
Γ
(
a
2

) √ α

bπ

1 +
1
a

(
ξ −m√
b/(aα)

)2
−

a+1
2

=
√
aα

b

φa

(
ξ−m√
b/(aα)

)
Φa

(
ξ0−m√
b/(aα)

) for ξ < ξ0

Thus, ξ′ = ξ−m√
b/(aα)

∼ Ta, truncated onto the region ξ′ < ξ0−m√
b/(aα)

.



Moments of ξ

E[ξ] = m−
√

b

aα

a+
(

ξ0−m√
b/(aα)

)2

a− 1

φa

(
ξ0−m√
b/(aα)

)
Φa

(
ξ0−m√
b/(aα)

) for a > 1

V [ξ] =
b

aα(a− 2)

a−
(

ξ0 −m√
b/(aα)

)a+

(
ξ0 −m√
b/(aα)

)2
 φa

(
ξ0−m√
b/(aα)

)
Φa

(
ξ0−m√
b/(aα)

)


− b

aα


a+

(
ξ0−m√
b/(aα)

)2

a− 1

φa

(
ξ0−m√
b/(aα)

)
Φa

(
ξ0−m√
b/(aα)

)


2

for a > 2

We have explicit formulae for all moments of ξ.



The conditional and marginal densities of τ

The conditional density of τ given ξ is the same as in the usual normal-gamma
model, that is

τ |ξ ∼ G
(
a

2
,
b+ α(ξ −m)2

2

)
for τ > 0.

The marginal distribution of τ is a Gaussian modulated gamma distribution,
that is τ ∼ GMG(

√
α(ξ0 −m), a, b), with density

p(τ) =
Φ (
√
ατ(ξ0 −m))

Φa

(
ξ0−m√
b/(aα)

) (
b
2

)a
2

Γ
(
a
2

)τ a2−1e−
b
2τ .



Moments of τ

E[τ ] =
Φa+2

(
ξ0−m√

b/(α(a+2))

)
Φa

(
ξ0−m√
b/(αa)

) a

b

E
[
τ2
]

=
Φa+4

(
ξ0−m√

b/(α(a+4))

)
Φa

(
ξ0−m√
b/(αa)

) a(a+ 2)
b2

We can derive all positive and negative moments of τ and therefore η.



The RTNG distribution is conjugate to the truncated normal

From standard normal gamma distribution theory, it is clear that given a sample
x of half-normal data, and a RTNG prior, ξ, τ ∼ RT NG

(
ξ0,m, α,

a
2,
b
2

)
, then

the posterior distribution is

ξ, τ |x ∼ RT NG
(
ξ?0,m

?, α?,
a?

2
,
b?

2

)
where

ξ?0 = min{ξ0,x}

m? =
αm+ nx̄

α+ n

α? = α+ n

a? = a+ n

b? = b+ (n− 1)s2 +
αn

α+ n
(m− x̄)2



The limiting case posterior

Suppose that we define the improper prior p(ξ, τ) ∝ 1
τ for −∞ < ξ < ∞.

Then, the posterior distribution is

ξ|x ∼ RT NG
(

min{x}, x̄, n, n− 1
2

,
(n− 1)s2

2

)
.

Also, the posterior mean in this case is:

E[ξ|x] = x̄− s√
n

n+
(

min{x}−x̄
s/
√
n

)2

n− 1

φn

(
min{x}−x̄
s/
√
n

)
Φn
(

min{x}−x̄
s/
√
n

) 6= ξ̂ = min{x}.

The classical and Bayesian estimator for ξ are different.



Comparison of the Bayesian posterior mean and the MLE

Bias

We simulated 1000 samples of various sizes from HN (0, 1). The Table
compares the estimated biases of the Bayesian posterior mean estimator of ξ
with the MLE.

n ξ̂ E[ξ|X]
5 0.217 −0.063

10 0.118 −0.011
20 0.060 −0.003
50 0.025 −0.0005

100 0.012 −0.0002
1000 0.001 2× 10−6

The bias of the Bayesian estimator is much lower than that of the MLE and
compares with Pewsey’s (2002,2004) unbiased estimator



Coverage of credible and confidence intervals

Classical intervals Bayesian intervals
Uncorrected Bias Corrected

n coverage length coverage length coverage length
5 0.880 0.585 0.904 0.655 0.950 0.910

10 0.916 0.332 0.927 0.350 0.945 0.398
20 0.937 0.177 0.943 0.181 0.951 0.192
50 0.944 0.073 0.946 0.074 0.949 0.076

100 0.948 0.037 0.948 0.037 0.950 0.038
1000 0.950 0.004 0.950 0.004 0.949 0.004



The athletes data example

Pewsey (2002,2004) analyzes data on the body fat indices of athletes.
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Maybe they can be well fitted by a half-normal model.



The predictive distribution function of X using Bayesian and classical methods
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The fit doesn’t look too good, but . . .



Extension: the half-t model
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. . . results of fitting a half-t distribution model are much more promising. But
that’s another story.
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5. The prior distribution

Objective

Firstly, we study the different methods for elicitation, calibration and
combination of subjective (expert) prior distributions and secondly, we analyze
the different objective Bayesian approaches.

Recommended reading

• Berger, J. (2006). The case for objective Bayesian analysis (with discussion).
Bayesian Analysis, 1, 385–482.

• Goldstein, M. (2006). Subjective Bayesian analysis: principles and practice
(with discussion). Bayesian Analysis, 1, 403–420.

Both articles available from http://ba.stat.cmu.edu/vol01is03.php



Subjective probability distributions and their elicitation

In many real problems, substantive experts with important information are
available. In such cases, it is important to be able to convert their information
and ideas into probabilities. The techniques for doing this are called probability
elicitation methods.

Garthwaite et al (2005) observe that there should be four stages in any
probability elicitation exercise:

• Setting up: selection and training of experts, investigation of parameters to
make judgements about.

• Elicitation of expert opinions: summaries of the experts probability
distributions for some parameter.

• Distribution fitting: combining and modeling the expert opinions.

• Feedback: presentation of results to experts to see if they agree or not.



Expert training: problems with the use of expert judgements

Experts often use heuristic methods to make their probability judgements which
can induce biases and incoherence.

• motivational biases.

• cognitive biases:

� availability
� anchoring
� representativeness
� control

An important part of the training is to try to get the experts to recognize such
biases so that they may be eliminated.



Availability

Example 22
For each of the following pairs, which causes more deaths per year.

• Stomach cancer or car accidents?

• Tuberculosis or fires?

Cause of death Choice
Total yearly death rate

(USA /1000)
# newspaper

articles
cancer 14% 95 46

car accidents 86% 1 137
tuberculosis 23% 4 0

fires 77% 5 0

People have much more information about accidents than about cancer and
therefore, this option is more available. See Russo and Shoemaker (1989)

See Tversky and Kahneman (1973) for more examples of the availability bias.



Anchoring and adjustment

Example 23
( Tversky y Kahneman 1974).

The researcher wished to elicit an estimation of the percentage of African
countries in the UN. One group of experts were asked the question

Do you think that the percentage is higher or lower than 10%?

and the second group were asked

Do you think that the percentage is higher or lower than 65%?

The members of both groups were then asked to give a point estimate of the
percentage.

The mean estimate in group 1 was 25% and the mean in group 2 was 45%.
A random and irrelevant anchoring point has influenced the estimates of both
groups.



Representativeness

Example 24
Federico is 35 years old, intelligent but not very imaginative and a bit
boring. In college, he showed a lot of talent in maths but he wasn’t very
good at art.

Order the following statements about Federico in terms of their probability (1
= most probable, 8 = least probable).

1. Federico is a doctor and likes to play cards as a hobby.

2. He is an architect.

3. He is an accountant.

4. He plays a jazz instrument.

5. He reads Marca.

6. He likes mountaineering.

7. He is an accountant and plays a jazz instrument.

8. He is a journalist.



1. Federico is a doctor and likes to play cards as a hobby.

2. He is an architect.

3. He is an accountant.

4. He plays a jazz instrument.

5. He reads Marca.

6. He likes mountaineering.

7. He is an accountant and plays a jazz instrument.

8. He is a journalist.

Most people say that option 3 is the most probable. Moreover, many people
say that option 7 is more probable than option 4. This is impossible as for any
two events A and B,

P (A ∩B) ≤ min{P (A), P (B)}.

This problem illustrates the representativeness heuristic and also the base rate
fallacy. See Kahneman et al (1982) for more examples.



The base rate fallacy

Example 25
(Tversky and Kahneman 1980).

A taxi knocks over a pedestrian in Darlington. In Darlington, only two
companies operate taxi services. The first company has green taxis and the
second operates blue taxis. Around 85% of the taxis in Darlington are green.

There is a witness to the accident who says that the taxi was blue. When
tested under the same climatological conditions as the night of the accident,
the witness identifies the two colours correctly in around 80% of the test cases.

What is your estimated probability that the taxi is blue?



The typical response is around 80%. However, if A represents the event that
the taxi is blue and a is the event that the witness says it is blue, then from
Bayes Theorem:

P (A|a) =
P (a|A)P (A)

P (a|A)P (A) + P (a|Ā)P (Ā)

=
0.8× 0.15

0.8× 0.15 + 0.2× 0.85
= 0.41

People often ignore the base rate when making their predictions.



Elicitation

Initially we shall consider the simplest problem of eliciting an expert, E’s
probability, PE(A), that an event occurs. The simplest approach might appear
to be to ask the expert directly for her probability. However, this method does
not allow her to think about her probabilities and if she is not statistically
trained, will be very hard to implement.

There are two basic alternative approaches based on the use of probability
scales or on gambling schemes.



Probability scales

The simplest form of probability scale is a just a straight, unmarked line where
the right hand end indicates probability one and the left, probability zero.

The expert is asked to mark a point which represents her probability of a given
event.

×

The simple probability scale will not allow the expert to estimate small or large
probabilities well. When we are estimating such probabilities, it is better to use
an odds scale or a logarithmic scale. Also, it is often useful to include certain
guide points on the scale although these might induce anchoring biases.



Gambling methods

One typical approach is to use a lottery. Recall, from page 30, that De
Finetti (1937) defined subjective probabilities in terms of (certainty equivalent)
lotteries. Another approach is to consider gambles with one big prize and one
negligible prize.

Example 26
Suppose that we wish to elicit a doctor’s probability, pE, that a given patient
has a tumour. Then we might ask the doctor to choose to play one of two
lotteries as in the following diagram.
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For a given value of p we can check which lottery is preferred and then
we can vary p until the doctor is indifferent at some point p = pE. Then
P (tumour) = pE is the doctor’s elicited probability that the patient has the
tumour.

There are certain ethical problems with the use of lotteries like this. An
alternative is to use probability wheels.

Example 27
The illustration shows the Spinner probability wheel from Insight c©.

http://www.stanford.edu/~savage/faculty/savage/InsightInfo.xls

We now ask the doctor to say which event is more likely: that the pointer lands
in red or that the patient has a tumour. By varying the size of the coloured
sectors we can arrive at a point of indifference when p = pE is the proportion
of the disc coloured red.



Both probability wheel and lottery approaches are basically restricted to
assessment of binary probabilities. Also, neither method will work very well if
we wish to estimate very small or very large probabilities.

Alternative approaches have been developed based on frequencies (Price 1998)
or on attempting to translate verbal expressions such as likely, improbable, etc.,
into numerical probabilities (Witteman and Renooij 2003). See e.g. Wallsten
et al (1993) for a fuller review.

These methods can be extended to elicitation of expert distributions. In these
cases, it is most common to elicit quantiles from the expert rather than
the full distribution function. These quantiles can then be fitted to a given
distributional model as required.



Elicitation of (conjugate) prior distributions

There are many possibilities. The worst would be to ask the expert directly
about the parameters of the prior distribution.

Example 28
Suppose we are interested in estimating a prior distribution for the probability,
p, of heads for a biased coin. In this case, we know that the conjugate prior is
beta, p ∼ B(α, β), and we wish to derive the values of α and β.



One possibility (Fox 1966) is to ask the expert for a direct estimate of the most
likely value of p, i.e. the expert’s mode, say pE, and to state the probability,
rE, that the true value of p lies in an interval (pE −KpE, pE +KpE) where
the value of K is fixed by the analyst eliciting the information. Then, assuming
that p has a beta prior, p ∼ B(α, β), then we can find the values of α and β
best representing the expert’s judgements by solving

pE =
α− 1

α+ β − 2

rE =
∫ pE+KpE

pE−KpE

1
B(α, β)

xα−1(1− x)β−1 dx



In general, it is preferable to ask the expert about observable quantities.

Chaloner and Duncan (1983) propose asking the expert to state her mode,
xE, for the number of successes, X, that would occur in a given number, n,
of Bernoulli trials and how much less likely it would be that that the number
of successes is one less or one more than the mode, say

cE =
PE(X = xE − 1)
PE(X = xE)

dE =
PE(X = xE − 1)
PE(X = xE)

.

Then, recalling that the marginal distribution of X supposing a beta prior
is beta-binomial, the parameters may be estimated by solving the following
system of equations for α and β.

cE =
(n− xE)(xE + α)

(xE + 1)(n− xE + β − 1)
and dE =

xE(n− xE + β)
(n− xE + 1)(n− α+ 1)

.

Many other approaches have been considered. See e.g. Hughes and Madden
(2002).



Evaluating the quality of expert forecasts

Typically used criteria (Lichtenstein et al 1982) are the following:

• Honesty : We want the expert to tell the truth.

• Coherence: Her forecasts should satisfy the laws of probability.

• Consistency : If she doesn’t receive new information, then her predictions
shouldn’t change.

• Calibration: It should rain on around 50% of the days when the expert says
P (rain) = 0.5.

• Informativeness: If, in Madrid, it rains on around 50 days per year, an
expert who says

P (rain tomorrow) = 50/364
every day isn’t very informative.



Honesty and strictly proper scoring rules

Suppose that we wish to elicit the expert’s true probability, pE, that some
event A occurs. One method of encouraging the expert to be honest is to pay
her a quantity R(A, p) which depends upon the occurrence or not of A and
the expert’s stated probability, p.

How should we define R(A, p)?.

We suppose that the expert wishes to maximize her expected income. If pE is
her true probability, her expected income if she states a probability p is

pER(1, p) + (1− pE)R(0, p).

Definition 9
A (strictly) proper scoring rule (Savage 1971) is a scoring rule R(A, p)
whereby the expert maximizes his expected income if (and only if) p = pE.



Example 29
Suppose that R(A, p) = 1 − |A − p|. Then, the expert’s expected earnings if
she states a probability p are

E[R] = pE (1− |1− p|) + (1− pE) (1− |0− p|)
= pEp+ (1− pE)(1− p)

= 1− pE + (2pE − 1)p

Therefore R(A, p) is not a proper scoring rule as the expert maximizes her
expected earnings by stating p = 1 (0) if pE > (<)0.5.



The Brier score

Example 30
R(A, p) = 1− (A− p)2 is the Brier (1950) score.

E[R] = pE
(
1− (1− p)2

)
+ (1− pE)

(
1− p2

)
= 1− pE + 2ppE − p2

= 1− pE + p2
E − (p− pE)2

which is maximized by setting p = pE. Therefore, R is a strictly proper scoring
rule.

There are many other proper scoring rules, see e.g. Winkler (1986) and proper
scoring rules have also been developed for continuous variables and quantiles.
See e.g. Buehler (1971) and Matheson and Winkler (1976).



Example 31
Suppose that E is asked to state a point estimator, say e, for a variable X.
Then consider the scoring rule

R(X, e) =
{
a(e− x) if e < x
b(x− e) if e > x

Let pE(x) be the expert’s true distribution for X:

E[R(X, e)] =
∫
R(x, e)pE(x) dx

= a

∫ ∞

e

(e− x)pE(x) dx+ b

∫ e

−∞
(x− e)pE(x) dx

= ae(1− FE(e))− a

∫ ∞

e

xpE(x) dx+

b

∫ e

−∞
xpE(x) dx− beFE(e)



dE[R(X, e)]
de

= a(1− FE(e))− aepE(e) + aepE(e)−

bepE(e)− bFE(e) + bepE(e)

0 = a(1− FE(ê))− bFE(ê)

FE(ê) =
a

a+ b

The expert maximizes her experted gains if she states her b/(a + b) × 100%
quantile. See Raiffa and Schlaifer (1961).

The use of proper scoring rules to encourage honesty seems somewhat artificial.
However, they may also be used a posteriori as evaluation tools for expert
probabilities.



Numerical measures of expert quality

Suppose that the expert supplies probabilities pE for a sequence of Bernoulli
events X1, . . . , Xn. Given the data x, we wish to evaluate the quality of her
predictions.

Consider the Brier score

R(X, pE) = 1− (X − pE)2.

Then, given the data, we can calculate the statistic

R(x,pE) =
1
n

n∑
i=1

R(xi, pEi) = 1−
n∑
i=1

(xi − pEi)
2

which is a measure of the average quality of her predictions.

This measure can be divided into a measure of calibration and a measure of
information.



Following Murphy (1973), assume that the expert uses the probability pj a
total of nj times, with a frequency of fj successes and a relative frequency of
rj = fj/nj successes for j = 1, . . . k. Then:

R(x,p) = 1− 1
n

k∑
j=1

(
fj(1− pj)2 + (nj − fj)(0− pj)2

)
= 1− 1

n

k∑
j=1

nj
(
rj(1− pj)2 + (1− rj)(0− pj)2

)

Now we can prove the following theorem.



Theorem 25
R(x,p) = 1− C(x,p)− I(x,p) where

C(x,p) =
1
n

k∑
j=1

nj(rj − pj)2 is a measure of calibration

I(x,p) =
1
n

k∑
j=1

njrj(1− rj) is a measure of information



Proof

R(x,p) = 1− 1
n

k∑
j=1

nj
(
rj(1− pj)2 + (1− rj)(0− pj)2

)
= 1− 1

n

k∑
j=1

nj
(
rj − 2rjpj + p2

j

)
= 1− 1

n

k∑
j=1

nj
(
rj − r2j + r2j − 2rjpj + p2

j

)
= 1− 1

n

k∑
j=1

nj
(
rj(1− rj) + (rj − pj)2

)
= 1− I(x,p)− C(x,p)



C has the following properties:

• 0 ≤ C ≤ 1

• C = 0 if and only if rj = pj for j = 1, . . . , k.

• For a well calibrated expert, when n→∞, C → 0.

• C is large if the observed relative frequencies ri are very different from the
expert’s stated probabilities pi.



I has the following properties:

• 0 ≤ I ≤ 0.25.

• I = 0 if, for all pj, the relative frequency rj = 0 or 1.

• I = 0.25 if, for all pj, then rj = 0.5.

Any strictly proper scoring rule can be divided up into calibration and
information measures in a similar way. See e.g. De Groot and Fienberg
(1982).



Example 32
Wiper (1987,1990) gave 12 experts a set of 50 statements to study. The
experts were asked to state whether each statement was true or false and to
give their probabilities that they were correct as a percentage between 50% (=
no idea) and 99%.

We shall assume here that the experts’ stated probabilities for all events belong
to the class p = {0.53, 0.64, 0.75, 0.86, 0.97}. Then the following table gives
the related absolute and relative frequencies.

E pi 0.53 0.64 0.75 0.86 0.97

2

ni
fi
ri

25

15

0.6

6

4

0.67

6

4

0.67

5

3

0.6

8

8

1.0

3

ni
fi
ri

25

16

0.64

5

1

0.2

10

3

0.3

5

2

0.4

5

4

0.8

10

ni
fi
ri

10

6

0.6

5

2

0.4

15

5

0.3

1

0

1.0

19

15

0.79



The following table shows the calibration, information and Brier scores for each
expert.

E C I Brier
2 .0093 .1973 .7934
3 .0900 .2132 .6968

10 .1059 .2018 .6923

We can see that expert 2 is better calibrated but less informative than the
other experts.

A visual manner of illustrating expert calibration is provided by the calibration
curve. This is simply a graph of observed frequencies, rj, against the different
probabilities used, pj.



The calibration curve
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For a well calibrated expert, the curve approximates the 45 degree line.



Example 33
Returning to Example 32, the calibration curves of experts 2 and 10 are given
in the following figure.
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Cooke’s approach

Cooke et al (1988) and Cooke (1991) have developed alternative measures of
calibration and information based on classical p-values which can be applied
to predictions for both discrete and continuous variables.

Suppose that an expert uses the probability pj a total of nj times for
j = 1, 2, . . . , k. Theoretically, if the expert is well calibrated, about the total
frequency of events {X = 1} that occur should be around nj × pj.

A χ2 test can be set up to test whether the observed relative frequencies
r1, . . . , rk could be generated from the theoretical distribution p1, . . . , pk.

Thus, to test H0 : r ∼ p against the alternative H1 : r � p we calculate the
chi-squared statistic

S =
k∑
j=1

nj
(rj − pj)2

rj
.

The hypothesis that the expert is well calibrated can then be accepted or
rejected by comparing S with tables of the χ2

k distribution.



Example 34
The following table shows the p-values for each expert in Example 32.

E 2 3 10
p .7 .00 .00

It seems that only expert 2 is reasonably well calibrated.

Cooke (1991) derives a theory of scoring rules based on combining the p-value
with a measure of information. When the expert makes forecasts for continuous
variables, then an alternative is a Kolmogorov Smirnov test. See Wiper et al
(1994).



Objective Bayesian methods

Sometimes we wish to use a prior distribution which does not include (much)
subjective information, because

• we don’t know anything about the problem at hand,

• we would like to be objective.

In such situations, we should choose a non-informative prior distribution.

However, there are many possible elections. Which is the most useful?



Uniform priors

Bayes (1763) and Laplace (1812) generally employed uniform prior distributions,
as justified by the principle of insufficient reason, see page 23. This is fine
in finite dimensional problems, but if the parameter space Θ is continuous or
uncountable, then such prior distributions are improper. In practice, this is not
a serious problem, as long as the posterior distribution as calculated via Bayes
theorem can be shown to exist.

An important problem with the general use of uniform priors however is lack
of invariance to transformation.



Example 35
Suppose that we set p(θ) ∝ 1 and define the transformed variable φ = 1

θ. Then
the implied prior distribution for φ is

p(φ) ∝ 1
φ2

which is not uniform. Thus, the use of the uniform distribution to represent
lack of knowledge is inconsistent. If we know nothing about θ, then we should
know nothing about φ.



Jeffreys priors

Jeffreys

Jeffreys (1946) introduced a prior distribution which possesses an invariance
property.



Definition 10
Let X|θ ∼ f(·|θ) where θ is one dimensional. The Jeffreys prior for θ is

p(θ) ∝
√
I(θ)

where I(θ) = −EX
[
d2

dθ2
log f(X|θ)

]
is the expected Fisher information.

The following theorem shows that if the Jeffreys prior for θ is used, then the
implied prior for the transformed parameter φ = φ(θ) is the Jeffreys prior for
φ.

Theorem 26
If φ = φ(θ), and p(θ) is the Jeffreys prior for θ, then the implied prior for φ is
the Jeffreys prior

p(φ) ∝
√
I(φ)

where I(φ) = −EX
[
d2

dφ2 log f(X|φ)
]

is the expected Fisher information when

the distribution of X is reparameterized in terms of φ.



Proof Firstly, we shall prove that E
[
d
dθ log f(X|θ)

]
= 0.

EX

[
d

dθ
log f(X|θ)

]
=

∫ [
d

dθ
log f(x|θ)

]
f(x|θ) dx

=
∫
f ′(x|θ)
f(x|θ)

f(x|θ) dx

=
∫
f ′(x|θ) dx

=
d

dθ

∫
f(x|θ) dx = 0.

Secondly we shall prove that

E

[
d2

dθ2
log f(X|θ)

]
= −E

[(
d

dθ
log f(X|θ)

)2
]
.



We have

EX

[
d2

dθ2
log f(X|θ)

]
=

∫
d2

dθ2
log f(x|θ) dx

=
∫

d

dθ

[
d

dθ
log f(x|θ)

]
f(x|θ) dx

=
∫

d

dθ

f ′(x|θ)
f(x|θ)

f(x|θ) dx

=
∫ [

f ′′(x|θ)
f(x|θ)

−
(
f ′(x|θ)
f(x|θ)

)2
]
f(x|θ) dx

=
∫

d2

dθ2
f(x|θ) dx−

∫ (
d

dθ
log f(x|θ)

)2

f(x|θ) dx

= −E

[(
d

dθ
log f(X|θ)

)2
]



Now finally, we have that

p(φ) = p (θ)
∣∣∣∣dθdφ
∣∣∣∣ and squaring,

p(φ)2 = p (θ)2
∣∣∣∣dθdφ
∣∣∣∣2

∝ −E

[(
d

dθ
log f(X|θ)

)2
] ∣∣∣∣dθdφ

∣∣∣∣2

∝ E

[(
d

dφ
log f(X|φ)

)2
]

p(φ) ∝
√
I(φ).



Example 36
X|θ ∼ BI(n, θ).

log f(X|θ) = c+X log θ +

+(n−X) log(1− θ)

d

dθ
log f(X|θ) =

X

θ
− (n−X)

(1− θ)

d2

dθ2
log f(X|θ) = −X

θ2
− (n−X)

(1− θ)2

E

[
d2

dθ2
log f(X|θ)

]
= −n

(
1
θ

+
1

1− θ)

)
I ′′(θ) ∝ 1

θ(1− θ)

Therefore, the Jeffreys prior is p(θ) ∝
√

1
θ(1−θ), that is θ ∼ B(1/2, 1/2). This

is a proper prior, unlike Haldane’s prior which we saw earlier.



Example 37

X|µ ∼ N
(
µ, 1

φ

)
, with φ known.

log f(X|µ) = c− φ

2
(X − µ)2

d

dµ
log f(X|µ) = φX − φµ

d2

dµ2
log f(X|µ) = −φ

We have p(µ) ∝ 1, a uniform distribution.



Example 38

Suppose now that X|φ ∼ N
(
µ, 1

φ

)
where µ is known.

log f(X|φ) ∝ 1
2

log φ− φ
(X − µ)2

2
d

dφ
log f(X|φ) =

1
2φ

+
(X − µ)2

2

d2

dφ2
log f(X|φ) = − 1

2φ2

and the Jeffreys prior for φ is

p(φ) ∝ 1
φ
.

If σ is the standard deviation, then φ = 1
σ2 and dφ

dσ = − 2
σ3 so the Jeffreys prior

for σ is

p(σ) ∝ σ2 2
σ3
∝ 1
σ
.



Jeffreys priors in multivariate problems

It is possible to extend the definition of a Jeffreys prior to the case when
θ = (θ1, . . . , θk) is multivariate, by defining p(θ) ∝

√
I(θ) as earlier, where

the expected Fisher information is now given by

I(θ) = |EX [J(θ)]| where

Jij =
d2

dθidθj
log f(X|θ).

In some cases, the multivariate Jeffreys prior seems reasonable.



Example 39
Let X|θ ∼MN (m,θ) have a (k dimensional) multinomial distribution. Then

log f(X|θ) = c+

k∑
i=1

xi log θi

d

dθi
log f(X|θ) =

Xi

θi

d2

dθ2
i

log f(X|θ) = −
Xi

θ2
i

d2

dθidθj
log f(X|θ) = 0 for i 6= j.

E

[
d2

dθ2
i

log f(X|θ)

]
= −

m

θi

I(θ) =
mk∏k
i=1 θi

and the Jeffreys prior is p(θ) ∝
∏k
i=1

1√
θi

which is Dirichlet, θ ∼ D
(
1
2, . . . ,

1
2

)
.



In many more cases, the multivariate Jeffreys prior is less natural.
Example 40

Let X|µ, φ ∼ N
(
µ, 1

φ

)
. Then, from Examples 37 and 38,

d2

dµ2
log f(X|µ, φ) = −φ

d2

dφ2
log f(X|µ, φ) = − 1

2φ2
and also

d2

dµdφ
log f(X|µ, φ) = −(X − µ)

E[J] = −
(
φ 0
0 1

2φ2

)

and therefore, the Jeffreys prior is p(µ, φ) ∝ 1√
φ

which is not the prior we have

used earlier.



Maximum entropy priors

Jaynes

The idea (Jaynes 1968,1983) is to find the least informative prior distribution
in the presence of partial information.



Entropy

Assume that θ is univariate and discrete. If p(θ) is any distribution for θ, then
we can define

e(p) = −
∑
i∈Θ

p(θi) log p(θi)

to be the entropy of the distribution.

If p(θ = θi) = 1 for some value θi ∈ Θ, then, e(p) = 0 and there is zero
uncertainty or minimum entropy. On the contrary, if p(θi) = 1/|Θ|, i.e. a
uniform distribution, then

e(p) = −
∑
i∈Θ

1
|Θ|

log
1
|Θ|

= log |Θ|,

the maximum entropy.

Maximum entropy (maxent) distributions are minimum information
distributions.



In many practical situations, we may only wish to fix certain characteristics of
the prior distribution, e.g. quantiles or moments and apart from this, let the
prior be as uninformative as possible.

Suppose that we have partial information about θ in the form

E[gk(θ)] =
∑
i∈Θ

p(θi)gk(θi) = µk

for k = 1, . . . ,m. This includes fixed moments, e.g. g1(θ) = θ and quantiles

gk(θ) = I(−∞,zk] ⇒ E[gk(θ)] = p(θ ≤ zk).

Given these restrictions, the following theorem provides the form of the
maximum entropy prior.



Theorem 27
Given the partial information

E[gk(θ)] =
∑
i∈Θ

p(θi)gk(θi) = µk

for k = 1, . . . ,m, then the maxent prior is

p(θi) =
exp (

∑m
k=1 λkgk(θi))∑

j∈Θ exp (
∑m
k=1 λkgk(θj))

where the constants λk can be determined from the information.

Proof See Jaynes (1968).



Example 41
Let X|N ∼ BI(N, 1/2). Suppose that we know that N ≥ 1 and that we fix
the mean to be E[N ] = 10.

We shall try to calculate the maxent distribution for N .

P (N = n) =
exp (λ1n)∑∞
j=1 exp (λ1j)

= exp (λ1n)
1− exp(λ1)

exp(λ1)

= (1− eλ1) exp (λ1(n− 1))

Thus, N − 1 has a geometric density with parameter 1− eλ1 and therefore

E[N ] = 1 +
eλ1

1− eλ1

and fixing E[N ] = 10, we have eλ1 = 9
10, i.e. the maxent prior for N is

N − 1 ∼ GE(9/10).



Maxent priors for continuous variables

The extension to continuous variables is more complicated because the
definition of entropy

e(p) = −
∫
p log p dµ

depends on the base measure µ.

One possibility (Jaynes 1968) is to define

e(p) = −
∫
p(θ) log

p(θ)
p0(θ)

dθ

where p0(θ) is the Jeffreys prior for θ. Then, given the restrictions E[gk(θ)] =
λk, the maxent prior is

p(θ) =
p0(θ) exp (

∑m
k=1 λkgk(θ))∫

p0(θ) exp (
∑m
k=1 λkgk(θ)) dθ

analogous to the discrete case.



Unfortunately, in some cases, it is possible that no maxent prior distribution
exists.

Example 42
Let X|µ ∼ N (µ, 1) and suppose that we fix the prior mean to be E[µ] = m.
We have seen in Chapter 4 that the Jeffreys prior is p(µ) ∝ 1. Therefore, the
maxent distribution is

p(µ) =
exp(λ1µ)∫∞

−∞ exp(λ1µ)dµ

and there is no solution to this integral.



Reference priors

Bernardo

This, the most general approach, was developed by Bernardo (1979). It is
based on maximizing the expected information about θ to be provided by a
given experiment.



Consider first the case when θ is one dimensional.

Then, given the prior distribution p(θ), the expected information about θ to
be gained by observing a sample X of size n, where X|θ ∼ f(·|θ) is defined by

I(p(θ)) =
∫
f(x)

∫
p(θ|x) log

p(θ|x)
p(θ)

dθ dx

where f(x) =
∫
f(x|θ)p(θ) dθ and p(θ|x) = f(x|θ)p(θ)

f(x) .

Then, the reference prior is defined to be the prior p(θ), within the class
of admissible priors, which maximizes the asymptotic limit of the expected
information I(p(θ)) as the sample size n goes to infinity.

It can be shown that the maximum entropy and Jeffreys priors correspond to
particular cases of reference priors.



Reference priors in multivariate problems

Suppose that θ = (θ1, θ2), where θ1 is the parameter of interest and θ2 is a
nuisance parameter. Then the reference prior approach has two steps:

1. Calculate the reference prior p(θ2|θ1) as above.

2. If this is proper, then θ2 can be integrated out of the density of X and the
reference prior of θ1 can be found as above. If not, then the procedure can
be performed in a limiting way. See Bernardo (1979).



Other non-informative prior distributions

There are a number of other approaches to defining non-informative priors:

• Limiting forms of conjugate priors.

This is the method we used in chapters 2 and 3.

• Priors based on the data translated likelihood. Box and Tiao (1973).

This approach shows how to define the transformation φ = φ(θ) so that
a uniform prior for φ is justified. The resultant distributions are Jeffreys
priors.

• Methods based on symmetry, e.g. Haar priors.

• Others: see Yang and Berger (1997) and Kass and Wassermann (1996).



Problems with the use of non-informative prior distributions

There are various theoretical and practical difficulties with the use of non-
informative priors. Firstly, when improper prior distributions are used, it is
important to show that the posterior distribution is proper.

Example 43
Let X|θ ∼ BI(n, θ) and suppose we use Haldane’s prior p(θ) ∝ 1

θ(1−θ). Then,

if we observe X = 0 or X = n, then the posterior distribution is improper.

This is particularly important in modern Bayesian models where high
dimensional integration is often carried out using Gibbs sampling or MCMC.



Example 44
Consider the simple random effects model

yij = β + µi + εij where

εij|φε ∼ N
(

0,
1
φε

)

for i = 1, . . . , k and j = 1, . . . , ni where
∑k
i=1 ni = n, and suppose that we

use the improper priors

p(β) ∝ 1, µ ∼ N
(
0,

1
φµ

I
)

p(φε) ∝
1
φε
, p(φµ) ∝

1
φµ
.



Then, given the sample data, y, we can show that the conditional posterior
distributions are

β|y,µ, φε, φµ ∼ N

(
ȳ − 1

n

k∑
i=1

niµi,
1
nφε

)

µ|y, β, φε, φµ ∼ N




n1φε(ȳ1−β)
n1φε+φµ

...
nkφε(ȳk−β)
nkφε+φµ

 ,


1

n1φε+φµ
0 . . . 0

. . . ... ... ...
0 . . . 0 1

nkφε+φµ




φε|y, β,µ, φµ ∼ G

(
n

2
,

∑k
i=1

∑ni
j=1(yij − β − µi)2

2

)

φµ|y, β,µ, φε ∼ G

(
k

2
,

∑k
i=1 µ

2
i

2

)

where ȳ = 1
n

∑k
i=1

∑ni
j=1 yij and ȳi = 1

ni

∑ni
j=1 yij.



Now, a Gibbs sampler could be set up by sampling sequentially from the various
conditional distributions. However, the results do not make sense as the joint
posterior distribution in this case can be shown to be improper. See e.g. Hill
(1965).

There are a number of published papers using MCMC methods where the
results are, in reality, meaningless as the posterior distributions are really
improper.



The likelihood principle

The use of Jeffreys priors does not satisfy the likelihood principle.

Example 45
Suppose that we are going to generate binomial data X|θ ∼ BI(n, θ). Then,
from Example 36 we know that the Jeffreys prior is θ ∼ B(1/2, 1/2). Now
suppose that we change the experimental design so that we will now generate
negative binomial data. Therefore:

log f(X|θ) = c+ r log θ +X log(1− θ)

∂ log f(X|θ)
∂θ

=
r

θ
− X

1− θ

∂2 log f(X|θ)
∂θ2

= − r

θ2
− X

(1− θ)2

−E
[
∂2 log f(X|θ)

∂θ2

]
=

r

θ2
+

r

θ(1− θ)
=

r

θ2(1− θ)



The Jeffreys prior is

p(θ) ∝ 1
θ(1− θ)1/2

.

Thus, Jeffreys prior depends on the experimental design and, if we observe
9 heads in 12 tosses of the coin, we need to know the design before the
posterior distribution can be calculated. The posterior is θ|x ∼ B(9.5, 3.5)
given binomial data and B(9, 3.5) given negative binomial data.



Other problems

• Inadmissibility: Bayesian inference (with proper priors) leads to admissible
estimators, but the use of improper priors can lead to inadmissible estimators.

Example 46
Suppose that X|θ ∼ N

(
θ, σ2I

)
and that we use a uniform prior p(θ) ∝ 1.

Then given an observation, x, the posterior is θ|x ∼ N (x, σ2I) and the
posterior mean, x is an inadmissable estimate of θ if the dimension of X is
greater than 2.

• Marginalization paradoxes (Dawid et al 1973), strong inconsistency and
incoherence (Stone and Dawid 1972, Stone 1982).
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6. Implementation of Bayesian inference

Objective

To introduce the main numerical methods that can be used to evaluate the
integrals necessary in many Bayesian problems. In particular, we concentrate
on MCMC and Gibbs sampling approaches.

Recommended reading

• Wiper, M.P. (2007). Introduction to Markov chain Monte Carlo simulation.
In Encyclopedia of Statistics in Quality and Reliability, Wiley, pp 1014–
1020.



Introduction

We have seen that numerical procedures are often needed in Bayesian inference
for the computation of the posterior distribution

p(θ|x) =
f(x|θ)p(θ)∫
f(x|θ)p(θ) dθ

and for the computation of posterior moments, predictive distributions etc.
The different techniques which might be applied are as follows:

• Numerical integration,

• Gaussian approximations (considered in chapter 8),

• Monte Carlo approaches:

� direct methods,
� via Markov chains.



Numerical integration

Many numerical integration techniques have been developed. See for example
Auśın (2007) or the Wikipedia

http://en.wikipedia.org/wiki/Numerical_integration

for fuller reviews.

One of the simplest approaches is Simpson’s rule. Supposing that we wish to
evaluate the (one dimensional) integral

I =
∫ b

a

g(x) dx,

in its most simple form, Simpson’s rule suggests approximating the integral
using

I ≈ b− a

6

[
g(a) + 4g

(
a+ b

2

)
+ g(b)

]
.



This approximation can be improved by subdividing the interval [a, b] into an
even number, say N , subintervals

[a, a+ h) ∪ · · · ∪ [a+ (N − 1)h, a+Nh = b].

Using Simpson’s rule in each subinterval [a + jh, a + (j + 2)h) leads to the
final estimate

I ≈ h

3
[g(a) + 4g(a+ h) + 2g(a+ 2h) + · · ·

+2g(a+ (N − 2)h) + 4g(a+ (N − 1)h)+

+g(a+Nh)] .

Example 47
Suppose that we wish to estimate the constant of a beta density, X ∼ B(7, 10),
with density function

π(x) ∝ x6(1− x)9 for 0 < x < 1.



We shall try to estimate the beta function, B(7, 10) =
∫ 1

0
x6(1 − x)9dx,

using Simpson’s rule. Setting h = 0.1, we find the following table:

θ θ6(1− θ)9
∫ θ
0
φ6(1− φ)9 dφ

.0 0.00000E − 00 0.00000E − 00

.1 3.87420E − 07

.2 8.58994E − 06 3.37987E − 07

.3 2.94178E − 05

.4 4.12783E − 05 5.92263E − 06

.5 3.05176E − 05

.6 1.22306E − 05 1.17753E − 05

.7 2.31568E − 06

.8 1.34218E − 07 1.24962E − 05

.9 5.31441E − 10
1.0 0.00000E − 00 1.25007E − 05

The true value of the integral is B(7, 10) = 1.24875E − 05. Using Simpson’s
rule with h = 0.05 gives the result 1.24876E − 05.



An improvement on Simpson’s basic rule is the adaptive Simpson’s rule, which
does not fix the number of subintervals a priori, but instead, continues to
subdivide the intervals until the estimated error reaches a given tolerance.



Alternative approaches and problems

Other rules have been designed which take into account the form of the
integrand. For example, Gaussian quadrature approaches use an approximation

I =
∫ b

a

g(x) dx ≈
N∑
i=1

wig(xi)

where the points xi are determined as the roots of a class of orthogonal
polynomials.

The main problem with numerical integration approaches is the curse of
dimensionality. As the dimension of the integral increases, the number of
function evaluations necessary to achieve a given tolerance increases very
rapidly. Thus, in general, such methods are not employed for higher than two
or three dimensional integrals.



Monte Carlo approaches

We have seen the basic Monte Carlo method earlier in chapter 3. Suppose that
we have X ∼ π and that we wish to estimate the mean of some functional
E[g(X)]. Then given a sample, x, of size n from π, we can estimate

ḡ(x) =
1
N

N∑
i=1

g(xi) ≈ E[g(X)].

When E[g2(X)] exists, then we can estimate the sample variance using

V [g(X)] =
1
N

∫
(g(x)− E[g(X)])2 ≈ 1

N2

N∑
i=1

(g(xi)− ḡ(x))2.

In many cases however, there is no straightforward way of generating a sample
directly from π. In such cases, two main alternatives have been considered:
importance sampling and rejection sampling.



Importance sampling

Suppose that sampling from π is complicated. Suppose instead that we can
easily sample from another density, say f . Now we can write the expected
value of g(X) (under π) as

Eπ[g(X)] =
∫
g(x)π(x) dx

=
∫
g(x)π(x)
f(x)

f(x) dx

= Ef [w(X)g(X)]

where w(X) = π(X)
f(X). Thus, we can approximate the expectation by generating

a sample of size N from f and using

Eπ[g(X)] ≈ 1
N

N∑
i=1

w(xi)g(xi) where w(xi) =
π(xi)
f(xi)

for i = 1, . . . , N .



Furthermore, if the density π is known only up to an integration constant, C,
then we can extend the approximation to give

Eπ[g(X)] ≈
∑N
i=1w(xi)g(xi)∑N

i=1w(xi)

where the denominator (divided by N) is an approximation of C.

In general, the choice of importance function, f , will strongly influence the
efficiency of this algorithm. One should first note that the variance of the
importance sampling estimator of E[g(X)] is finite only when the expectation

Ef
[
w(X)2g(X)2

]
= Eπ

[
g(X)2w(X)

]
=
∫
g(x)2

π(x)2

f(x)
dx <∞.

This implies that we cannot choose importance functions with lighter tails than
π. In the Bayesian context, where we often wish to estimate various posterior
expectations, then an efficient importance function will be similar to the true
posterior, but with heavier tails.



Example 48
Consider Example 47 where we have X ∼ B(7, 10) so that π(x) ∝ x6(1− x)9,
and suppose that we wish to estimate the beta function B(7, 10) and the
posterior mean

E[X] =
1

B(7, 10)

∫ 1

0

x7(1− x)9 dx.

One possibility is to use importance sampling with a uniform importance
function. In this case, we have importance weights

w(x) =
π(x)

1
= x6(1− x)9

and given a uniform sample of size N , we can estimate
∑N
i=1w(xi) ≈ B(7, 10)

and
∑N
i=1 xiw(xi)∑N
i=1w(xi)

≈ E[X].

This is easily programmed in Matlab



alpha=7; beta=10; n=1000;
x=rand(1,n);
w=(alpha-1)*log(x)+(beta-1)*log(1-x);
w=exp(w);
betafunctn=sum(w);
w=w/sum(w);
meanx=sum(w.*x);

Given an importance sample of size N = 1000, the beta function was estimated
to be 1.2779E− 005 (true value 1.24875E− 005) and the posterior mean was
estimated at 0.4044 (true mean 0.4118). In this example, sample sizes of over
100000 are needed to achieve more than 3 figure accuracy.



Problems

One problem with this approach is that if the importance function is not similar
to π (or |g| × π) so that the centre of π (or |g| × π) is in the tail of the
importance function, then this can lead to many of the importance weights
being very small and thus, the integral estimates may be largely determined by
a very small number of data.

A second problem is that the importance sampling method does not provide a
sample from π. This can be remedied by using sampling importance resampling
(Rubin 1987).



The SIR algorithm

One way of obtaining an approximate sample from π is by subsampling.

If the weights, w(xi) are normalized so that we define

wi =
w(xi)∑N
i=1w(xi)

then we can generate an approximate sample, x̃, of size M < N from π by
setting x̃j = xi with probability wi for i = 1, . . . , N and j = 1, . . . ,M .

The following diagram shows the data simulated using a resample of size 1000
from an importance sample of size 10000.
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The sampled data well approximate the beta density.



The rejection algorithm

As with standard Monte Carlo, we assume we wish to generate a sample from
π(x), which is known only up to a constant. Then the rejection approach
chooses to generate data from a proposal distribution, h(x), such that

π(x) < Mh(x)

for some given M > 0. The algorithm proceeds as follows.

For i = 1, . . . , N:

1. Generate x̃i ∼ h,

2. Generate ui ∼ U(0, 1),

3. If Muih(xi) < π(x̃i) set xi = x̃i.

4. Otherwise, repeat from step 1.



Proof that this algorithm generates a sample from π

Consider P (X < c), where X is generated from this algorithm. We have:

P (X ≤ c) = P
(
X̃ ≤ c|U < π(X̃)/(Mh(X̃))

)
where X̃ ∼ h and U ∼ U(0, 1)

=
P
(
X̃ ≤ c, U < π(X̃)/(Mh(X̃))

)
P
(
U < π(X̃)/(Mh(X̃))

)
=

∫ c
−∞

∫ π(x̃)/(Mh(x̃))

0
h(x̃) du dx̃∫∞

−∞
∫ π(x̃)/(Mh(x̃))

0
h(x̃) du dx̃

=

∫ c
−∞

π(x̃)
Mh(x̃)h(x̃) dx̃∫∞

−∞
π(x̃)
Mh(x̃)h(x̃) dx̃

=

∫ c
−∞ π(x̃) dx∫∞
−∞ π(x̃) dx

= P (X < c) where X ∼ π.



This algorithm clearly reduces to standard Monte Carlo sampling when h = π.
Otherwise, as with importance sampling, it is necessary that the tails of the
proposal distribution are thicker than those of π.

The main problem with this approach is finding a good proposal distribution so
that only a small number of candidates are rejected. Note that the probability
of accepting a draw (assuming that π is properly scaled to integrate to 1) is

P

(
U <

π(X̃)
Mh(X̃)

)
=

∫ ∞

−∞

∫ π(x̃)/(Mh(x̃))

0

h(x̃) du dx̃

=
∫ ∞

−∞

π(x̃)
Mh(x̃)

h(x̃) dx̃

=
1
M

so that we would like M to be as close to 1 as possible.



Example 49
Suppose that we wish to simulate from a truncated normal distribution X ∼
T N (0, 1) where X > α > 0. One way to do this would be to sample directly
from the N (0, 1) density and simply reject those values that fall below α.
However, this method could be very inefficient if α is large. In this case, an
alternative is to use a shifted, exponential distribution

h(x) = λe−λ(x−α) for x > α

as an envelope function. (More sophisticated algorithms are proposed by
Geweke (1991) and Robert (1995).)



Writing the normal density as π(x) = ce−
x2

2 , where 1
c =

√
2π (1− Φ(α)), then,

π(x)
h(x)

=
c

λ
exp

(
−x

2

2
+ λ(x− α)

)
for x > α

≤ c

λ
exp

(
max
x>α

[
−x

2

2
+ λ(x− α)

])
= M1(λ)I(λ > α) +M2(λ)I(λ ≤ α) where I is the indicator and

M1(λ) =
c

λ
exp

(
λ2

2
− αλ

)
M2(λ) =

c

λ
exp

(
−α

2

2

)
To get the most efficient routine we should choose λ to minimize this function.
However, it is simpler to minimize only M2. This gives λ = α.



In this case, the probability that a generated candidate, x̃ is accepted is

π(x̃)
h(x̃)M2(α)

= exp
(
−1

2
(x̃2 + α2) + αx̃

)
.

The following is the fitted distribution when α = 3. Only 86 out of 1000
proposed values were rejected. We can see that the fit is very good.
The probability of accepting a value generated from an untruncated normal
distribution is only 0.0013.





Envelope methods

These are refinements of the basic algorithm based on bounding the target
density from above and below. Suppose that we can find a proposal density h
and a (non-negative) function g such that

g(x) ≤ π(x) ≤Mh(x) for all x.

Then, the following algorithm generates a variable, X, with distribution π.

1. Generate X̃ ∼ h and U ∼ U(0, 1).

2. If U ≤ g(X̃)

Mh(X̃)
let X = X̃.

3. Otherwise, let X̃ = X if U ≤ π(X̃)

Mh(X̃)

4. Otherwise, repeat from step 1.



The advantage of this algorithm is that the number of necessary evaluations
of π are reduced, and instead, we often only need to evaluate the (simpler)
densities, g and h. The probability that π does not have to be evaluated is
1
M

∫
g(x) dx which reflects the potential gain in using this approach.

One particular case that allows for the simple construction of bounding
functions is when the density, π, is log concave.

Definition 11
A density f(x) is said to be log concave if ∂2

∂x2f(x) < 0 ∀ x.

Most exponential family densities are log-concave. For example, if X|θ ∼
N (θ, 1), then ∂2

∂x2f(x|θ) = −1.



Adaptive rejection sampling

This algorithm developed by Gilks (1992) and Gilks and Wild (1992) gives
a general method of constructing the bounding functions g and h when the
target density, π, is log concave.

Suppose that Sn is a set of points xi for i = 0, 1, . . . , n+ 1 in the support of
π such that log π(xi) is known up to the same constant. As log π is concave,
then the line Li,i+1 going through (xi, log π(xi)) and (xi+1, log π(xi+1)) lies
below the graph of log π in (xi, xi+1] and lies above the graph outside
this interval. Thus, for the interval (xi, xi+1], we can define φ̄n(x) =
minLi−1,i(x), Li+1,i+2(x) and φ

n
(x) = Li,i+1(x) which bound log π. Defining

Hn(x) = exp(φ̄n(x)) and gn(x) = exp(φ
n
(x)), we have

gn(x) ≤ π(x) ≤ Hn(x) = Mnhn(x)say

where hn is a density function.



An advantage of this approach is that if a generated value is rejected, it can
then be added to the set Sn which improves the bounds on π at the next step.
This leads to the following generic algorithm.



The ARS algorithm

1. Initialize n and Sn.

2. Generate X̃ ∼ hn and U ∼ U(0, 1).

3. If U < gn(X̃)/hn(X̃) then set X = X̃.

4. Otherwise, if U < π(X̃)/(Mnhn(X̃), set X = X̃.

5. Otherwise, set n = n+ 1, Sn+1 = Sn ∪ X̃ and repeat from 2.

The big advantage of this algorithm is its universality. As long as π is known
to be log concave, it can always be used.



MCMC methods

As simple Monte Carlo algorithms are not always straightforward to implement,
another alternative is to use algorithms which generate approximate Monte
Carlo samples. The most popular approach is Markov chain Monte Carlo or
MCMC which samples from a Markov chain whose limit distribution is the
distribution from which we wish to sample.



Markov chains

Definition 12
A Markov chain, {Xt}, is defined to be a sequence of variables, X0, X1, X2, . . .,
such that the distribution of Xt given the previous values X0, . . . , Xt−1 only
depends on Xt−1, so that

P (Xt ∈ A|X0 = x0, X1 = x1, . . . , Xt−1 = xt−1) = P (Xt ∈ A|Xt−1 = xt−1)

for all A, x1, . . . , xt−1.

Most Markov chains that we deal with are time-homogeneous, that is

P (Xt+k ∈ A|Xt = x) = P (Xk ∈ A|X0 = x) for any k.

A simple example of a time-homogeneous Markov chain is a random walk

Xt = Xt−1 + εt where εt ∼ N
(
0, σ2

)



It is clear that a time-homogeneous Markov chain is completely defined by the
initial state, X0, and by the transition kernel,

P (x, y) = P (Xt+1 = y|Xt = x).

For most problems of interest, the Markov chain will take values in a continuous,
multivariate state space. However, we shall assume initially that the state space
is finite and countable, so that we can assume that Xt ∈ {1, 2, . . . , k} for some
k.

In this case, we can define the t-step transition probabilities

pij(t) = P (Xt = j|X0 = i)

and then, we can consider the conditions under which these probabilities
converge, i.e. that

pij(t) → π(j) as t→∞.



Definition 13
A Markov chain is said to be irreducible if for every i, j, there exists some t
such that pij(t) > 0.

Irreducibility implies that it is possible to visit every state in the chain starting
from any initial state.

Definition 14
A state, i, of a Markov chain is said to be recurrent if return to state i is
certain, that is if we define τi to be the number of steps needed to return to
state i, then P (τi < ∞) = 1. A recurrent state is further said to be positive
recurrent if the expected return time is finite, so that E[τi] <∞.

Definition 15
The period of a state, i, is defined to be d(i) = gcd{t : pii(t) > 0}. A state
with period 1 is said to be aperiodic.

It can be shown that if any state of an irreducible chain is positive recurrent,
then all states are and also that all states in such a chain have the same period.



The equilibrium distribution of a Markov chain

Theorem 28
For an irreducible, positive definite, aperiodic Markov chain with t step
transition density pij(t), then a unique equilibrium distribution π exists so that
for all i, j,

π(j) = lim
t→∞

pij(t).

Proof

It can be shown that a sufficient condition for the existence of a unique
stationary distribution is reversibility. A Markov chain with transition
probabilities pij = P (Xt+1 = j|Xt = i) is said to be reversible if there
exists a probability density π that satisfies detailed balance, so that for any
i, j, then

pijπ(i) = pjiπ(j).



Markov chains with continuous state space

It is possible to extend the previous arguments to Markov chains with a
continuous state space, although the conditions for the equilibrium distribution
are slightly more technical, see e.g. Robert and Casella (2004). In this case,
given a transition kernel, P (x, y), then a stationary distribution π must satisfy

π(y) =
∫
P (x, y)π(x) dx.

From a Bayesian viewpoint, the objective of the MCMC approach is thus to
construct a Markov chain with a given stationary distribution π which is the
Bayesian posterior distribution.



The Metropolis Hastings algorithm

Metropolis

This is a general algorithm for constructing a Markov chain and was introduced
by Metropolis et al (1953) and extended by Hastings (1970). The general
algorithm for generating a chain with equilibrium distribution π is as follows:



The algorithm

1. Given the current value, Xt = x, generate a candidate value,
y, from a proposal density q(y|x).

2. Calculate the acceptance probability

α(x, y) = min
{

1,
π(y)q(x|y)
π(x)q(y|x)

}
.

3. With probability α(x, y) define Xt+1 = y and otherwise reject
the proposed value and set Xt+1 = x.

4. Repeat until convergence is judged and a sample of the desired
size is obtained.



Why does this algorithm work?

The transition kernel of a move from x to y is

P (x, y) = α(x, y)q(y|x) +
(

1−
∫
α(x, y)q(y|x) dy

)
δx

where δx is the Dirac delta function at x.

Now, it is easy to show that

π(x)q(y|x)α(x, y) = π(y)q(x|y)α(y, x)

and that(
1−

∫
α(x, y)q(y|x) dy

)
δx =

(
1−

∫
α(y, x)q(x|y) dx

)
δy.



This implies that we have detailed balance

π(x)P (x, y) = π(y)P (y, x)

so that π is a stationary distribution of the chain.

It is important to notice that the Metropolis Hastings acceptance probability
only depends on pi through the ratio π(y)/π(x). This is particularly useful
in the Bayesian context, when the form of the posterior distribution is usually
known up to the constant of integration.

Also note that when the proposal density q(y|x) = π(y), then the Metropolis
Hastings acceptance probability is exactly 1 and the algorithm is the same as
standard Monte Carlo sampling.



Choosing a proposal density

One might expect that the Metropolis Hastings algorithm would be more
efficient if α(x, y) was high. Unfortunately, this is not usually the case. In
Roberts et al (1997), it is recommended that for high dimensional models, the
acceptance rate for random-walk algorithms (see later) should be around 25%
whereas in models of dimension 1 or 2, this should be around 50%.

However, general results are not available and the efficiency of a Metropolis
Hastings algorithm is usually heavily dependent on the proposal density q(y|x).



The independence and Metropolis samplers

The independence sampler defines a proposal density q(y|x) = q(y)
independent of x. This will often work well if the density q is similar to
π, although with somewhat heavier tails, similarly to the Monte Carlo rejection
sampler.

Another alternative is the Metropolis (1953), sampler which has the property
that q(x|y) = q(y|x). One small advantage of this approach is that the
acceptance probability simplifies down to the

α(x, y) =
π(y)
π(x)

.

A special case is the random walk Metropolis algorithm which assumes that
q(y|x) = q(|y − x|). For example, in univariate problems, one might consider
a normal proposal density q(y|x) = N

(
x, σ2

)
where the value of σ can be

adjusted to achieve an acceptable acceptance rate.



Example

Example 50
Suppose that we observe a sample of size n from a Cauchy distribution,
X|θ ∼ C(θ, 1), that is

f(x|θ) =
1

π (1 + (x− θ)2)
for −∞ < x <∞

Given a uniform prior for θ, then the posterior distribution is

p(θ|x) ∝
n∏
i=1

1
1 + (xi − θ)2

.

One way of sampling this distribution is to use a random walk Metropolis
algorithm. We could use a Cauchy proposal density, θ̃|θ ∼ C(θ, σ), so that

q(θ̃|θ) =
1

πσ

(
1 +

(
θ̃−θ
σ

)2
).



The scale parameter, σ, can be adjusted to achieve the desired acceptance
rate.

In this case, the probability of accepting a proposed value, θ̃ given the current
value, θ, is

α(θ, θ̃) = min

{
1,

n∏
i=1

1 + (xi − θ)2

1 + (xi − θ̃)2

}
.

As an alternative, an independence sampler could be proposed. In this case, we
might assume a Cauchy proposal distribution, θ̃ ∼ C(m, τ), where the location
parameter, m, is the sample median. In this case, the acceptance probability is

min

1,
n∏
i=1

1 + (xi − θ)2

1 + (xi − θ̃)2

1 +
(
θ̃−m
τ

)2

1 +
(
θ−m
τ

)2
 .



A sample of 10 data were generated from a Cauchy distribution, X ∼ C(1, 1),
with the following results:

x =
−5.1091 −0.7651 0.9261 1.0232 1.1669

1.2702 2.4846 2.5375 3.3476 3.6066

Both the random walk sampler (with σ = 0.3) and the independence sampler
(with τ = 0.5) were run for 10000 iterations, starting from the sample median.
For the random walk sampler, 66.7% of the proposed values were accepted
and for the independence sampler, around 52% of the proposals were accepted.
The samplers took a few seconds to run in each case.

Kernel density estimates of the posterior density of θ given a uniform prior are
given in the following diagram.



The estimated density function is approximately the same in each case.



Block Metropolis Hastings

When the dimension of X is large, then it can often be difficult to find a
reasonable proposal density. In this case, it is sensible to divide X into blocks,
say X = (X1, . . . , Xk) and construct a chain with these smaller blocks.

Suppose initially that X = (X1, X2) and define two proposal densities
q1(y1|x1, x2), q2(y2|x1, x2) to generate candidate values for each component.

Then, define the acceptance probabilities

α1(x1, y1|x2) = min
{

1,
π(y1|x2)q1(x1|y1, x2)
π(x1|x2)q1(y1|x1, x2)

}
α2(x2, y2|x1) = min

{
1,
π(y2|x1)q2(x2|x1, y2)
π(x2|x1)q2(y2|x1, x2)

}
where the densities π(x1|x2) and π(x2|x1) are the conditional densities and
π(x1|x2) ∝ π(x1, x2).

The algorithm now proceeds by successively sampling from each block in turn.



The slice sampler

The slice sampler (Neal 2003) is an attractive approach when the state space
is relatively low dimensional. The general algorithm for sampling from π is

1. Given a current value, Xt, simulate Ut+1 ∼ U [0, π(Xt)].

2. Simulate Xt+1 ∼ U [At+1], where At+1 = {x : π(x) ≥ Ut+1}.

It is clearly unimportant whether the constant of integration is known or not.



Example

Example 51
Suppose that we wish to sample from an exponential density X ∼ E(λ). Then,
we know that π(x) ∝ e−λx and a slice sampler could proceed as follows.

1. Given Xt, generate Ut+1 ∼ U
[
0, e−λxt

]
.

2. Generate Xt+1 ∼ U
[
0,−1

λ logUt+1

]
.

The following diagram illustrates the results of 10000 iterations when λ = 2.



The final diagram illustrates how the chain moves.





Gibbs sampling

We have seen Gibbs sampling previously in chapter 3. If we assume that X =
(X1, . . . ,Xk) has joint distribution π and that the conditional distributions
πi(Xi|X−i) are all available, where X−1 = (x1, . . . ,Xi−1,Xi+1, . . . ,Xk) then
the Gibbs sampler generates an (approximate) sample from π by successively
sampling from these conditional densities. Thus, assuming that the current
values are xt, then the algorithm is the following

1. Generate x1,t+1 ∼ π1(·|x−1,t).

2. Generate x2,t+1 ∼ π2(·|x1,t+1, x3,t, . . . , xk,t).

3. ...

4. Generate xk,t ∼ πk(·|x−k,t+1)



We can note that Gibbs sampling is a particular version of block Metropolis
Hastings algorithm where the proposal distribution for Xi is exactly the
conditional distribution πi(Xi|X−1) so that the acceptance probability is
always equal to 1.

Gibbs sampling can be applied in a remarkably large number of problems.



Example

Example 52
Suppose that the lifetime (in hours) of a machine, Y , has normal distribution so
that Y |X = x ∼ N (x, 1) and that we observe n machines during α hours. If,
at the end of this time, n1 machines have failed, with failure times y1, . . . , yn1

and n2 = n− n1 machines are still working, then the likelihood function is

l(x|y) ∝ exp
(
−n1

2
(x− ȳ1)2

)
(1− Φ (α− x))n2

where ȳ1 = 1
n1

∑n1
i=1 yi. Thus, an explicit form for the posterior of x (supposing

a uniform prior) is unavailable.

However, suppose that we knew the true values of the latent variables,
Yn1+1 = yn1+1, . . . , Yn = yn. Then it is clear that X|y ∼ N

(
ȳ, 1
n

)
where

ȳ = 1
n

∑n
i=1 yi.



Also, for i = n1 + 1, . . . , n, we have Yi|X = x, Yi > α ∼ T N (x, 1) truncated
onto the region Yi > α. Therefore, we can set up a simple Gibbs sampling
algorithm to estimate the posterior density of x as follows.

1. Set t = 0 and fix an initial value x0.

2. For i = n1 + 1, . . . , n, generate yi,t ∼ T N (xt, 1).

3. Calculate ȳt = 1
n

(∑n1
i=1 yi +

∑n
i=n1+1 yi,t

)
.

4. Generate xt+1 ∼ N
(
ȳt,

1
n

)
.

5. t = t+ 1. Go to 2.



Wiper (2007) considers a sample of 20 normally distributed lifetimes with mean
µ and standard deviation 5, (Y |X = x ∼ N (x, 25)), where 14 data less than
5 are observed completely and have mean 0.94 and the remaining 6 data are
truncated so that it is only known that they take values greater than 5 and
a uniform prior distribution for x is assumed. The following diagram shows
a histogram of the values of x generated from 10000 iterations of the Gibbs
algorithm along with a fitted density.
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Universal implementation of Gibbs sampling algorithms

In many cases, the conditional distributions used in Gibbs samplers are log-
concave. In these cases, universal Gibbs samplers can be set up by using the
ARS to sample these conditional distributions.

For non log-concave distributions, the adaptive rejection Metropolis sampler
(ARMS) was introduced in Gilks et al (1995).

These algorithms form the basis of the Winbugs program.

A disadvantage of such universal algorithms is however that they are often
inefficient. It is generally preferable to implement specific algorithms tailored
to the particular problem.



MCMC convergence assessment

When running an MCMC algorithm, it is important to assess when the sampled
values Xt have approximately converged to the stationary distribution π. This
will depend on how well the MCMC algorithm is able to explore the state space
also on the correlation between the Xt’s.

Secondly, we need to assess the convergence of MCMC averages, e.g.
1
T

∑T
t=1Xt → E[Xt] and finally we need to be able to assess how close

a given sample is to being independent and identically distributed.

One possibility is to consider running the chain various times with different,
disperse starting values. Then, we could assess the convergence of the chain
by examining when sample means of the functions of interest generated from
each run have converged. Other, formal diagnostics are given in Gelman and
Rubin (1992).

The alternative is to use a single run of the chain.



In this case, we can produce graphs of Xt against t to show the mixing of the
chain and any deviations from stationarity. The following diagram from Wiper
(2007) shows examples of badly mixing chains.
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Secondly, we can plot running means of the parameters of interest to see when
they have converged. The following diagram shows the estimates of E[X|y]
used from running 3 different algorithms for the problem of Example 52.
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It can be seen that the means appear to have converged after about 10000
iterations. Thus, one possibility is to run the sampler for longer, using these
initial iterations as a burn in period.



thirdly, we can plot the autocorrelation functions of the generated values. In
general, as we are generating from a Markov chain, the successive values, Xt,
will be positively correlated. Thus, if we wish to estimate, for example, the
variance of X, then we must take this correlation into account. The following
diagram shows the ACF of the parameter α in the pump failure problem
analyzed in Chapter 10.
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The autocorrelation has disappeared after about lag 5. One possibility is thus to
thin the sample, choosing just every 5th datum which are now, approximately
independent.



Other algorithms

Reversible jump

This approach (Green 1995) is basically a Metropolis Hasting sampler, which
allows the chain to move over a variably dimensioned model space.

Perfect sampling

This method, developed by Propp and Wilson (1996), uses the idea of coupling
from the past in order to generate an exact MCMC sample from π, avoiding
the need for converegence diagnostics. See e.g.

http://dbwilson.com/exact/

Particle filtering

This is an alternative approach to MCMC based on importance sampling and
particularly suitable for sequential inference problems. See e.g. Doucet et al
(2000) or

http://en.wikipedia.org/wiki/Particle_filter



Application III: Bayesian inference for
the dP lN distribution and the M/G/c/c

loss system
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The boxplots show the times spent (lhs) and times spent below 300 days (rhs)
of patients in a geriatric ward of a hospital.



These data have been analyzed previously using Coxian, phase type distributions
by e.g. Auśın et al (2003). However, the data are long tailed and therefore, a
heavy tailed model should be more appropriate.

Typically, long tailed data are modeled using a Pareto distribution, or a mixture
of Pareto distributions (Raḿırez et al 2008a) but although such a model can
capture the tail behaviour, it does not capture the body of the distribution.

The double Pareto lognormal (dP lN) distribution has been recently introduced
as a model for heavy tailed data by Reid and Jorgersen (2004).



The skewed Laplace and double Pareto lognormal distributions

It is easiest to define the dP lN distribution by starting from the skewed
Laplace distribution.

Definition 16
A random variable, Y is said to have a skewed Laplace distribution with
parameters µ, σ, α, β, that is Y ∼ SL(µ, σ, α, β), if

fY (y) =
αβ

α+ β
φ

(
y − µ

σ

)
[R(ασ − (y − µ)/σ) +R(βσ + (y − µ)/σ)]

for y ≥ 0, where R(y) is Mills’ ratio, that is

R(y) =
1− Φ(y)
φ(y)

.



If Y ∼ SL(µ, σ, α, β) is a skewed Laplace random variable, then we can write

Y = Z +W

where Z ∼ N
(
µ, σ2

)
, W = W1 −W2 and W1 ∼ E(α) and W2 ∼ E(β).

The conditional distributions of Z|Y = y and W1|Y = y, Z = z are:

fZ(z|y) = p

1
σφ
(
z−(µ−σ2β)

σ

)
Φc
(
y−(µ−σ2β)

σ

)Iz≥y + (1− p)
1
σφ
(
z−(µ+σ2α)

σ

)
Φc
(
y−(µ+σ2α)

σ

)Iz<y where

p =
R(βσ + (y − µ)/σ)

R(ασ − (y − µ)/σ) +R(βσ + (y − µ)/σ)
(1)

fW1(w1|w) =
(α+ β)e−(α+β)e1

Iw<0 + e−(α+β)wIw≥0
for e1 > max{w, 0}. (2)



Definition 17
Let Y ∼ SL(µ, σ, α, β). Then the distribution of S = exp(Y ) is the double
Pareto lognormal distribution and in particular, the mean of S is given by

E[S] =
αβ

(α− 1)(β + 1)
eµ+σ2

2

for α > 1.

The density of the dP lN distribution can be easily derived from the skewed
Laplace density formula.



Bayesian inference for the dP lN distribution

Reid and Jorgesen (2004) consider classical inference for this model using the
EM algorithm. Bayesian inference is examined by Raḿırez et al (2008b).

Suppose that we have standard prior distributions:

µ|σ2 ∼ N
(
m,

σ2

k

)
1
σ2

∼ G
(
a

2
,
b

2

)
α ∼ G (cα, dα)

α ∼ G (cβ, dβ)



Now, if we observe a sample x = (x1, . . . , xn) from the dP lN distribution,
we can transform the data to y = (y1, . . . , yn) where yi = log xi and
Y |µ, σ, α, β ∼ SL(µ, σ, α, β).

Clearly, the integration constant of the posterior density p(µ, σ, α, β|y) and
the marginal densities, p(µ|y), . . . , p(β|y) cannot be evaluated analytically.
However it is possible to set up a Gibbs sampling scheme by introducing latent
variables.

For i = 1, . . . , n, we can define zi, wi such that yi = zi + wi and Zi|yi, µ, σ2

is generated from the mixture of truncated normal distributions as in Equation
1. Also, we can define wi1, wi2 where wi = wi1 + wi2 and Wi1|wi, α, β has a
truncated exponential distribution as in Equation 2.

Conditional on the model parameters, both these distributions are easy to
sample.



Conditional on z = (z1, . . . , zn), then inference for µ, σ2 is conjugate so that

µ|z, σ2 ∼ N
(
km+ nz̄

k + n
,
σ2

k + n

)
1
σ2
|z ∼ G

(
a+ n

2
,
b+ (n− 1)s2z + kn

k+n(m− z̄)2

2

)
.

Conditional on w1 = (w11, . . . , wn1) then

α|w1 ∼ G (cα + n, dα + nw̄1·)

and, conditional on w2 = (w21, . . . , w2n), then

β|w2 ∼ G (cβ + n, dβ + nw̄2·) .

Thus, we can set up a Gibbs sampling algorithm:



Gibbs sampler

1. t = 0. Set initial values µ(0), σ(0), α0, β(0).

2. For i = 1, . . . , n

(a) Generate z
(t)
i from fZ(z|yi, µ(t−1), σ(t−1), αt−1, β(t−1)).

(b) Set w
(t)
i = yi − z

(t)
i

(c) Generate w
(t)
i1 from fW1

(w1|w(t)
i , α, β)

(d) Set w
(t)
2i = w

(t)
i + w

(t)
1i

3. Generate µ(t)|σ(t−1), z(t) from f(µ|σ(t−1), z(t)).

4. Generate σ(t) from f(σ|z(t)).

5. Generate α(t) from f(α|w(t)
1 ).

6. Generate β(t) from f(β|w(t)
2 ).

7. t = t+ 1. Go to 2.



Problems

What priors should be used?

The natural choice would be to use the standard, improper priors p(µ, τ) ∝ 1
τ ,

where τ = 1/σ2, p(α) ∝ 1
α and p(β) ∝ 1

β . However, in this case, it is easy
to show that the posterior distribution is improper, see e.g. Raḿırez et al
(2008b). In practice we use small but proper values of all parameters.

What initial values should we use?

A reasonable choice is to use the maximum likelihood estimates (assuming
these exist).

High autocorrelation

We are generating a lot of latent variables here. This leads to high
autocorrelation. It is useful to thin the sampled data. We take every
hundredth value generated.



Fitted histogram for the hospital data

The diagram shows the predictive distribution of the logged hospital occupancy
times. The fit seems fairly reasonable.
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Are the data long tailed?

Recall that the mean of the dP lN distributions only exists if α > 1.
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The probability that α < 1 is virtually zero.



Characteristics of the hospital queueing system

We assume that the hospital has a finite number of beds, c. Patients arrive at
the hospital according to a Poisson process with rate λ and are given a bed if
one is available and are otherwise lost to the system.

The number of patients in the hospital system can be modeled as a M/G/c
Erlang loss system, that is a M/G/c/c system with no queueing, see e.g.
Jagerman (1974).

For an Erlang loss system, then the offered load, θ, is defined to be the
expected number of arrivals in a service time, that is

θ = λE[S|µ, σ, α, β].



The equilibrium distribution of the number of occupied beds is given by

P (Nb = n|θ) =
θn/n!∑c
j=0 θ

j/j!

and therefore, the blocking probability or probability that an arriving patient is
turned away is

B(c, θ) = P (Nb = c|θ) =
θc/c!∑c
j=0 θ

j/j!
and the expected number of occupied beds is

E[Nb|θ] = θ (1−B(c, θ)) .

Given λ, c and a Monte Carlo sample of service time parameters, the above
quantities can be estimated by Rao Blackwellization.



Results for the hospital data

Following Auśın et al (2003), we shall suppose that the arrival rate is λ = 1.5.
The diagram shows the blocking probabilities for different numbers of beds.
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Optimizing the number of beds

Assume that the hospital accrues different costs for the total numbers of
occupied and unoccupied beds and the number of patients that are turned
away. The hospital gains profits for those patients treated. Assume then that
we have c beds when we shall suppose:

• Cost per occupied bed per time unit is rb so that the expected cost per
time unit due to occupation of beds is rbE[Nb|θ].

• Cost re per time unit for every empty bed so the expected cost per time
unit due to empty beds is re(c− E[Nb|θ]).

• Cost per patient turned away per time unit is rl when the expected cost per
time unit is rlB(c, θ).



This leads to an expected loss per time unit

L(c|λ, θ) = rbE[Nb|θ] + re(c− E[Nb|θ]) + rlB(c, θ)

= (rb − re)θ + rec+ {(re − rb)θ + rlλB(c, θ)}

Following Auśın et al (2003), we shall assume that re = 1, rl = 200 and here
we suppose that rb = 3.

Then, we can calculate the number of beds which minimize the expected loss.
This is the optimal number of beds from a Bayesian viewpoint.
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The optimal number of beds given this loss function is 47 The results are
slightly different to those in Auśın et al (2003) who found an optimal number
of c = 58 with a similar loss function and an alternative service model.



Application IV: Weibull mixture models
for heterogeneous survival data

The Weibull distribution is one of the most popular parametric models for
survival and reliability. The density function and survival function of a Weibull
distributed variable, X ∼ W(θ, a), are:

fW (x|θ, a) = θaxa−1e−θx
a

F̄ (x|θ, a) = e−θx
a



The likelihood function

Consider two possible cases:

i We observe n complete lifetimes x = x1, . . . , xn

ii We observe n complete lifetimes as earlier and m truncated lifetimes
xm+1, . . . , xm+n where it is supposed that the subjects are still living at
these times.

In case i. the likelihood function is

l(θ, a|x) ∝ θnan
n∏
i=1

xai e
−θ
∑n
i=1 x

a
i

and in case ii, we have

l(θ, a|x) ∝ θnan
n∏
i=1

xai e
−θ
∑m+n
i=1 xai



Prior and posterior distributions

Suppose that we set the following prior distributions

θ ∼ G(αθ, βθ)

a ∼ G(αa, βa)

then the conditional posterior distributions are

Case 1 Case 2

θ|a,x ∼ G (αθ + n, βθ +
∑n
i=1 x

a
i ) G

(
αθ + n, βθ +

∑m+n
i=1 xai

)
f(a|θ,x) ∝ aαa+n

∏n
i=1 x

a
i e
−(βaa+θ

∑n
i=1 x

a
i ) aαa+n

∏n
i=1 x

a
i e
−(βaa+θ

∑m+n
i=1 xai )



Gibbs Sampling

It is easy to set up a Gibbs sampler as follows:

1) t = 0. Set initial value a(0).

2) Sample θ(t+1) from f
(
θ|x, a(t)

)
3) Sample a(t+1) from f

(
a|x, θ(t+1)

)
.

4) t = t+ 1 Go to 2.

Clearly, step 2 is straightforward. For step 3, Tsionas (2002) uses a Metropolis
Hastings step and Maŕın et al (2005) consider a slice sampler:



A slice sampler for sampling from f(a|x, θ)

2a) Simulate a uniform random variable; u ∼ U
[
0, g

(
a(t)|x, θ(t)

)]
where g is the density formula on the previous page

2b) Simulate a(t+1) from a uniform distribution with support S(u) =
{a : g(a) ≥ u}.

In practice, the only difficulty with this algorithm is in evaluating the support
S(u), although as indicated in Neal (2003), this is straightforward to do by
simply sampling from a uniform distribution over a slightly larger space and
then checking that the constraint in 2b) is verified.



Mixtures of Weibull distributions

When the data are heterogeneous, it is more appropriate to consider a mixture
model

f(x|k,w,θ,a) =
k∑
j=1

wjfW (x|θj, aj).

In this case, a natural prior for the weights is w ∼ D(c, . . . , c︸ ︷︷ ︸
k

) and we can use

gamma priors for the remaining parameters as earlier.

However, given sample data, e.g. of type 1, then the likelihood becomes

l(w,θ,a|x) ∝
n∏
i=1

k∑
j=1

wjfW (xi|θj, aj)

which contains kn terms and for n relatively large, is intractable.



Simplifying the likelihood with latent variables

Let Z be a random variable such that P (Z = z|k,w) = wz. Then, if X comes
from the mixture of Weibulls model, we can write

X|Z = z ∼ W(θj, aj).

Suppose now that for each observed datum, we know the values z = z1, . . . , zn.
Then, the likelihood function simplifies to

l(w,θ,a, z|x) ∝
n∏
i=1

fW (xi|θzi, azi).



Posterior distributions

It is now easy to show that

P (Zi = z|x,w,θ,a) ∝ wzfW (xi|θz, az)
w|x,θ,a, z ∼ D(c+ n1, c+ n2, . . . , c+ nz)

where nj are the number of data allocated to element j of the mixture.

The conditional posterior distributions for each θj and aj are as earlier but
only considering the sample data assigned to element j of the mixture.



Gibbs sampler

1) t = 0. Set initial values w(0),θ(0),a(0).

2) For i = 1, . . . , n sample z
(t+1)
i from P

(
zi|x,w(t),θ(t),a(t)

)
.

3) Sample w(t+1) from f
(
w|x, z(t+1),θ(t),a(t)

)
.

4) For j = 1, . . . , k, sample θ
(t+1)
j from f

(
θj|x, z(t+1),w(t+1),a(t)

)
5) For j = 1, . . . , k, sample a

(t+1)
j from f

(
a|x, z(t+1),w(t+1),θ(t+1)

)
.

6) t = t+ 1 Go to 2.



Inference when k is unknown

In this case, we define a prior distribution for k, e.g. a truncated Poisson. Now,
the previous algorithm can be thought of as giving inference for the model
parameters conditional on k. We need to incorporate a step which allows for
the possibility of changing k and these parameters. There are two possibilities:
reversible jump (Richardson and Green 1997) or birth death MCMC (Stephens
2000). Here we use a birth death MCMC approach.



Simulated example

Sample of size 150 with 10% censoring simulated from a mixture of 3 Weibull
distributions with weights w = (0.6, 0.3, 0.1) and parameters θ = (0.1, 0.3, 0.5)
and a = (0.5, 1, 2).

MCMC algorithm ran for 60000 iterations with 10000 to burn in.

The first graphs illustrate the convergence of the algorithm and the following
graph shows the posterior distribution of k. The final graph shows a Kaplan
Meier estimate of the survival curve as well as the fitted and true curves





There is a high posterior probability of 3 components.



The survival curve is better estimated by the predicted curve than by the KM
estimate.



Real data example

Here we analyze data from 87 persons with lupus nephritis, see Abrahamowicz
et al. (1996). These patients were studied over a 15-year time period, during
which 35 deaths were recorded. In the original article, covariate information
was used to study the effects of disease duration prior to diagnosis on the risk
of mortality of patients, via a time dependent hazard rate model and suggest
that the usual proportional hazards model fits the data reasonably well.

Here, we do not use the covariate information and use the Weibull mixture
model to represent the possible inhomogeneity of the lifetime data.



The first graph shows a KM estimate and the fitted survival curve and the
second graph shows the estimated hazard curve.
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7. Estimation and hypothesis testing

Objective

In this chapter, we show how the election of estimators can be represented as
a decision problem. Secondly, we consider the problem of hypothesis testing
from a Bayesian viewpoint and illustrate the similarities and differences between
Bayesian and classical procedures.

Recommended reading

• Kass, R. and Raftery, A.E. (1995). Bayes factors. Journal of the American
Statistical Association, 90, 773–795.



Point estimation

Assume that θ is univariate. For Bayesians, the problem of estimation of θ
is a decision problem. Associated with an estimator, T , of θ, there is a loss
function L(T, θ) which reflects the difference between the value of T and θ.
Then, for an expert, E, with distribution p(θ), the Bayes estimator of θ is that
which minimizes the expected loss

E[L(T, θ)] =
∫
L(T, θ)p(θ) dθ.

Definition 18
The Bayes estimator, B, of θ is such that

E[L(B, θ)] ≤ E[L(T, θ)] for any T 6= B.



Bayes estimators for some given loss functions

The mean, median and mode of E’s distribution for θ can be justified as
estimators given certain specific loss functions.

Theorem 29
Suppose that E’s density of θ is p(θ). Then

1. If L(T, θ) = (T − θ)2 then B is E’s mean, B = E[θ].

2. If L(T, θ) = |T − θ|, then B is E’s median for θ.

3. If Θ is discrete and L(T, θ) =
{

0 if T = θ
1 if T 6= θ

then T is E’s modal estimator

for θ.



Proof

1.

E[L(T, θ)] =
∫

(T − θ)2p(θ) dθ

=
∫

(T − E[θ] + E[θ]− θ)2 p(θ) dθ

= (T − E[θ])2 + V [θ]

which is minimized when T = E[θ] = B is the Bayes estimator.

2. Exercise.

3. Exercise.



In the case that Θ is continuous, then if we consider the loss function

L(T, θ) =
{

0 if |T − θ| < ε
1 otherwise ,

then it is easy to see that T is the centre of the modal interval of width ε and
letting ε→ 0, T approaches the mode.



Interval estimation

A expert’s 95% credible interval for a variable is simply an interval for which
the expert, E, has a 95% probability We have previously used such intervals in
the earlier chapters.

Definition 19
If p(θ) is E’s density for θ, we say that (a, b) is a 100(1 − α)% credible
interval for θ if

P (a ≤ θ ≤ b|x) =
∫ b

a

p(θ) dθ = 1− α.

It is clear that in general, E will have (infinitely) many credible intervals for
θ. The shortest possible credible interval is called a highest posterior density
(HPD) interval.



Definition 20
The 100× (1− α)% HPD interval is an interval of form

C = {θ : f(θ) ≥ c(α)}

where c(α) is the largest number such that P (C) ≥ 1− α.

Example 53
X|µ ∼ N (µ, 1). Let f(µ) ∝ 1. Therefore, µ|x ∼ N (x̄, 1/n) and some 95%
posterior credible intervals are

(−∞, x̄+ 1.64/
√
n) or (x̄− 1.64/

√
n,∞) or (x̄± 1.96/

√
n)

which is the HPD interval.

We can generalize the definition of a credible interval to multivariate densities
p(θ). In this case, we can define a credible region C:

P (θ ∈ C) = 1− α.



Hypothesis testing

Assume now that we wish to test the hypothesis H0 : θ ∈ Θ0 versus the
alternative H1 : θ ∈ Θ1, where Θ0 ∪Θ1 = Θ and Θ0 ∩Θ1 = φ. In theory, this
is straightforward. Given a sample of data, x, we can calculate the posterior
probabilities P (H0|x) and P (H1|x), and under a suitable loss function, we can
decide to accept or reject the null hypothesis H0.

Example 54
Given the all or nothing loss,

L(H0, θ) =
{

0 if H0 is true
1 if H1 is true

we accept H0 if P (H0|x) > P (H1|x).



For point null and alternative hypotheses or for one tailed tests, then Bayesian
and classical solutions are often similar.

Example 55
Let X|θ ∼ N(θ, 1). We wish to test H0 : θ ≤ 0 against H1 : θ > 0. Given the
uniform prior, p(θ) ∝ 1, we know that θ|x ∼ N

(
x̄, 1

n

)
. Therefore,

P (H0|x) = P (θ ≤ 0|x)

= Φ
(
−
√
nx̄
)

where Φ(·) is the standard normal cdf.

This probability is equal to the usual, classical p-value for the test of H0 : θ = 0
against H1 : θ > 0.

P (X̄ ≥ x̄|H0) = P
(√
nX̄ ≥

√
nx̄|H0

)
= 1− Φ

(√
nx̄
)

= Φ
(
−
√
nx̄
)



The Lindley/Jeffreys paradox

For two-tailed tests, Bayesian and classical results can be very different.

Example 56
Let X|θ ∼ N (θ, 1) and suppose that we wish to test the hypothesis H0 : θ = 0
versus the alternative H1 : θ 6= 0.

Assume first that
p0 = P (H0) = 0.5 = P (H1) = p1

with a normal prior distribution,

θ|H1 ∼ N (0, 1)

and suppose that we observe the mean x̄ of a sample of n data with likelihood

l(θ|x̄) =
( n
2π

)1
2
exp

(
−n

2
(θ − x̄)2

)
.



Then, we can calculate the posterior probability, α0 = P (H0|x).

α0 = P (H0|x̄)

=
p0l(θ = 0|x̄)

p0l(θ = 0|x̄) + p1l(θ|x̄)

=
p0l(θ = 0|x)

p0l(θ = 0|x) + p1

∫
l(θ|x̄)p(θ|H1) dθ

=
l(θ = 0|x)

l(θ = 0|x̄) +
∫
l(θ|x̄)p(θ|H1) dθ

= K
( n
2π

)1
2
exp

(
−nx̄

2

2

)
for a constant

K−1 = l(θ = 0|x̄) +
∫
l(θ|x̄)p(θ|H1) dθ.



We can also evaluate the second term in the denominator.

l(θ|x̄)p(θ|H1) =

(
n

2π

)1
2

exp

(
−
n

2
(θ − x̄)

2

)(
1

2π

)1
2

exp

(
−

1

2
θ

2

)
=

√
n

2π
exp

(
−

1

2

[
n(x̄− θ)

2
+ θ

2
])

=

√
n

2π
exp

(
−

1

2

[
(n+ 1)

(
θ −

nx̄

n+ 1

)2

+
nx̄2

n+ 1

])

and, integrating, we have,

∫
l(θ|x̄)p(θ|H1)dθ =

(
n

(n+ 1)2π

)1
2

exp

(
−

1

2

nx̄2

n+ 1

)
.



Therefore, we have

K
−1

=

(
n

2π

)1
2

exp

(
−
nx̄2

2

)
+

(
n

(n+ 1)2π

)1
2

exp

(
−

1

2

nx̄2

n+ 1

)

=

(
n

2π

)1
2

exp

(
−
nx̄2

2

)(
1 +

1
√
n+ 1

exp

(
−n2x̄2

2(n+ 1)

))

so the posterior probability of H0 is

α0 =
{

1 +
1√
n+ 1

exp
(
−n2x̄2

2(n+ 1)

)}−1

.

Now suppose that x̄ = 2/
√
n > 1.96/

√
n.



Therefore, for the classical test of H0 against H1, with a fixed significance
level of 95%, the result is significant and we reject the null hypothesis H0.
However, in this case, the posterior probability is

α0 =
{

1 +
1√
n+ 1

exp
(
− 2n
n+ 1

)}−1

→ 1 when n→∞.

Using Bayesian methods, a sample that leads us to reject H0 using a classical
test gives a posterior probability of H0 that approaches 1 as n → ∞. This is
called the Lindley / Jeffreys paradox. See Lindley (1957).



Comments

The choice of the prior variance of θ is quite important but the example also
illustrates that it is not very sensible, from a classical viewpoint, to use fixed
significance levels as n increases. (In practice, smaller values of α are virtually
always used when n increases so that the power of the test is maintained).

Also, point null hypotheses do not appear to be very sensible from a Bayesian
viewpoint. The Lindley / Jeffreys paradox can be avoided by considering an
interval (−ε, ε) and considering a prior distribution over this interval, see e.g.
Berger and Delampady (1987). The main practical difficulty then lies in the
choice of ε.



Bayes factors

Good

The original idea for the Bayes factor stems from Good (1958) who attributes
it to Turing. The motivation is to find a more objective measure than simple
posterior probability.



Motivation

An important problem in many contexts such as regression modeling is that of
selecting a model Mi from a given class M = {Mi : i = 1, . . . , k}. In this
case, given the a prior distribution P (·) over the model space, we have

P (Mi|x) =
P (Mi)f(x|Mi)∑k
j=1P (Mj)f(x|Mj)

,

and given the all or nothing loss function, we should select the most probable
model.

However, the prior model probabilities are strongly influential in this choice and,
if the class of possible models M is large , it is often difficult or impossible
to precisely specify the model probabilities P (Mi). Thus, it is necessary
to introduce another concept which is less strongly dependent on the prior
information.



Consider two hypotheses (or models) H0 and H1 and let p0 = P (H0),
p1 = P (H1) and α0 = P (H0|x) and α1 = P (H1|x). Then Jeffreys (1961)
defines the Bayes factor comparing the two hypotheses as follows.

Definition 21
The Bayes factor in favour of H0 is defined to be

B0
1 =

α0/α1

p0/p1
=
α0p1

α1p0
.

The Bayes factor is simply the posterior odds in favour of H0 divided by the
prior odds. It tells us about the changes in our relative beliefs about the two
models caused by the data. The Bayes factor is almost an objective measure
and partially eliminates the influence of the prior distribution in that it is
independent of p0 and p1.



Proof

α0 = P (H0|x) =
p0f(x|H0)

p0f(x|H0) + p1f(x|H1)

α1 =
p1f(x|H1)

p0f(x|H0) + p1f(x|H1)

α0

α1
=

p0f(x|H0)
p1f(x|H1)

B0
1 =

f(x|H0)
f(x|H1)

which is independent of p0 and p1.

The Bayes factor is strongly related to the likelihood ratio, often used in
classical statistics for model choice. If H0 and H1 are point null hypotheses,
then the Bayes factor is exactly equal to the likelihood ratio.



Example 57
Suppose that we wish to text H0 : λ = 6 versus H1 : λ = 3 and that we
observe a sample of size n from an exponential density with rate λ,

f(x|λ) = λe−λx.

Then the Bayes factor in favour of H0 in this case is

B0
1 =

l(λ = 6|x)
l(λ = 3|x)

=
6ne−6nx̄

3ne−3nx̄

= 2ne−3nx̄.



For composite hypotheses however, the Bayes factor depends on the prior
parameter distributions. For example, in the case that H0 is composite, then
the marginal likelihood is

f(x|H0) =
∫
f(x|θ,H0)p(θ|H0) dθ

which is dependent on the prior parameter distribution, p(θ|H0).



Consistency of the Bayes factor

We can see that the Bayes factor always takes values between 0 and infinity.
Furthermore, it is obvious that B0

1 = ∞ if P (H0|x) = 1 and B0
1 = 0 if

P (H0|x) = 0.

Thus, the Bayes factor is consistent so that if H0 is true, then B0
1 →∞ when

n→∞ and if H1 is true, then B0
1 → 0 when n→∞.

Returning to Example 57, it can be seen that if λ = 6, then when n→∞, we
have

B0
1 → 2ne−n/2 →∞.



Bayes factors and scales of evidence

We can interpret the statistic 2 logB0
1 as a Bayesian version of the classical

log likelihood statistic. Kass and Raftery (1995) suggest using the following
table of values of B0

1 to represent the evidence against H1.

2 log10B
0
1 B0

1 Evidence against H1.

0 a 2 1 a 3 Hardly worth commenting

2 a 6 3 a 20 Positive

6 a 10 20 a 150 Strong

> 10 > 150 Very strong

Jeffreys (1961) suggests a (similar) alternative scale of evidence.



Relation of the Bayes factor to standard model selection criteria

The Schwarz (1978) criterion or Bayesian information criterion for evaluating
a model, M is

BIC = −2 log l(θ̂|M,x) + d log n

where θ̂ is the MLE and d is the dimension of the parameter space Θ for M.

Then, it is possible to show that when the sample size, n→∞, then

BIC0 −BIC1 ≈ −2 logB0
1

where BICi represents the Bayesian information for model i and B0
1 is the

Bayes factor. See Kass and Raftery (1995).



The deviance information criterion (DIC)

The DIC (Spiegelhalter et al 2002) is a Bayesian alternative to the BIC,
AIC etc. appropriate for use in hierarchical models, where the Bayes factor is
difficult to calculate. For a model M and sample data, x, the deviance is:

D(x|M,θ) = −2 log l(θ|M,x).

The expected deviance, D̄ = E[D|M,θ], is a measure of lack of fit of the
model. The effective number of model parameters is

pD = D̄ −D(x|M, θ̄)

where θ̄ is the posterior mean. Then the deviance information criterion is
DIC = D̄ + pD.



An advantage of the DIC is that it is easy to calculate when using Gibbs
sampling and this criterion is implemented automatically in Winbugs.

For more details, see:

http://en.wikipedia.org/wiki/Deviance_information_criterion

However, the DIC has some strange properties which make it inappropriate in
certain contexts, e.g. it is not guaranteed that pD is positive. For alternatives,
see e.g. Celeux et al (2006).



Calculation of the Bayes factor

In many cases, when non-conjugate prior distributions are used, the marginal
likelihoods f(x|H0) and f(x|H1) needed for the calculation of the Bayes factor
cannot be evaluated analytically. In this case, there are various possibilities:

• Use of an alternative criterion, e.g. BIC or DIC.

• Use of the Laplace approximation. See chapter 8.

• Gibbs sampler or MCMC based approximations of the marginal likelihood.
See e.g. Gelfand and Dey (1994), Chib (1995).



Chib’s method

Suppose that for a given model, the data are X|θ ∼ f(·|θ). Given data,
x, then we wish to estimate the marginal likelihood f(x) =

∫
l(θ|x)p(θ) dθ,

where p(·) is the prior for θ.

Assume that p(θ|x) and therefore f(x), cannot be evaluated analytically, but
that we can set up a Gibbs sampler in order to simulate a sample from p(θ|x).

The assume for simplicity that θ = (θ1,θ2) and that the conditional
distributions p(θ1|x,θ2) and p(θ2|x,θ1) are available. Chib’s method for
estimating the marginal likelihood proceeds as follows:

First note that via Bayes theorem, for any θ, we have

p(θ|x) =
f(x|θ)p(θ)

f(x)
.



Therefore,

log f(x) = log f(x|θ) + log p(θ)− log p(θ|x)

= log l(θ|x) + log p(θ)− log p(θ2|x,θ1)− log p(θ1|x)

Now, assume that we run a Gibbs sampler for T iterations. Then we can fix
some high posterior density point θ̃ = (θ̃1, θ̃2) such as the estimated posterior
mode or posterior mean. Then all of the terms composing the log marginal
likelihood can be estimated directly from the Gibbs sampler output, e.g.

log p(θ̃1|x) ≈ 1
T

T∑
t=1

log p
(
θ̃1|x,θ(t)

2

)
.



If θ is higher (k) dimensional then the algorithm may be operated in the same
way but now writing

log p(θ̃|x) = log p(θ̃1|x) + log p(θ̃2|x, θ̃1) + . . .+ log p(θ̃k|x, θ̃1, . . . , θ̃k−1).

In this case, p(θ̃1|x) can be estimated directly from the Gibbs output as earlier.
In order to estimate p(θ̃2|x, θ̃1), we can run the Gibbs sampler for a further T
iterations but holding θ1 = θ̃1 fixed when we have

p(θ̃2|x, θ̃1) ≈
1
N

T∑
t=1

p
(
θ̃2|x, θ̃1,θ

(t)
3 , . . . ,θ

(t)
k

)
.



In order to estimate p(θ̃3|x, θ̃1, θ̃2), the algorithm is run again but with
θ1 = θ̃1 and θ2 = θ̃2 fixed and so on. Thus, in order to estimate all the terms,
we need to run the Gibbs sampler a total of k times.

In general, this algorithm will be efficient if the point θ̃ is chosen to have
sufficiently high mass, although in theory, it will work for any choice of θ̃. The
disadvantage of the algorithm is the extra execution time needed to run the
Gibbs sampler various times.

Chib and Jeliazkov (2001,2005) provide extensions of this algorithm to more
complex Markov chain Monte Carlo samplers.



Problems and generalizations of the Bayes factor

If we use improper priors for the model parameters, then in general, the Bayes
factor is not defined because

B0
1 =

l(H0|x)
l(H1|x)

=
∫
p(θ0|H0)f(x|θ0) dθ0∫
p(θ1|H1)f(x|θ1) dθ1

depends on the undefined constants of the prior distributions p(·|H0) and
p(·|H1).

In such cases, we need to modify the Bayes factor. Various possibilities have
been considered.



Intrinsic Bayes factors

Berger

This approach was developed by Berger and Perrichi (1996).



The idea is to divide the sample into two parts; x = (y, z) where y is thought
of as training data.

Then we can define the partial Bayes factor in favour of model H0 based on
the data z, after observing y as

B(z|y) =
∫
f(θ0|y)f(z|θ0) dθi∫
f(θ1|y)f(z|θ1) dθ1

which exists whenever the distributions f(θi|y) are proper for i = 0, 1, even
though the priors are improper.

A problem with the partial Bayes factor is that this depends on the arbitrary
partition of x = (y, z). One possibility is to define a measure based on
averaging over all of the possible sets y of the least dimension that gives a
proper Bayes factor.



One possibility is to define an arithmetic Bayes factor

BA =
1
L

L∑
l=1

B(z(l)|y(l)),

where the index l runs over all sets y(l) of minimum dimension. This has the
disadvantage in the model selection context that if we define Bij as the Bayes

factor in favour of model i as against model j, then BiAj 6= 1/BjAi so that if
we wish to use this Bayes factor in this context, then it is necessary to have a
predefined ordering of the models under consideration.

An alternative which does not require such an ordering constraint is the
geometric Bayes factor

BG =

{
L∏
l=1

B(z(l)|y(l))

}1/L

.



Example 58
Recall Example 55. Suppose that we wish to calculate the Bayes factor in
favour of H0 as against H1. Earlier, we assumed a uniform prior for θ, i.e.

p(θ|H0) ∝ 1 and p(θ|H1) ∝ 1.

Obviously, the Bayes factor is not defined but if we observe a single datum xl,
we have

θ|xl ∼ N (xl, 1)
which is proper, and

p(θ|H0, xl) =
p(θ|xl)

P (θ ≤ 0|xl)
=
p(θ|xl)
Φ(−xl)

p(θ|H1, xl) =
p(θ|xl)

1− Φ(−xl)



Therefore, defining z(l) = (x1, . . . , xl−1, xl+1, . . . , xn), we are able to calculate
the intrinsic Bayes factor.

B(z(l)|xl) =
1− Φ(−xl)

Φ(−xl)

∫ 0

−∞
1√
2π
e−

1
2(θ−xl)

2 (
1
2π

)n−1
2 exp

(
−1

2

∑
i 6=l(xi − θ)2

)
dθ∫∞

0
1√
2π
e−

1
2(θ−xl)2

(
1
2π

)n−1
2 exp

(
−1

2

∑
i 6=l(xi − θ)2

)
dθ

=
1− Φ(−xl)

Φ(−xl)

∫ 0

−∞ exp
(
−1

2

∑n
i=1(xi − θ)2

)
dθ∫∞

0
exp

(
−1

2

∑n
i=1(xi − θ)2

)
dθ

=
1− Φ(−xl)

Φ(−xl)

∫ 0

−∞ exp
(
−n

2(θ − x̄)2
)
dθ∫∞

0
exp

(
−n

2(θ − x̄)2
)
dθ

=
1− Φ(−xl)

Φ(−xl)
Φ
(
−
√
nx̄
)

1− Φ
(
−
√
nx̄
) so the intrinsic, geometric Bayes factor is

B
0
G1 =

Φ
(
−
√
nx̄
)

1− Φ
(
−
√
nx̄
) ( n∏

l=1

1− Φ(−xl)
Φ(−xl)

)1
n

.



Fractional Bayes factors

O’ Hagan

This approach stems from O’ Hagan (1995).



We define BF (b) = g0(x|b)
g1(x|b)

where

gi(x|b) =
∫

p(θi|Hi)f(x|θi)∫
p(θi|Hi) {f(x|θi)}b dθi

dθi

for i = 0, 1, where b may be interpreted as the proportion of the data chosen
for the training sample. We might elect the minimum value of b possible
although larger values will produce more robust results.



Example 59
In Example 55, let b = 1/n. Therefore

g0(x|b) =

∫ 0

−∞
(

1
2π

)n/2 exp
(
−1

2

∑n
i=1(xi − θ)2

)
dθ∫ 0

−∞
1√
2π

exp
(
− 1

2n

∑n
i=1(xi − θ)2

)
dθ

=

(
1
2π

)n−1
2 exp

(
−(n−1)s2

2

)
Φ (−

√
nx̄)

exp
(
−(n−1)s2

2n

)
Φ (−x̄)

and similarly,

g1(x|b) =

(
1
2π

)n−1
2 exp

(
−(n−1)s2

2

)
(1− Φ (−

√
nx̄))

exp
(
−(n−1)s2

2n

)
(1− Φ (−x̄))

and therefore

BF

(
1
n

)
=

Φ (−
√
nx̄)

1− Φ (−
√
nx̄)

(
1− Φ (−x̄)

Φ (−x̄)

)
.



Fractional and intrinsic Bayes factors do not have all of the properties of simple
Bayes factors. See O’ Hagan (1997). Also, many variants are available in
particular for intrinsic Bayes factors.

Also there are a number of alternative approaches for Bayesian model
comparison. See e.g. Wassermann (2000)

http://www.stat.cmu.edu/cmu-stats/tr/tr666/tr666.html



Application II continued: choosing
between half-normal and half-t models

In Application II, we considered fitting a half-normal model (M0) to athletes
body fat data and we suggested that a half-t distribution (M1) might be a
reasonable alternative.

Analogous to the half-normal model, we write the half-t model asX = ξ+ 1√
τ
|T |

where T |d ∼ Td is a Student’s t random variable. To simplify the inference,
we introduce a latent variable θ such that

θ|d ∼ G
(
d

2
,
d

2

)
when

X|θ, ξ, τ,M1 ∼ HN
(
ξ,

1
τθ

)
has a half-normal distribution.



Assume that we define improper prior distributions p(ξ, τ) ∝ 1
τ as for the

half-normal model and a proper, exponential prior for d, say d ∼ E(κ). Then,
given a sample, x, the conditional posteriors are:

τ |x, d, ξ,θ ∼ G
(
n

2
,

∑n
i=1 θi(xi − ξi)2

2

)
ξ|x, d, τ,θ ∼ T N

(∑n
i=1 θixi∑n
i=1 θi

,
1

τ
∑n
i=1 θi

)
truncated so that ξ < min{x}

θi|x, d, ξ, τ ∼ G
(
d+ 1

2
,
d+ τ(xi − ξ)2

2

)
p(d|x, ξ, τ,θ) ∝ e−κd

(d/2)
nd
2

Γ(d/2)n

n∏
i=1

θ
d
2
i exp

(
−d

2

n∑
i=1

θi

)

The only density that has a slightly complicated form is that of d and the joint
posterior can be sampled using a Gibbs algorithm with a Metropolis step for
d.



The histogram shows an estimate of the posterior of d when the half-t model
was fitted to the athletes data with a prior distribution d ∼ E(1/20).
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The distribution is quite long tailed although the mode of d is below 10. We
saw earlier that the fit of the half-t model looks better than the half-normal
fit, but how can we calculate a Bayes factor?



Calculation of the Bayes factor

We saw earlier that, in general if improper prior distributions are used, then
the Bayes factor is undefined. However, in this case, the usual Bayes factor
construction:

B0
1 =

f(x|M0)
f(x|M1)

=
∫
f(x|ξ, τ,M0)p(ξ, τ |M0) dξdτ∫

f(x|d, ξ, τ,M1)p(ξ, τ |M1)p(d|M1) dξdτ, dd

=

∫min{x}
−∞

∫∞
0
f(x|ξ, τ,M0)1

τ dξdτ∫∞
0

∫min{x}
−∞

∫∞
0

∫
f(x|d, ξ, τ,M1)1

τp(d|M1) dξdτdd

can be shown to produce a well-calibrated, intrinsic Bayes factor because the
support and improper priors for ξ, τ are the same under both models. See
Cano et al (2004).



The numerator of this formula can be calculated explicitly for the half-normal
model. Thus:∫ min{x}

−∞

∫ ∞

0

f(x|ξ, τ,M0)
1

τ
dξdτ =

2Γ
(
n−1

2

)
√
n

(
2√

(n− 1)πs

)n−1

Φn−1

(
min{x} − x̄

s/
√
n

)
.

The denominator can be calculated using Chib’s approach. We can write

log f(x|M1) = log p(ξ̃, τ̃) + log p(d̃) + log l(ξ̃, τ̃ , d̃|x)

− log p(ξ̃|x)− log p(τ̃ |x, ξ̃)− log p(d̃|x, ξ̃, τ̃)

and the integrating constant of the density in the final term in this expression
can be evaluated by using standard, one dimensional, numerical integration.

Using this approach, the Bayes factor in favour of the half-t model is B1
0 = 4

which suggests positive evidence in favour of this model. For more details, see
Wiper et al (2008).
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8. Large samples

Le Cam

Le Cam (1953) was the first to formally demonstrate the asymptotic normality
of the posterior distribution.

Objective

Illustrate the limiting properties of Bayesian distributions.



Recommended Reading

• Bernardo, J.M. and Smith, A.F.M. (1994), Bayesian Theory, Section 5.3.

• Gelman et al (2003), Chapter 4, Sections 4.1 – 4.3 and Appendix B.



If the sample size is very large, it seems obvious that the prior parameter values
will have very little influence.

Example 60
X|µ, σ2 ∼ N (µ, σ2). Suppose that we use a conjugate prior distribution.
Then, for example:

E[µ|x] =
cm+ nx̄

c+ n
→ x̄

when n→∞.

In fact, we should usually expect that the properties of Bayesian posterior
distributions will be similar to those of maximum likelihood estimators in the
limit. The following results illustrate this.



Asymptotic results when Θ is discrete

The following theorem demonstrates that, in the discrete case, as long as the
prior probability of the true value, θt, is positive, then the posterior probability
density of θ converges to a point mass at θt.

Theorem 30
Let X|θ ∼ f(·|θ) where the parameter space Θ = {θ1,θ2, . . .} is countable.
Suppose that θt ∈ Θ is the true value of θ.

Suppose that the prior distribution is P (θ) where P (θi) > 0 ∀ i and we assume
that ∫

f(x|θt) log
f(x|θt)
f(x|θi)

dx > 0 ∀ i 6= t. Then

limn→∞P (θt|x) = 1 and limn→∞P (θi|x) = 0 ∀ i 6= t.

An interesting extension of this result is that if θt /∈ Θ, then the posterior
distribution converges to a point mass at the point that gives a parametric
model closest (in the sense of Kullback-Liebler distance) to the true model.



Proof Let x = (x1, . . . , xn).

P (θi|x) =
P (θi)f(x|θi)∑
iP (θi)f(x|θi)

=
P (θi)f(x|θi)/f(x|θt)∑
iP (θi)f(x|θi)/f(x|θt)

=
exp (logP (θi) + Si)∑
i exp (logP (θi) + Si)

where Si =
n∑
j=1

log
f(xj|θi)
f(xj|θt)

.

Conditional on θt, Si is the sum of n i.i.d. random quantities and therefore,
by the strong law of large numbers, we have

lim
n→∞

1
n
Si =

∫
f(x|θt) log

f(x|θi)
f(x|θt)

dx.

This quantity is negative if i 6= t and zero if i = t. Therefore, when n → ∞,
St → 0 y Si → −∞ if i 6= t, which proves the theorem.



The continuous case

The previous arguments cannot be used in the continuous case, as now, the
probability at any particular value of θ is 0. Instead, we now define θt to be
the value of θ that maximizes the Kullback-Liebler information

H(θ) =
∫

log
ft(x)
f(x|θ)

ft(x) dx

of the distribution f(·|θ) with respect to the true distribution of X, say ft(·).
Now we can demonstrate the following theorem.

Theorem 31
If θ is defined on a compact set and A is a neighbourhood of θt with non-zero
prior probability, then

P (θt ∈ A|x) → 1 as n→∞.

Proof See Gelman et al (2003).



Convergence to normality

Theorem 32
Under certain regularity conditions, the posterior distribution of θ tends to a
normal distribution with mean θt and variance nJ(θt)−1 where J(θ) is the
Fisher information.

Proof Suppose that θ is univariate and let θ̂ be the posterior mode. Then a
Taylor expansion of log p(θ|x) around the mode is

log p(θ|x) = log p(θ̂|x) +
1
2
(θ − θ̂)2

d2

dθ2
log p(θ|x)|θ=θ̂ + . . .

The first term in this expression is constant and the second term is

(θ − θ̂)2
d2

dθ2
log p(θ|x)|θ=θ̂ = (θ − θ̂)2

d2

dθ2
log

p(θ)f(x|θ)
f(x)

∣∣∣∣
θ=θ̂

= (θ − θ̂)2
(
d2

dθ2
log p(θ̂) +

n∑
i=1

d2

dθ2
log f(xi|θ)|θ=θ̂

)
.



Now the first bracketed term, d2

dθ2
log p(θ̂) is constant, whereas the second term

(thinking of the xi as variables) is the sum of n i.i.d. random variables with
negative mean.

As the posterior mode is a consistent estimator, it follows that if ft(x) = f(x|θt)
is the true distribution, then the mean is −J(θt). Otherwise, the mean is

Eft

[
d2

dθ2
log f(x|θ)

]
evaluated at θ = θt which is also negative by definition of

θt.

Therefore, the coefficient of the second term in the Taylor series increases with
order n. Similarly, the higher order terms can also be shown to increase no
faster than order n.

Letting n → ∞, we thus have that the importance of the higher order terms
of the Taylor expansion fades relative to the quadratic term as the mass of
the posterior concentrates around θt and the normal approximation grows in
precision.

Here, we used the mode as a consistent estimator of θt. We could equally use
the mean or the classical MLE.



Theorem 33
Let Xi|θ ∼ f(·|θ) with prior distribution f(θ). Given data x, when n→∞,

1. θ|x ≈ N (E[θ|x], V [θ|x]), supposing that the mean and variance of θ exist,

2. θ|x ≈ N (θ̂, I(θ̂)−1) where θ̂ is the mode. I(θ) is the observed information

I(θ) = − d2

dθ2 log(f(θ|x)).

3. θ|x ≈ N (ˆ̂θ, I?(ˆ̂θ)−1) where
ˆ̂
θ is the MLE of θ, supposing this exists and

I?(θ) = − d2

dθ2 log(f(x|θ))

4. θ|x ≈ N (ˆ̂θ, I??(ˆ̂θ)−1) where I??(θ) = −nEX
[
d2

dθ2 log(f(X|θ))
]
.

Proof See Bernardo and Smith (1994) or Gelman et al (2003).



Approximating a beta posterior distribution

Normally, the first approximation will be better than the second and so on. In
many cases, the posterior mean and variance are difficult to evaluate but it is
much easier to calculate the mode and observed information.

Example 61
Let X|θ ∼ BI(n, θ) and θ ∼ B(α, β). Then, θ|x ∼ B(α+ x, β + n− x). If n
is large, we can approximate the posterior distribution of θ. Here we compare
the four approximations given earlier.

Firstly, approximating with a normal using the beta mean and variance we have

θ|x ≈ N
(

α+ x

α+ β + n
,

(α+ x)(β + n− x)
(α+ β + n)2(α+ β + n+ 1)

)
.



Secondly, we can calculate the mode of the beta distribution.

log p(θ|x) = c+ (α+ x− 1) log(θ) + (β + n− x− 1) log(1− θ)

d

dθ
=

α+ x− 1

θ
−
β + n− x− 1

1− θ

θ̂ =
α+ x− 1

α+ β + n− 2

is the mode. Also:

d2

dθ2
log(f(θ|x)) = −

α+ x− 1

θ2
−
β + n− x− 1

(1− θ)2

I(θ̂) =
α+ x− 1

θ̂2
+
β + n− x− 1

(1− θ̂)2

=
(α+ β + n− 2)3

(α+ x− 1)(β + n− x− 1)
and therefore

θ|x ≈ N
(

α+ x− 1

α+ β + n− 2
,
(α+ x− 1)(β + n− x− 1)

(α+ β + n− 2)3

)



Thirdly, note that the MLE is
ˆ̂
θ = x

n and I?(ˆ̂θ) = n3

x(n−x). Thus

θ|x ≈ N
(
x

n
,
x(n− x)

n3

)
and finally, note that

− d2

dθ2
log(f(X|θ)) =

X

θ2
+

n−X

(1− θ)2

I??(θ) =
nθ

θ2
+
n(1− θ)
(1− θ)2

=
n

θ
+

n

(1− θ)

I??(ˆ̂θ) =
n3

x(n− x)

and we have the same approximation.



When n >> α + β the approximations will give similar results but in small
samples, the results could be quite different.

Example 62
Suppose that α = β = 2 and x = 20, n = 30. We shall use the different
approximations and estimate P (θ > 0.5|data).

We have θ|x ∼ B(22, 12) and using Matlab, we can show that P (θ > 0.5|x) =
0.95993 is the exact probability.

Now, using the first approximation, we have θ|x ≈ N
(

22
34,

22×12
342×35

)
=

N (0.64706, 0.006525) and we find P (θ > 0.5|x) ≈ P (Z > −1.8206) =
0.9660.

Approximating using the mode, we have θ|x ≈ N
(
21
32,

21×11
323

)
=

N (0.65625, 0.00705) and thus P (θ > 0.5|x) ≈ P (Z > −1.8610) = 0.9686.

Using the classical approximations, θ|x ≈ N
(
20
30,

20×10
303

)
=

N (0.66667, 0.00741) and thus, P (θ > 0.5|x) ≈ P (Z > −1.9365) = 0.9735.



When the theorem cannot be applied

In some situations we cannot apply the results of the theorem. For example

• If θt is a boundary point of Θ,

• If the prior mass density around θt is 0,

• If the posterior density is improper,

• If the model is not identifiable.

Example 63
Suppose that we have the model

f(x|θ1, . . . , θk) = w1f(x|θ1) + . . .+ wkf(x|θk)

i.e. a mixture of k densities from the same family.



Then given the data, the likelihood will be multimodal because the model is
not identifiable. Thus, we need to restrict the parameter space Θ in order to
identify the model.

One possibility is to order the parameters, θ1 < . . . < θk, to identify the model.

See Gelman et al (2003) for more examples.



The Laplace approximation

Tierney and Kadane (1996) introduced this generalization of the normal
approximation in order for the problem of estimating posterior moments.

Assume that we wish to estimate

E[g(θ)|x] =
∫
g(θ)l(θ|x)p(θ) dθ∫
l(θ|x)p(θ) dθ

where it is supposed that g(·) is non negative.

Then we can write this expectation as

E[g(θ)|x] =
∫

exp(−nh∗(θ)) dθ∫
exp(−nh(θ)) dθ

where

−nh(θ) = log p(θ) + log l(θ|x)

and − nh∗(θ) = log g(θ) + log p(θ) + log l(θ|x).



Then, we use the Taylor expansion of h (h∗) about the mode θ̂ (
ˆ̂
θ).

−h(θ̂) = max
θ

(−h(θ)) − h∗(ˆ̂θ) = max
θ

(−h∗(θ))

and retain the quadratic terms. We estimate the denominator by∫
exp(−nh(θ)) dθ ≈

√
2πσn−1/2 exp(−nh(θ̂))

where σ =
(
d2

dθ2
h(θ)|θ=θ̂

)−1/2

and similarly for the numerator.

This leads to the following estimate:

E[g(θ|x)] ≈
(
σ∗

σ

)
g(ˆ̂θ)f(ˆ̂θ)l(ˆ̂θ|x)

f(θ̂)l(θ̂|x)
where

σ∗ =
(
d2

dθ2
h∗(θ)|

θ=
ˆ̂
θ

)−1/2

.



Example 64
Return to Example 61. We have θ|x ∼ B(α+ x, β + n− x).

Without loss of generality, suppose that 0 ≤ α, β < 1. If not, simply transform,
x→ x+ [α] and n→ n+ [α] + [β].

Writing the beta density as above,

p(θ|x) ∝ θα+x−1(1− θ)β+n−x−1

∝ exp(−nh(θ)) where

h(θ) = −1
n

((α+ x− 1) log θ + (β + n− x− 1) log(1− θ))

We can thus show (Exercise) that the Laplace estimate of the posterior mean
will be

(α+ x)α+x+1/2

(α+ x− 1)α+x−1/2

(α+ β + n− 2)α+β+n−1/2

(α+ β + n− 1)α+β+n+1/2
.



For example, if θ|x B(8, 12), setting α = β = 0 and n = 20 the Laplace
estimate of the posterior mean is

E[θ|x] ≈ 88.5

77.5

1819.5

1920.5
≈ .3994

The true value of the mean is 8/20 = 0.4 and approximating the mean by the
mode as in approximation 2 of the theorem, we have E[θ|x] ≈ 7/18 = .3889.
The Laplace approximation is somewhat better.



Approximating the Bayes factor

Consider the case of two composite hypotheses H0 and H1. The Bayes factor
is

B =
∫
f(x|θ0,H0)f(θ0|H0) dθ0∫
f(x|θ1,H1)f(θ1|H1) dθ1

and both numerator and denominator are positive functions. Therefore we can
apply the Laplace approximation. See Kass and Raftery (1995) for details.



Properties and problems with the Laplace approximation

• The Laplace approximation is O(1/n2).

• If Θ 6= R, then the model can be reparameterized in order to improve the
approximation.

• The Laplace approximation can be extended to the multivariate situation.

• In order to implement the Laplace approximation, we need to be able to
calculate the MLE of θ.
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9. Linear models and regression

AFM Smith

Objective

To illustrate the Bayesian approach to fitting normal and generalized linear
models.



Recommended reading

• Lindley, D.V. and Smith, A.F.M. (1972). Bayes estimates for the linear
model (with discussion). Journal of the Royal Statistical Society B, 34,
1–41.

• Broemeling, L.D. (1985). Bayesian Analysis of Linear Models, Marcel-
Dekker.

• Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B. (2003). Bayesian
Data Analysis, Chapter 8.

• Wiper, M.P., Pettit, L.I. and Young, K.D.S. (2000). Bayesian inference for
a Lanchester type combat model. Naval Research Logistics, 42, 609–633.



Introduction: the multivariate normal distribution

Definition 22
A random variable X = (X1, . . . , Xk)T is said to have a multivariate normal
distribution with mean µ and variance / covariance matrix Σ if

f(x|µ,Σ) =
1

(2π)k/2|Σ|12
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
for x ∈ Rk.

In this case, we write X|µ,Σ ∼ N (µ,Σ).

The following properties of the multivariate normal distribution are well known.



i. Any subset of X has a (multivariate) normal distribution.

ii. Any linear combination
∑k
i=1αiXi is normally distributed

iii. If Y = a + BX is a linear transformation of X, then Y|µ,Σ ∼
N
(
a + Bµ,BΣBT

)
.

iv. If X =
X1

X2

∣∣∣∣µ,Σ ∼ N
(

µ1

µ2
,

(
Σ11 Σ12

Σ21 Σ22

))
then the conditional

density of X1 given X2 = x2 is

X1|x2,µ,Σ ∼ N
(
µ1 + Σ12Σ−1

22 (x2 − µ2),Σ11 −Σ12Σ−1
22 Σ21

)



The multivariate normal likelihood function

Suppose that we observe a sample x = (x1, . . . ,xn) of data from N (µ,Σ).
Then the likelihood function is given by

l(µ,Σ|x) =
1

(2π)nk/2|Σ|n2
exp

(
−1

2

n∑
i=1

(xi − µ)TΣ−1(xi − µ)

)

∝ 1
|Σ|n2

exp

(
−1

2

[
n∑
i=1

(xi − x̄)TΣ−1(xi − x̄) + n(µ− x̄)TΣ−1(µ− x̄)

])

∝ 1
|Σ|n2

exp
(
−1

2
[
tr
(
SΣ−1

)
+ n(µ− x̄)TΣ−1(µ− x̄)

])
where x̄ = 1

n

∑n
i=1 xi and S =

∑n
i=1(xi − x̄)(xi − x̄)T and tr(M) represents

the trace of the matrix M.

It is possible to carry out Bayesian inference with conjugate priors for µ,Σ.
We shall consider two cases which reflect different levels of knowledge about
the variance-covariance matrix Σ.



Conjugate Bayesian inference for the multivariate normal distribution I: Σ = 1
φC

Firstly, consider the case where the variance-covariance matrix is known up
to a constant, i.e. Σ = 1

φC where C is a known matrix. Then, we have

X|µ, φ ∼ N
(
µ, 1

φC
)

and the likelihood function is

l(µ, φ|x) ∝ φ
nk
2 exp

(
−φ

2
[
tr
(
SC−1

)
+ n(µ− x̄)TC−1(µ− x̄)

])
.

Analogous to the univariate case, it can be seen that a multivariate normal-
gamma prior distribution is conjugate.



The multivariate normal gamma distribution

We say that µ, φ have a multivariate normal gamma prior with parameters
m,V−1, a2,

b
2 if

µ|φ ∼ N
(
m,

1
φ
V
)

φ ∼ G
(
a

2
,
b

2

)
.

In this case, we write µ, φ ∼ NG
(
m,V−1, a2,

b
2

)
.



The marginal distribution of µ

In this case, the marginal distribution of µ is a multivariate, non-central t
distribution.

Definition 23
A (k-dimensional) random variable, T = (T1, . . . , Tk), has a multivariate t
distribution with parameters d,µT ,ΣT if

f(t) =
Γ
(
d+k
2

)
(πd)

k
2 |ΣT |1/2Γ

(
d
2

) (1 +
1
d
(t− µT )TΣ−1

T (t− µT )
)−d+k2

.

In this case, we write T ∼ T (µT ,ΣT , d).

The following theorem gives the density of µ.

Theorem 34
Let µ, φ ∼ NG

(
m,V−1, a2,

b
2

)
. Then the marginal density of µ is µ ∼

T
(
m, baV, a

)
.



Proof

p(µ) =

∫ ∞

0

p(µ, φ) dφ

=

∫ ∞

0

p(µ|φ)p(φ) dφ

=

∫ ∞

0

1

(2π)
k
2 |V|

1
2

exp

(
−
φ

2
(µ−m)

TV−1
(µ−m)

) (b
2

)a
2

Γ
(
a
2

)φa2−1
exp

(
−
b

2
φ

)
dφ

=
1

(2π)
k
2 |V|

1
2

(
b
2

)a
2

Γ
(
a
2

) ∫ ∞

0

φ
a+k

2 −1
exp

(
−
φ

2

[
b+ (µ−m)

TV−1
(µ−m)

])
dφ

=
1

(2π)
k
2 |V|

1
2

(
b
2

)a
2

Γ
(
a
2

)Γ(a+ k

2

)(
b+ (µ−m)TV−1(µ−m)

2

)−a+k2

and, reordering terms proves the result.



The posterior distribution of µ, φ
Theorem 35
Let X|µ, φ ∼ N

(
µ, 1

φC
)

and assume the prior distributions µ|φ ∼

N
(
m, 1

φV
)

and φ ∼ G
(
a
2,
b
2

)
. Then, given sample data x, we have

µ|x, φ ∼ N
(
m?,

1
φ
V?

)
φ|x ∼ G

(
a?

2
,
b?

2

)
where

V? =
(
V−1 + nC−1

)−1

m? = V?
(
V−1m + nC−1x̄

)
a? = a+ nk

b? = b+ tr
(
SC−1

)
+ mTV−1m + nx̄TC−1x̄−m?V?−1m?.

Proof Exercise. The proof is analogous to the univariate case.



A simplification

In the case where V ∝ C, we have a simplified result, similar to that for the
univariate case.

Theorem 36
Let µ, φ ∼ NG

(
m, αC−1, a2,

b
2

)
. Then,

µ|φ,x ∼ N
(
αm + nx̄
α+ n

,
1

(α+ n)φ
C
)

φ|x ∼ G

a+ n

2
,
b+ tr

((
S + αn

α+n(m− x̄)(m− x̄)T
)
C−1

)
2

 .

Proof This follows from the previous theorem substituting V = 1
αC.



Results with the reference prior

Theorem 37
Given the prior p(µ, φ) ∝ 1

φ, then the posterior distribution is

p(µ, φ|x) ∝ φ
nk
2 −1 exp

(
−φ

2
[
tr
(
SC−1

)
+ n(µ− x̄)TC−1(µ− x̄)

])
µ|x, φ ∼ N

(
x̄,

1
nφ

C
)

φ|x ∼ G

(
(n− 1)k

2
,
tr
(
SC−1

)
2

)

µ|x ∼ T

(
x̄,

tr
(
SC−1

)
n(n− 1)k

C, (n− 1)k

)
.

Proof µ, φ|x ∼ NG
(
x̄, 1

nC,
(n−1)k

2 ,
tr(SC−1)

2

)
and the rest follows.



Conjugate inference for the multivariate normal distribution II: Σ unknown

In this case, it is useful to reparameterize the normal distribution in terms of
the precision matrix Φ = Σ−1 when the normal likelihood function becomes

l(µ,Φ|x) ∝ |Φ|n2 exp
(
−1

2
[
tr (SΦ) + n(µ− x̄)TΦ(µ− x̄)

])

It is clear that a conjugate prior for µ and Φ must take a similar form to the
likelihood. This is a normal-Wishart distribution.



The normal Wishart distribution

Definition 24
A k× k dimensional symmetric, positive definite random variable W is said to
have a Wishart distribution with parameters d and V if

f(W) =
|W|d−k−1

2

2
dk
2 |V |d2π

k(k−1)
4
∏k
i=1 Γ

(
d+1−i

2

) exp
(
−1

2
tr
(
V−1W

))

where d > k − 1. In this case, E[W] = dV and we write W ∼ W(d,V).

If W ∼ W(d,V), then the distribution of W−1 is said to be an
inverse Wishart distribution, W−1 ∼ IW

(
d,V−1

)
with mean E

[
W−1

]
=

1
d−k−1V

−1.



Theorem 38
Suppose that X|µ,Φ ∼ N

(
µ,Φ−1

)
and let µ|Φ ∼ N

(
m, 1

αΦ
−1
)

and
Φ ∼ W(d,W). Then:

µ|Φ,x ∼ N
(
αm + nx̄
α+ n

,
1

α+ n
Φ−1

)
Φ|x ∼ W

(
d+ nk,W−1 + S +

αn

α+ n
(m− x̄)(m− x̄)T

)

Proof Exercise.

We can also derive a limiting prior distribution by letting d → 0 when

p(Φ) ∝ |Φ|k+1
2 when the posterior distribution is

µ|Φ,x ∼ N
(
x̄,

1
n
Φ−1

)
Φ|x ∼ W (n(k − 1),S) .



Semi-conjugate inference via Gibbs sampling

The conjugacy assumption that the prior precision of µ is proportional to the
model precision Σ is very strong in many cases. Often, we may simply wish to
use a prior distribution of form µ ∼ N (m,V) where m and V are known and
a Wishart prior for Φ, say φ ∼ W(d,W) as earlier.

In this case, the conditional posterior distributions are

µ|Φ,x ∼ N
((

V−1 + nΦ
)−1 (

V−1m + nΦx̄
)
,
(
V−1 + nΦ

)−1
)

Φ|µ,x ∼ W
(
d+ n,W−1 + S + n(µ− x̄)(µ− x̄)T

)
and therefore, it is straightforward to set up a Gibbs sampling algorithm to
sample the joint posterior, as in the univariate case.



Aside: sampling the multivariate normal, multivariate t and Wishart distributions

Samplers for the multivariate normal distribution (usually based on the
Cholesky decomposition) are available in most statistical packages such as
R or Matlab. Sampling the multivariate t distribution is only slightly more
complicated. Assume that we wish to sample from T ∼ T (µ,Σ,d). Then
from Theorem 34, the distribution of T is the same as the marginal distribution
of T in the two stage model

T|φ ∼ N
(

µ,
1
φ
Σ
)

φ ∼ G
(
d

2
,
d

2

)
.

Thus, sampling can be undertaken by first generating values of φ and then
generating values of T from the associated normal distribution.



Sampling from a Wishart distribution can be done in a straightforward way if
the degrees of freedom is a natural number. Thus, assume W ∼ W(d,V)
where d ∈ N. Then the following algorithm generates a Wishart variate.

1. Simulate z1, . . . , zk ∼ N (0,V)

2. Define W =
∑k
i=1 zizTi .



Normal linear models

Definition 25
A normal linear model is of form

y = Xθ + ε

where y = (y1, . . . , yn)T , θ = (θ1, . . . , θk)T , and we will assume initially that

ε ∼ N
(
0, 1

φI
)
.

This framework includes regression models, defining, e.g. X =(
1 1 · · · 1
x1 x2 · · · xn

)T
and θ = (α, β)T .

It is easy to see that for such a model, a conjugate, multivariate normal-gamma
prior distribution is available.



Conjugate Bayesian inference
Theorem 39
Let y = Xθ + ε and assume a multivariate normal-gamma prior distribution
θ, φ ∼ NG

(
m,V−1, a2,

b
2

)
. Then, the predictive distribution of y is

y ∼ T
(
Xm,

b

a
(XVXT + I), a

)
and the posterior distribution of θ, φ given y is

θ, φ|y ∼ NG
(
m?,V?−1,

a?

2
,
b?

2

)
where

m? =
(
XTX + V−1

)−1 (
XTy + V−1m

)
V? =

(
XTX + V−1

)−1

a? = a+ n

b? = b+ yTy + mTV−1m−m?TV?−1m?



Proof First we shall prove the predictive distribution formula. We have
y = Xθ + ε and therefore, the distribution of y|φ is

y|φ ∼ N
(
Xm,

1
φ

(
XVXT + I

))
and the joint distribution of y and φ is multivariate normal-gamma

y, φ ∼ NG
(
Xm,

(
XVXT + I

)−1
,
a

2
,
b

2

)
and therefore, the marginal distribution of y is

y ∼ T
(
Xm,

b

a
(XVXT + I), a

)
.

Now we shall evaluate the posterior distribution



p(θ, φ|y) ∝ φ
a+k

2 −1
exp

(
−
φ

2

[
b+ (θ −m)

TV−1
(θ −m)

])
φ
n
2 exp

(
−
φ

2
(y − Xθ)

T
(y − Xθ)

)
∝ φ

a+n+k
2 −1

exp

(
−
φ

2

[
b+ θ

T
(
XTX + V−1

)
θ − 2θ

T
(
XTy + V−1m

)
+ yTy + mTV−1m

])
∝ φ

a?+k
2 −1

exp

(
−
φ

2

[
b+ θ

TV?−1
θ − 2θ

T
(
XTy + V−1m

)
+ yTy + mTV−1m

])
∝ φ

a?+k
2 −1

exp

(
−
φ

2

[
b+ θ

TV?−1
θ − 2θ

TV?−1V?
(
XTy + V−1m

)
+ yTy + mTV−1m

])
∝ φ

a?+k
2 −1

exp

(
−
φ

2

[
b+ θ

TV?−1
θ − 2θ

TV?−1m?
+ yTy + mTV−1m

])
∝ φ

a?+k
2 −1

exp

(
−
φ

2

[
b+ (θ −m?

)
TV?−1

(θ −m?
) + yTy + mTV−1m−m?V?−1m?

])
∝ φ

a?+k
2 −1

exp

(
−
φ

2

[
b
?
+ (θ −m?

)
TV?−1

(θ −m?
)
])

which is the kernel of the required normal-gamma distribution.



Interpretation of the posterior mean

We have

E[θ|y] =
(
XTX + V−1

)−1 (
XTy + V−1m

)
=

(
XTX + V−1

)−1 (
XTX(XTX)−1XTy + V−1m

)
=

(
XTX + V−1

)−1
(
XTXθ̂ + V−1m

)
where θ̂ = (XTX)−1XTy is the maximum likelihood estimator. Thus, this
expression may be interpreted as a weighted average of the prior estimator
and the MLE, with weights proportional to precisions, as we can recall that,
conditional on φ, the prior variance was 1

φV and that the distribution of the

MLE from the classical viewpoint is θ̂|φ ∼ N
(
θ, 1

φ(X
TX)−1

)
.



Relation to ridge regression

The classical least squares regression solution θ̂ = (XTX)−1XTy does not
exist if XTX is not of full rank. In this case, an often employed technique is
to use ridge regression, see Hoerl and Kennard (1970).

The ridge regression estimator is the value of which minimizes

(y −Xθ)2 + α2||θ||2

and the solution can be shown to be

θ̂α = (XTX + αI)−1XTy.

If we use a Bayesian approach with prior, µ|φ ∼ N
(
0, 1

αφI
)
, then the posterior

mean is
E[µ|y] = (XTX + αI)−1XTy

which is equal to the ridge regression estimate.



Example: an ANOVA type model

Example 65

Consider the ANOVA model: yij = θi + εij where εij|φ ∼ N
(
0, 1
φ

)
, for

i = 1, . . . , k and j = 1, . . . , ni.

Thus θ = (θ1, . . . , θk)T , y = (y11, . . . , y1n1, y21, . . . , y2n2, . . . , yknk)
T ,

X =



1 0 0 . . . 0
... ... ... . . . ...

1n1 0 0 . . . 0
0 1 0 . . . 0
... ... ... . . . ...
0 1 0 . . . 0
0 0 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1


and n =

∑k
i=1 ni is the model dimension.



If we use conditionally independent normal priors, θi|φ ∼ N
(
mi,

1
αiφ

)
for

i = 1, . . . , k and a gamma prior φ ∼ G
(
a
2,
b
2

)
, then m = (m1, . . . ,mk)T and

V =


1
α1

0 0 . . . 0
0 1

α2
0 . . . 0

... ... . . . . . . ...
0 0 0 . . . 1

αk

 . Also,

XTX =


n1 0 0 . . . 0
0 n2 0 . . . 0
... ... . . . . . . ...
0 0 0 . . . nk



XTX + V−1 =


n1 + α1 0 0 . . . 0

0 n2 + α2 0 . . . 0
... ... . . . . . . ...
0 0 0 . . . nk + αk





(
XTX + V−1

)−1
=


1

n1+α1
0 0 . . . 0

0 1
n2+α2

0 . . . 0
... ... . . . . . . ...
0 0 0 . . . 1

nk+αk


XTy = (n1ȳ1·, . . . , nkȳk·)T

V−1m = (α1m1, . . . , αkmk)T

XTy + V−1m = (n1ȳ1· + α1m1, . . . , nkȳk· + αkmk)T(
XTX + V−1

)−1 (
XTy + V−1m

)
=

(
n1ȳ1· + α1m1

n1 + α1
, . . . ,

nkȳk· + αkmk

nk + αk

)T
so

θ|y, φ ∼ N


n1ȳ1·+α1m1
n1+α1

n2ȳ2·+α2m2
n2+α2...

...
nkȳk·+αkmk
nk+αk

,
1
φ


1

n1+α1
0 0 . . . 0

0 1
n2+α2

0 . . . 0
... ... . . . . . . ...
0 0 0 . . . 1

nk+αk


 .



Now we can calculate the posterior distribution of φ.

yTy =
k∑
i=1

ni∑
j=1

y2
ij

mTV−1m =
k∑
i=1

αim
2
i

m?TV?−1m? =
k∑
i=1

(niȳi· + αimi)2

ni + αi

yty + mTV−1m−m?TV?−1m? =
k∑
i=1

ni∑
j=1

(yij − ȳi·)2 +
k∑
i=1

niαi
ni + αi

(ȳi· −mi)2 so

φ|y ∼ G

(
a+ n

2
,
b+

∑k
i=1

∑ni
j=1(yij − ȳi·)2 +

∑k
i=1

niαi
ni+αi

(ȳi· −mi)2

2

)



Often we are interested in the differences in group means, e.g. θ1 − θ2. Here
we have

θ1− θ2|y, φ ∼ N
(
n1ȳ1· + α1m1

n1 + α1
− n2ȳ2· + α2m2

n2 + α2
,
1
φ

(
1

α1 + n1
+

1
α2 + n2

))
and therefore, a posterior, 95% interval for θ1 − θ2 is given by

n1ȳ1· + α1m1
n1 + α1

−
n2ȳ2· + α2m2

n2 + α2
±

√√√√( 1

α1 + n1
+

1

α2 + n2

) b+
∑k
i=1

∑ni
j=1

(yij − ȳi·)2 +
∑k
i=1

niαi
ni+αi

(ȳi· −mi)
2

a+ n
ta+n(0.975).



Limiting results for the linear model

Assume that we use the limiting prior p(θ, φ) ∝ 1
φ. Then, we have

p(θ, φ|y) ∝ φ
n
2−1 exp

(
−φ

2
(y −Xθ)T (y −Xθ)

)
∝ φ

n
2−1 exp

(
−φ

2

[
θTXTXθ − 2θTXTy + yTy

])
∝ φ

n
2−1 exp

(
−φ

2

[
θTXTXθ − 2θTXTX(XTX)−1XTy + yTy

])
∝ φ

n
2−1 exp

(
−φ

2

[
(θ − θ̂)T (XTX)(θ − θ̂) + yTy − θ̂

T
(XTX)θ̂

])

θ|y, φ ∼ N
(

θ̂,
1
φ
(XTX)−1

)
and φ|y ∼ G

(
n− k

2
,
yTy − θ̂

T
(XTX)θ̂

2

)

θ|y ∼ T
(
θ̂, σ̂2(XTX)−1, n− k

)
where σ̂2 =

yTy − θ̂
T
(XTX)θ̂

n− k
.



Note that σ̂2 = 1
n−k(y−Xθ̂)T (y−Xθ̂) is the usual classical estimator of σ2.

In this case, Bayesian credible intervals, estimators etc. will coincide with their
classical counterparts.

One should note however that the propriety of the posterior distribution in this
case relies on two conditions:

1. n > k,

2. XTX is off full rank.

If either of these two conditions is not satisfied, then the posterior distribution
will be improper.



Example 66
In Example 65, suppose that we use the reference prior p(θ, φ) ∝ 1

φ. Then, we
have

θ|y ∼ N


ȳ1·
ȳ2·
...
...
ȳk·

,
1
φ


1
n1

0 0 . . . 0
0 1

n2
0 . . . 0

... ... . . . . . . ...
0 0 0 . . . 1

nk




φ|y ∼ G
(
n− k

2
,
(n− k)σ̂2

2

)

where σ̂2 = 1
n−k

∑k
i=1

∑ni
j=1(yij − ȳi·)2 is the classical variance estimate for

this problem.

A 95% posterior interval for θ1−θ2 is given by ȳ1·−ȳ2·±σ̂
√

1
n1

+ 1
n2
tn−k(0.975)

which is equal to the usual, classical interval.



Simple linear regression

Example 67
Consider the simple linear regression model, yi = α+βxi+εi, for i = 1, . . . , n,

where εi ∼ N
(
0, 1
φ

)
and suppose that we use the limiting prior p(α, β, φ) ∝ 1

φ.

Then, we have

α
β

∣∣∣∣y, φ ∼ N
(
α̂

β̂
,

1
φnSxx

( ∑n
i=1 x

2
i −nx̄

−nx̄ n

))
φ|y ∼ G

(
n− 2

2
,
Syy(1− r2)

2

)
α
β

∣∣∣∣y ∼ T
(
α̂

β̂
,
σ̂2

n

1
Sxx

( ∑n
i=1 x

2
i −nx̄

−nx̄ n

)
, n− 2

)

where α̂ = ȳ−β̂x̄, β̂ = Sxy
Sxx

, Sxx =
∑n
i=1(xi−x̄)2, Sxy =

∑n
i=1(xi−x̄)(yi−ȳ),

Syy =
∑n
i=1(yi − ȳ)2, r = Sxy√

SxxSyy
and σ̂2 = Syy(1−r2)

n−2 .



Thus, the marginal distributions of α and β are

α|y ∼ T
(
α̂, σ̂2

∑n
i=1 x

2
i

nSxx
, n− 2

)
β|y ∼ T

(
β̂,

σ̂2

Sxx
, n− 2

)
and therefore, for example, a 95% credible interval for β is given by

β̂ ± σ̂√
Sxx

tn−2(0.975)

equal to the usual classical interval.



Suppose now that we wish to predict a future observation ynew = α+βxnew+
εnew. Then

E[ynew|φ,y] = α̂+ β̂xnew

V [ynew|φ,y] =
1
φ

(∑n
i=1 x

2
i

nSxx
+
x2
new

nSxx
− 2

xnewx̄

nSxx
+ 1
)

=
1
φ

(
(xnew − x̄)2

nSxx
+

1
n

+ 1
)

ynew|y ∼ T
(
α̂+ β̂xnew, σ̂

2

(
(xnew − x̄)2

nSxx
+

1
n

+ 1
)
, n− 2

)
and thus, a 95% credible interval for ynew is

α̂+ β̂xnew ± σ̂

(
(xnew − x̄)2

nSxx
+

1
n

+ 1
)
tn−2(0.975)

which coincides with the usual, classical interval.



The normal body temperature example again

Example 68
In Example 20, we studied the average body temperatures of humans and we
saw in Example 21 that these were different for men and women. Now we
shall consider the effects of introducing a covariate. In the following diagram,
temperature is plotted against heart rate (beats per minute) for male (blue)
and female (red) subjects

55 60 65 70 75 80 85 90
96

96.5

97

97.5

98

98.5

99

99.5

100

100.5

101

H

T



It is reasonable to assume that body temperature would be related to heart
rate. Thus, we might assume the global linear model, Ti = α + βHεi,
independent of temperature. Fitting this model with a non-informative prior
leads to the estimated regression equation

E[T |H,data] = 96.31 + 0.021H.
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However, earlier we supposed that gender also influenced body temperature
and therefore, a model taking gender into account might be considered. Thus,
we assume

Tij = αi + βHij + εij

where Tij represents the temperature of subject j in group i = 1 (men) or

i = 2 (women) and Hij is the subject’s heartrate and εij ∼ N
(
0, 1
φ

)
is a

random error.

Representing this model in linear form, we have θ = (α1, α2, β)T , y =
(T11, . . . , T1n1, T21, . . . , T2n2)

T where n1 and n2 are the numbers of men and
women sampled respectively and

XT =

 1 . . . 1 0 . . . 0
0 . . . 0 1 . . . 1
H11 . . . H1n1 H21 . . . H2n2





Assume that we use the prior p(α1, α2, β, φ) posterior mean parameter values
for α, β are

E[α1|T] = 96.2508

E[α2|T] = 96.5202

E[β|T] = 0.0253

The posterior distribution of φ is φ|y ∼ G
(
127
2 ,

62.5
2

)
. The following

diagram shows the results of fitting the simple and combined models.
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It is interesting to assess whether or not the difference between the sexes is
still important. Thus, we can calculate the posterior distribution of α1 − α2.

We have α1 − α2|y, φ ∼ N
(
−0.2694, 0.031

φ

)
and therefore a 95% posterior

credible interval is

−0.2694±
√

0.031 ∗ 62.5/127 ∗ t127(0− 975) = (−0.5110,−0.0278).

Thus, it seems likely that the combined model is superior to the simple
regression model.

Note that in order to undertake a formal analysis of this, we could use fractional
or intrinsic Bayes factors as the prior distributions in this case were improper.



Including covariance in the linear model

It is possible to fit a more general linear model where we do not assume that
the model variance is proportional to the identity. One possibility is to assume
that the model variance is proportional to a known matrix (C). Lindley and
Smith (1972) then demonstrate the following theorem.

Theorem 40
Let y = Xθ + ε where ε|φ ∼ N

(
0, 1

φC
)

with prior distribution θ, φ ∼
NG

(
m,V−1, a2,

b
2

)
. Then, the predictive distribution of y is

y ∼ T
(
Xm,

b

a

(
XVXT + C

)
, a

)
and the posterior distribution of µ, φ|y is

θ|y, φ ∼ N
(
m?,

1
φ
V?

)
φ|y ∼ G

(
a?

2
,
b?

2

)
where



m? =
(
XTC−1X + V−1

)−1 (
XTC−1y + V−1m

)
,

V? =
(
XTC−1X + V−1

)−1

a? = a+ n

b? = b+ yTC−1y + mTV−1m−m?TV?−1m?

Proof Exercise.

In the limiting case, given the prior p(θ, φ) ∝ 1
φ, it is easy to show that these

posterior distributions converge to produce posterior distributions which lead
to the same numerical results as in standard classical inference, e.g.

θ|y, φ ∼ N
((

XTC−1X
)−1

XTC−1y,
1
φ

(
XTC−1X

)−1
)

and the posterior mean is the classical MLE of θ.



The SUR model

A more general approach is to assume an unknown model variance-covariance
matrix Σ and set an inverse Wishart prior distribution, e.g. Φ = Σ−1 ∼
W(d,W).

Example 69
Seemingly unrelated regression (SUR) is a well known econometric model. In
the traditional SUR model, we have M equations of form

yi = Xiβi + εi

for i = 1, . . . ,M where yi is an N dimensional vector of observations on a
dependent variable, Xi is a (N×Ki) matrix of observations on Ki independent
variables, βi is a Ki dimensional vector of unknown regression coefficients and
εi is an N dimensional, unobserved error vector.



The M equations can be written as
y1

y2
...

yM

 =


X1

X2
. . .

XM




β1

β2
...

βM

+


ε1

ε2
...

εM


and written compactly as

y = Xβ + ε

where y has dimension (NM × 1), X has dimension (NM × K) where

K =
∑M
i=1Ki, β is (K × 1) and ε has dimension (NM × 1). Assume the

distribution of ε is
ε ∼ N (0,Σ⊗ IN) .



The likelihood function is now

l(β,Σ|y) ∝ Σ−N2 exp
(
−1

2
(y −Xβ)TΣ−1 ⊗ IN(y −Xβ)

)
∝ Σ−N2 exp

(
−1

2
tr(AΣ−1)

)
where A is a (M ×M) matrix with (i, j)’th element

(A)ij = (yi −Xiβi)
T (yj −Xjβj)



A natural, uninformative prior is p(Σ) ∝ |Σ|−M+1
2 and then, given this prior,

we have immediately that

β|y,Σ ∼ N
(
β̂,
[
XT (Σ−1 ⊗ IN)X

]−1
)

Σ ∼ IW (N,A)

where β̂ =
[
XT (Σ−1 ⊗ IN)X

]−1
XT (Σ−1 ⊗ IN)y is the standard, least

squares estimator.



The three stage linear model and ideas of hierarchical models

Up to now, we have used direct priors on the regression parameters θ, φ.
In some cases, it may be more appropriate to use hierarchical priors. One
example is the three stage linear model of Lindley and Smith (1972) who
propose the structure

y = Xθ + ε

θ ∼ N (Aβ,V)

β ∼ N (m,W)

so that the prior distribution of θ is defined hierarchically in two stages. Lindley
and Smith (1972) demonstrate how to calculate the posterior distribution in
this case when all the variances are known.



Example 70
In Example 65, we assumed direct, independent priors on the group mean
parameters θi. Often however, we may have little information about these
paramaters except that we have no prior evidence that they are different. This
would suggest the use of a hierarchical prior, for example,

θi|θ0, φ ∼ N
(
θ0,

1
αφ

)
p(θ0, φ) ∝ 1

φ
.

We shall illustrate how Bayesian inference using hierarchical priors can be
carried out in the following chapter.



Generalized linear models

The generalized linear model (Nelder and Wedderburn 1972) generalizes the
normal linear model by allowing the possibility of non-normal error distributions
and by allowing for a non-linear relationship between y and x.

Definition 26
A generalized linear model is specified by two functions:

i a conditional, exponential family density function of y given x, parameterized
by a mean parameter, µ = µ(x) = E[Y |x] and (possibly) a dispersion
parameter, φ > 0 that is independent of x,

ii a (one-to-one) link function, g, which relates the mean, µ = µ(x) to the
covariate vector, x, as g(µ) = xθ.



Example 71
The logistic regression model is often used for predicting the occurrence of an
event given covariates. It is assumed that

Yi|pi ∼ BI(ni, pi) for i = 1, . . . ,m, and

log
pi

1− pi
= xiθ

Example 72
In Poisson regression, it is supposed that

Yi|λi ∼ P(λi)

log λi = xiθ

In both examples, we have assumed the canonical link function which is
the natural parameterization to leave the exponential family distribution in
canonical form.



The Bayesian specification of a GLM is completed by defining (typically
normal or normal gamma) prior distributions p(θ, φ) over the unknown model
parameters. As with standard linear models, when improper priors are used, it
is then important to check that these lead to valid posterior distributions.

Clearly, these models will not have conjugate posterior distributions, but,
usually, they are easily handled by Gibbs sampling.

In particular, the posterior distributions from these models are usually log
concave and are thus easily sampled via adaptive rejection sampling, see e.g.
Gilks and Wild (1992).



Example 73
The table shows the relationship, for 64 infants, between gestational age of the
infant (in weeks) at the time of birth (x) and whether the infant was breast
feeding at the time of release from hospital (y).

x 28 29 30 31 32 33
#y = 0 4 3 2 2 4 1
#y = 1 2 2 7 7 16 14

Let xi represent the gestational age and ni the number of infants with this
age. Then we can model the probability that yi infants were breast feeding at
time of release from hospital via a standard binomial regression model.



It is easy to set this model up in Winbugs.

for(i IN 1 : I)

theta1

y[i]

p[i]

n[i]

mu[i]

theta0

x[i]
mu[i]

name: mu[i] type: logical link: identity
value: theta0+theta1*x[i]



The doodle gives the following model:

model; {
theta0 ~ dnorm( 0.0,1.0E-6)
theta1 ~ dnorm( 0.0,1.0E-6)
for( i in 1 : I ) {

mu[i] <- theta0+theta1 * x[i]
}
for( i in 1 : I ) {

logit(p[i]) <- mu[i]
}
for( i in 1 : I ) {

y[i] ~ dbin(p[i],n[i])
}

}

and we can read in the data using

list(I=6,x=c(28,29,30,31,32,33),n=c(6,5,9,9,20,15),
y=c(2,2,7,7,16,14))



In this case, we set the initial values to theta0=theta1=1. Given 30000
iterations to burn in and 30000 in equilibrium we have the following posterior
estimates for p and theta.

node mean sd MC error 2.5% median 97.5%
p[1] 0.3783 0.1376 0.008533 0.1332 0.3714 0.6544
p[2] 0.5089 0.1118 0.00595 0.2842 0.5117 0.7173
p[3] 0.646 0.07742 0.002298 0.484 0.6501 0.7858
p[4] 0.7636 0.0577 9.063E-4 0.6435 0.7667 0.8673
p[5] 0.8483 0.05263 0.002359 0.7332 0.8528 0.9374
p[6] 0.9032 0.04844 0.002742 0.789 0.9108 0.9747
theta0 -16.85 6.479 0.4591 -30.71 -16.42 -5.739
theta1 0.5823 0.2112 0.01497 0.2222 0.567 1.036

The posterior mean values are quite close to the sample proportions.



Application V: Inference for Lanchester’s combat models

Lanchester

Lanchester (1916) developed a system of equations for modeling the losses of
combating forces.



Lanchester’s equations

The Lanchester equations for modern warfare (aimed combat, without
reinforcements) between armies of size x(t) and y(t) are

∂x

∂t
= −αy

∂y

∂t
= −βx

for x(t), y(t) > 0.

These equations lead to the well-known Lanchester square law

α
(
x(0)2 − x(t)2

)
= β

(
y(0)2 − y(t)2

)
.

This law has been fitted to some real combat situations such as the battle of
Iwo Jima (Engel 1954).



Different types of warfare

A more general system of differential equations which includes the square law
can be used to represent different forms of warfare as follows

∂x

∂t
= −βxφ1yφ2

∂y

∂t
= −αyφ1xφ2

Here, φ = (0, 1) gives the square law, φ = (1, 1) gives a linear law representing
unaimed fire combats, φ = (0, 0) leads to a different linear law representing
hand-to hand combats and φ = (1, 0) leads to a logistic law which has been
used to represent large scale combats such as the American Civil War. See
e.g. Weiss (1966).



Introducing uncertainty

In modeling combat situations, interest lies in:

• classifying battle types (historical analysis),

• assessing relative fighting strengths of the two armies (i.e. the ratio α/β),

• predicting casualties,

• predicting who will win the battle.

However, the basic Lanchester models are deterministic and thus, for instance,
the battle winner is predetermined given the model parameters. Thus, we need
to introduce a random element into the Lanchester systems.

One possibility is to consider stochastic Lanchester models based on Poisson
process type assumptions, see e.g. Clark (1969), Goldie (1977) or Pettit et
al (2003). Following Wiper et al (2000), an alternative is to discretize time,
linearize the Lanchester systems and fit a regression model.



Discretization and Linearization

Given daily casualty data, we can discretize the Lanchester equations to give:

∆xt ≈ βxφ1
t−1y

φ2
t−1 ∆yt ≈ αyφ1

t−1x
φ2
t−1

where ∆xt and ∆yt are the daily casualties recorded in the two armies.

Bracken (1995) attempted to fit this model directly to combat data from the
Ardennes campaign. However, it seems more natural to linearize the model.
Taking logs and introducing an error term, we have:

zt = θ + Pt−1φ + εt

where zt are the logged casualties of the two armies on day t, φ = (φ1, φ2)T

and Pt−1 =
(

log yt−1 log xt−1

log xt−1 log yt−1

)
.

Assuming that the error distribution is normal, εt|Φ ∼ N
(
0,Φ−1

)
, then we

have a (multivariate) linear model.



Analysis of the Ardennes campaign data

The Battle of the Bulge

The Battle of the Bulge in 1944, was one of the largest battles in the Second
World War involving, for example, over 250000 US troops with nearly 20000
US casualties and even more German casualties. The Germans launched an
initial surprise offensive under cloud cover and attacked during 5 days when
the allied troops mounted a counterattack which lead to the eventual defeat
of the German army 23 days later.

For a full description, see:

http://en.wikipedia.org/wiki/Battle_of_the_Bulge



The forces involved in the battle were troops, cannons and tanks and for the
purposes of this analysis, we consider a composite force for each army which
is a weighted measure of these components.

As it seems likely that casualties may be affected by whether an army is
attacking or not, the general regression model was modified to include a factor
δ which indicated which army was attacking so that the full model is

zt = θ + Pt−1φ + Itδ + εt.

Here It =
(

1 0
0 −1

)
if the Germans were attacking on day t and It =(

−1 0
0 1

)
if the Americans were attacking.



Relatively informative prior distributions were used, with a Wishart prior
structure for Φ. The model was then fitted using Gibbs sampling. The
posterior mean parameter estimates are given below.

Parameter Mean (standard deviation)
θ 7.88 (.09) 8.04 (.08)
φ 0.84 (.41) 0.27 (.40)
δ −0.38 (.09) −0.01 (.09)

There is no clear evidence in favour of any one of the standard Lanchester
laws as against any other although, using Bayes factors to compare the specific
models φ = (0, 1), (0, 0), (1, 0) and (1, 1) suggests that the logistic law,
φ = (1, 0) is the most likely.

There is strong evidence that the American casualties were typically higher
when the Germans were attacking although the German casualties did not
seem to be influenced by this.



Goodness of fit

In order to assess the fit of the model, we calculated the predicted errors
zt−E[zt|data]. A plot of these errors for the first American (left) and German
(right) armies is given below.

There is slight evidence of lack of fit for the German forces. More complex
models might be preferable. See e.g. Lucas and Turkes (2003).



Conclusions and Extensions

• Bayesian inference for Lanchester models is straightforward to implement.

• There is high colinearity in these models and proper prior information is
necessary.

• Many models fit the Ardennes data almost equally well.

• The Lanchester model has been proposed as a model for competition
between ants, see e.g. McGlynn (2000) and for business competition, see
e.g. Campbell and Roberts (2006).

• The Lanchester equations are similar to the Lotka-Volterra equations for
predator prey systems. It is possible to extend the approach to these
systems.
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10. Exchangeability and hierarchical models

Objective

Introduce exchangeability and its relation to Bayesian hierarchical models.
Show how to fit such models using fully and empirical Bayesian methods.

Recommended reading

• Bernardo, J.M. (1996). The concept of exchangeability and its applications.
Far East Journal of Mathematical Sciences, 4, 111–121. Available from

http://www.uv.es/~bernardo/Exchangeability.pdf

• Casella, G. (1985). An introduction to empirical Bayes data analysis. The
American Statistician, 39, 83–87.

• Yung, K.H. (1999). Explaining the Stein paradox. Available from

http://www.cs.toronto.edu/~roweis/csc2515/readings/stein_paradox.pdf



Exchangeability

Suppose that we have a sequence of variables X1, X2, . . . , Xn. Then, in many
cases, we might wish to assume that the subscripts of each individual variable
are uninformative. For example, in tossing a coin three times, it is natural
to assume that P (0, 0, 1) = P (0, 1, 0) = P (1, 0, 0). This idea underlines the
concept of exchangeability as developed by De Finetti (1970, 1974).

Definition 27
A sequence of random variablesX1, . . . , Xn is said to be (finitely) exchangeable
if the distribution of any permutation is the same as that of any other
permutation, that is if

P (∩ni=1Xπ(i)) = P (∩ni=1Xi)

for all permutation functions π(·).

The definition of exchangeability can be extended to infinite sequences of
variables.



Definition 28
An infinite sequence, X1, X2, . . . is said to be (infinitely) exchangeable if every
finite subsequence is judged to be exchangeable in the above sense.

Thus, a sequence of variables that are judged to be independent and identically
distributed is exchangeable. However, exchangeability is clearly a weaker
concept more related to symmetry.

For example, if X1, X2, . . . , X5 are the results of 5 draws without replacement
from a pack of cards, then this sequence is exchangeable but clearly, the
variables are not independent.

Typical non exchangeable variables are Markov chains or other time varying
sequences.



De Finetti’s theorem for 0-1 random variables

Assume that we have an infinitely exchangeable sequence of 0-1 variables. For
example, we may believe that an infinite sequence of tosses of the same coin
is exchangeable. Then, De Finetti derived the following theorem.

Theorem 41
If X1, X2, . . . is any infinitely exchangeable sequence of 0-1 variables with
probability measure F then their exists a distribution function P such that

f(x1, . . . , xm) =
∫ 1

0

n∏
i=1

θxi(1− θ)m−xi dP (θ)

where P (θ) = limn→∞F (Yn/n ≤ θ), Yn =
∑n
i=1Xi and limn→∞ Yn/n = θ.

Proof See Bernardo and Smith (1994).



Interpretation of De Finetti’s theorem

If a sequence X1, X2, . . . of 0-1 variables is judged to be exchangeable, then
we may interpret this as if

• The Xi are judged to be Bernoulli variables given some random variable θ.

• θ is given a probability distribution P .

• Using the strong law of large numbers, θ = limn→∞ Yn/n which implies that
we can interpret P as representing our beliefs about the limiting frequency
of 1’s.

Thus, P may be interpreted as a prior distribution.

http://en.wikipedia.org/wiki/De_Finetti%27s_theorem



An immediate consequence of Theorem 41 is that if we define Yn =
∑n
i=1Xi,

then automatically, the distribution of Yn can be represented as

f(Yn = yn) =
∫ 1

0

(
n
yn

)
θyn(1− θ)n−ynP (θ)dθ.

Thus, if we are expressing our beliefs about Yn, then we are justified in acting
as if the likelihood were binomial and with a prior distribution P (θ).

However, a much stronger general representation theorem is available for any
infinitely exchangeable sequence of variables.



De Finetti’s general theorem

Theorem 42
Let X1, X2, . . . be an infinitely exchangeable sequence of variables with
probability measure F . Then, their exists a probability measure P such
that the joint distribution of X1, . . . , Xn can be represented as

F (x1, . . . , xn) =
∫
G

n∏
i=1

G(xi)dP (G)

where G is the space of distribution functions, P (G) = limn→∞F (Gn) and
Gn is the empirical distribution function defined by X1, . . . , Xn.

Proof See Bernardo and Smith (1994).

The theorem implies that if the Xi are judged to be exchangeable, then their
exists a variable θ such that

F (x) =
∫
Θ

n∏
i=1

F (xi|θ)dP (θ).



De Finetti’s theorems provide a theoretical justification of Bayesian inference
based on the assumptions of exchangeability. However, they are generally not
very useful in the practical determination of the form of the prior distribution.

Certain extensions can be used to justify more specific distributional models.
For example if we believe that the sequence X1, X2, . . . is exchangeable and
spherically symmetric, i.e. that the distribution of Xn is the same as the
distribution of AXn for any orthogonal matrix A, then this implies that the
X’s may be interpreted as normally distributed given a prior distribution on
the precision.

See Bernardo and Smith (1994) for details and extensions to other models.



Hierarchical models

In many models we are unclear about the extent of our prior knowledge.
Suppose we have data x with density f(x|θ) where θ = (θ1, . . . , θk). Often
we may make extra assumptions about the structural relationships between the
elements of θ.

Combining such structural relationships with the assumption of exchangeability
leads to the construction of prior density, p(θ|φ), for θ which depends upon a
further, unknown hyperparameter φ.

In such cases, following Good (1980), we say that we have a hierarchical model.



Examples of hierarchical models

Example 74
Various individuals i = 1, . . . , n, take an IQ test where it is supposed that the
result is

Yi|θi, φ ∼ N
(
θi,

1
φ

)
where the outcome for subject i is supposed to depend on his or her true
IQ θi. Now if we suppose that the true IQ’s of the people in the study are
exchangeable then we might reasonably assume that

θi|µ, ψ ∼ N
(
µ,

1
ψ

)
where the unknown hyperparameters are µ, representing the mean true IQ in
the population, and ψ.



Example 75
George et al (1993) analyzed data concerning failures of 10 power plant
pumps. The number of failures Xi at plant i was assumed to follow a Poisson
distribution

Xi|θi ∼ P(θiti) for i = 1, . . . , 10,

where θi is the failure rate for pump i and ti is the length of operation time of
the pump (in 1000s of hours).

It is natural to assume that the failure rates are exchangeable and thus we
might model

θi|α, β ∼ G(α, β)

where α and β are the unknown hyperparameters.



Fitting hierarchical models

The most important problem in dealing with hierarchical models is how to treat
the hyperparameters φ. Usually, there is very little prior information available
with which to estimate φ.

Thus, two main approaches have developed:

• The natural Bayesian approach is to use relatively uninformative prior
distributions for the hyperparameters φ and then perform a fully Bayesian
analysis.

• An alternative is to estimate the hyperparameters using classical statistical
methods.

This second method is the so-called empirical Bayes approach which we shall
explore below.



The empirical Bayesian approach

Robbins

This approach is originally due to Robbins (1955). For a full review see

http://en.wikipedia.org/wiki/Empirical_Bayes_method



Suppose that we have a model X|θ ∼ f(·|θ) with a hierarchical prior p(θ|φ)
where φ is a hyperparameter. Then conditional on φ, we have from Bayes
theorem that

p(θ|x) ∝ f(x|θ)p(θ|φ).

Now suppose that we do not wish to specify a hyperprior distribution for φ.
Then, the empirical Bayes (EB) approach is to use the data to estimate φ
(via e.g. maximum likelihood, the method of moments or some alternative
approach). Then the analysis proceeds as if φ were known so that given
an estimate, φ̂, of the hyperparameter, then we approximate the posterior
distribution of θ by

p(θ|x) ∝ f(x|θ)p(θ|φ̂).



Multivariate normal example

Example 76
Suppose that

Xi|θi ∼ N (θi, 1)

θi|τ ∼ N
(
0, τ2

)
for i = 1, . . . , n.

Then, it is easy to see that a posteriori, θi|xi, τ ∼ N ((1−B)xi, 1−B) where
B = 1

1+τ2 with posterior mean E[θi|xi, τ ] = (1−B)xi.

When τ is unknown, this posterior mean estimate is unsatisfactory as it depends
on τ . One possibility is thus to estimate τ from the data.



In order to do this, note first that

X|τ ∼ N
(
0,
(
1 + τ2

)
In
)

and consider S =
∑n
i=1X

2
i . From a classical viewpoint, we have S 1

Bχ
2
n so

that if we define

B̂ =
n− 2
S

it is easy to show that E[B̂] = B so that B̂ is an unbiased estimator of B.

Substituting B̂ for B, we now proceed as if B were known. Therefore, we have

θi|x, (B = B̂) ∼ N
((

1− B̂
)
xi,
(
1− B̂

))
and therefore

E[θi|x] =
(

1− n− 2∑n
i=1 x

2
i

)
xi

is an EB estimate of the posterior mean.



Stein’s paradox and the James Stein estimator

From a classical viewpoint, as X ∼ N (θ, In) it would appear that a natural
estimator of θ would be X itself.

However Stein (1955) showed that X is not even an admissable estimator
of θ when n ≥ 3. James and Stein (1960) showed that an estimator which
dominates X is (

1− n− 2∑n
i=1X

2
i

)
X

which is exactly the EB estimator we have just derived.

For a fuller discussion of Stein’s paradox, see Yung (1999).



Example 77
The batting average of a baseball player is the number of hits Si divided by
the number of times at bat. Supposing that n players have each gone out to
bat k times, then (assuming exchangeability of hits for each player) the batting
average of the i’th player is Si/k ∼ B(k, pi) where pi is the probability that
they hit the ball on a given time at bat.

Then, using an arc sin transformation,

Xi = 2
√
k sin−1

√
Si
k

θi = 2
√
k sin−1√pi

we have that approximately, Xi|θi ∼ N (θi, 1). Now assuming exchangeability
of players, it is reasonable to assume that θi|µ, σ ∼ N

(
µ, σ2

)
.



The empirical Bayes approach is now to estimate µ and σ from the data.
Noting that the marginal distribution of Xi given the hyperparameters is
Xi|µ, σ ∼ N

(
µ, 1 + σ2

)
then,

E[X̄|µ, σ] = µ E

[
(n− 3)∑n

i=1(Xi − X̄)2

]
=

1
1 + σ2

so we have method of moment estimates µ̂ = x̄ and σ̂2 =
∑n
i=1(xi−x̄)

2

n−3 − 1.

Now, given µ = µ̂ and σ2 = σ̂2, we have θi|x ∼
N
((

1 + 1
σ̂2

)−1 (
xi + 1

σ̂2x̄
)
,
(
1 + 1

σ̂2

)−1
)
.

Thus, the EB estimator for θi takes the form θ̂EBi =
(
1 + 1

σ̂2

)−1 (
xi + 1

σ̂2x̄
)

and inverting of the arc sin law transformation, we have p̂EBi = sin2
(
θ̂EBi
2
√
n

)
.

Efron and Morris (1975) analyzed the batting averages of n = 18 baseball
players over their first 45 at bats and over the remainder of the season. A
table of the data follow.



Name p̂i(1st 45) pi(Rest) p̂EBi
Clemente 0.400 0.346 0.290

F.Robinson 0.378 0.298 0.286

F.Howard 0.356 0.276 0.282

Johnstone 0.333 0.222 0.277

Berry 0.311 0.273 0.273

Spencer 0.311 0.270 0.273

Kessinger 0.289 0.263 0.268

Alvarado 0.267 0.210 0.264

Santo 0.244 0.269 0.259

Swoboda 0.244 0.230 0.259

Unser 0.222 0.264 0.254

Williams 0.222 0.256 0.254

Scott 0.222 0.303 0.254

Petrocelli 0.222 0.264 0.254

Rodriguez 0.222 0.226 0.254

Campaneris 0.200 0.285 0.249

Munson 0.178 0.316 0.244

Alvis 0.156 0.200 0.239

It can be seen immediately that the EB estimates correspond more closely to
the true batting averages over the season than do the raw estimates.



Criticisms and characteristics of the empirical Bayes approach

In general, the EB approach leads to compromise (shrinkage) posterior
estimators between the individual (Xi) and group (X̄) estimators.

One problem with the EB approach is that it clearly ignores the uncertainty
in φ. Another problem with this approach is how to choose the estimators
of the hyperparameters. Many options are possible, e.g. maximum likelihood,
method of moments, unbiased estimators etc. and all will lead to slightly
different solutions in general.

This is in contrast to the fully Bayesian approach which requires the definition
of a hyperprior but avoids the necessity of selecting a given value of the
hyperprior.



Fully hierarchical modeling

In order to implement a fully hierarchical model, we need to specify a hyperprior
distribution p(φ). Then, we have

p(θ|x) ∝
∫
f(x|θ)p(θ|φ)p(φ) dφ

p(φ|x) ∝
∫
f(x|θ)p(θ|φ)p(φ) dθ.

In many cases, these integrals cannot be evaluated analytically. However,
often a Gibbs sampling approach can be implemented by sampling from the
conditional posterior distributions

p(θ|x,φ) ∝ f(x|θ)p(θ|φ)

p(φ|x,θ) = p(φ|θ) ∝ p(θ|φ)p(φ)

which often do have conjugate forms.



Example 78
Consider Example 74 and suppose initially that the values of φ and ψ are
known and that we use a uniform distribution for µ. Then:

p(µ,θ|y) ∝ exp

(
−φ

2

∑
i

(yi − θi)2 −
ψ

2

∑
i

(θi − µ)2
)
.

Integrating with respect to µ, we have θ|y ∼ N (m,W) where

W−1 =
1

φ+ ψ
I +

ψ

nφ(φ+ ψ)
J and Wm = φy

and the posterior mean of θ is given by

E[θ|y] =
φ

φ+ ψ
y +

ψ

ψ + φ
1ȳ

which is a weighted average of the MLE and the global mean.



Suppose now that both φ and ψ are unknown and that we use the usual
improper priors p(φ) ∝ 1

φ and p(ψ) ∝ 1
ψ. Then it is easy to show that

θ|y, µ, φ, ψ ∼ N
(
φy + ψµ1
φ+ ψ

,
1

φ+ ψ
I
)

µ|y,θ, φ, ψ ∼ N
(
θ̄,

1
nψ

)
φ|y,θ, µ, ψ ∼ G

(
n

2
,

∑
i(yi − θi)2

2

)
ψ|y,θ, µ, φ ∼ G

(
n

2
,

∑
i(µ− θi)2

2

)
and a Gibbs sampling algorithm could be set up. However, it is possible to
demonstrate that the joint posterior distribution is improper.

It is important to check the propriety of the posterior distribution when
improper hyperprior distributions are used. An alternative (as in for example
Winbugs) is to use proper but high variance hyperprior distributions.



Directed acyclic graph representations

Hierarchical models are often well represented by directed acyclic graphs or
DAGs as used in Winbugs.

Example 79
A DAG representing the model and prior structure of Example 75 is as below.



Here we can see that Xi depends directly upon its rate λi which depends on
ti and θi through a logical relation (λi = tiθi).

In Winbugs, this can be converted into code for a Gibbs sampler.

model
{

for (i in 1 : N) {
theta[i] ~ dgamma(alpha, beta)
lambda[i] <- theta[i] * t[i]
x[i] ~ dpois(lambda[i])

}
alpha ~ dexp(1)
beta ~ dgamma(0.1, 1.0)

}



George et al (1993) give the following table of pump failure data.

Pump ti xi
1 94.5 5
2 15.7 1
3 62.9 5
4 126 14
5 5.24 3
6 31.4 19
7 1.05 1
8 1.05 1
9 2.1 4
10 10.5 22

George et al (1993) assume a hierarchical prior distribution

α ∼ E(1)

β ∼ G(0.1, 1)



The following table gives the posterior means and variances of the different
parameters estimated via Winbugs



The last diagram shows a kernel density estimate of the posterior density of
θ1.



10. Time series and dynamic linear
models

Objective

To introduce the Bayesian approach to the modeling and forecasting of time
series.

Recommended reading

• West, M. and Harrison, J. (1997). Bayesian forecasting and dynamic
models, (2’nd ed.). Springer.

• Pole, A.,West, M. and Harrison, J. (1994). Applied Bayesian forecasting
and time series analysis. Chapman and Hall.

• Bauwens, L., Lubrano, M. and Richard, J.F. (1999). Bayesian inference in
dynamic econometric models. Oxford University Press.



Dynamic linear models

West

The first Bayesian approach to forecasting stems from Harrison and Stevens
(1976) and is based on the dynamic linear model. For a full discussion, see
West and Harrison (1997).



The general DLM

Definition 29
The general (univariate) dynamic linear model is

Yt = FTt θt + νt

θt = Gtθt−1 + ωt

where νt and ωt are zero mean measurement errors and state innovations.

These models are linear state space models, where xt = FTt θt represents the
signal, θt is the state vector, Ft is a regression vector and Gt is a state
matrix. The usual features of a time series such as trend and seasonality can
be modeled within this format.

In some cases, F and G are supposed independent of t. Then the model is
a time series DLM. If V and W are also time independent then the DLM is
constant.



Examples

Example 80
A slowly varying level model is

yt = θt + νt

θt = θt−1 + ωt

The observations fluctuate around a mean which varies according to a random
walk.

Example 81
A dynamic linear regression model is given by

yt = FTt θt + νt

θt = θt−1 + ωt



Bayesian analysis of DLM’s

If the error terms, νt and ωt are normally distributed, with known variances,
e.g. νt ∼ N (0, Vt), ωt ∼ N (0,Wt), then a straightforward Bayesian analysis
can be carried out.

Example 82
In Example 80, suppose that at time t−1, the current accumulated information
is Dt−1 = {y1, y2, . . . , yt−1} and assume that the distribution for θt−1 is
θt−1|Dt−1 ∼ N (mt−1, Ct−1). and that the error distributions are νt ∼
N (0, Vt) and ωt ∼ N (0,Wt). Then, we have:

1. The prior distribution for θt is:

θt|Dt−1 ∼ N (mt−1, Rt) where

Rt = Ct−1 +Wt



2. The one step ahead predictive distribution for yt is:

yt|Dt−1 ∼ N (mt−1, Qt) where

Qt = Rt + Vt

3. The joint distribution of θt and yt is

θt
yt

∣∣∣∣Dt−1 ∼ N
(
mt−1

mt−1
,

(
Rt Rt
rt Qt

))
4. The posterior distribution for θt given Dt = {Dt−1, yt} is

θt|Dt ∼ N (mt, Ct) where

mt = mt−1 +Atet

At = Rt/Qt

et = yt −mt−1

Ct = Rt −A2
tQt.



Proof and observations

Proof The first three steps of the proof are straightforward just by going
through the observation and system equations. The posterior distribution
follows from property iv) of the multivariate normal distribution as given in
Definition 22.

In the formula for the posterior mean, et is simply a prediction error term.
This formula could also be rewritten as a weighted average in the usual way
for normal models:

mt = (1−At)mt−1 +Atyt.



The following diagram illustrates the one step ahead predictions for the sales
data from Pole et al (1994) assuming a model with constant observation and
state error variances and a non-informative prior.

An interesting feature to note is that the predictive variance approaches a fixed
constant for this model as the number of observed data increases. See West
and Harrison (1997) for more details.



Example 83
In Example 81, suppose that we have νt ∼ N (0, Vt) and ωt ∼ N (0,Wt) with
distribution θt|Dt−1 ∼ N (mt−1,Ct−1). Then:

1. The prior distribution for θt is:

θt|Dt−1 ∼ N (mt−1,Rt) where

Rt = Ct−1 + Wt.

2. The one step ahead predictive distribution for yt is:

yt|Dt−1 ∼ N (ft, Qt) where

ft = FTt mt−1

Qt = FTt RtFt + Vt



3. The joint distribution of θt and yt is

θt
yt

∣∣∣∣Dt−1 ∼ N
(

mt−1

ft
,

(
Rt FTt Rt

RtFt Qt

))

4. The posterior distribution for θt given Dt = {Dt−1, yt} is

θt|Dt ∼ N (mt,Ct) where

mt = mt−1 + Atet

Ct = Rt −AtAT
t Qt

At = RtFtQ−1
t

et = yt − ft.

Proof Exercise.



The following plot shows sales against price.

Thus, a dynamic, simple linear regression model would seem appropriate.



The following diagram, assuming a constant variance model as earlier illustrates
the improved fit of this model.



The general theorem for DLM’s

Theorem 43
For the general, univariate DLM,

Yt = FTt θt + νt

θt = Gtθt−1 + ωt

where νt ∼ N (0, Vt) and ωt ∼ N (0,Wt), assuming the prior distribution
θt−1|Dt−1 ∼ N (mt−1,Ct−1), we have

1. Prior distribution for θt:

θt|Dt−1 ∼ N (at,Rt) where

at = Gtmt−1

Rt = GtCt−1GT
t + Wt



2. One step ahead prediction:

yt|Dt−1 ∼ N (ft, Qt) where

ft = FTt at

Qt = FTt RtFt + Vt.

3. Posterior distribution for θt|Dt:

θt|Dt ∼ N (mt,Ct) where

mt = at + Atet

Ct = RtRT
t Qt

At = RtFtQ−1
t

et = yt − ft.

Proof Exercise.



DLM’s and the Kalman filter

The updating equations in the general theorem are essentially those used in
the Kalman filter developed in Kalman (1960) and Kalman and Bucy (1961).
For more details, see

http://en.wikipedia.org/wiki/Kalman_filter



Superposition of models

Many time series exhibit various different components. For example, as well
as the regression component we have already fitted, it may well be that the
sales series exhibits a seasonal component. In such cases, we may often wish
to combine these components in a single model. In such cases, we may write

yt = y1t + . . .+ ykt + νt where

yjt = FTjtθjt and

θjt = Gjtθj,t−1 + ωjt for j = 1, . . . , k.

This leads to a combined model

yt = FTt θ + νt

θt = Gtθt−1 + ωt where

Ft =

 F1t
...

Fkt

 , Gt =

 G1t 0 0
0 . . . 0
0 0 Gkt

 .





Discount factors

Thus far, we have not considered how to model the uncertainty in the unknown
variances. It is possible to model the uncertainty in the observation variances
analytically in the usual way (via inverse gamma priors). However, the
treatment of the system variances is more complex. In this case, discount
factors can be used.

The idea is based on information discounting. As information ages, it becomes
less useful and so its value should diminish. Thus, in our problem, with system
equation

θt = Gtθt−1 + ωt, ωt ∼ N (0,Wt)
then given that V [θt−1|Dt−1] = Ct−1, we have

Rt = V [θt|Dt−1] = Pt + Wt

where

Pt = V [Gtθt−1|Dt−1] = GtCt−1GT
t and Wt = Rt −Pt.



If we define δ such that Rt = Pt/δ, then we can interpret δ as the percentage
of information that passes from time t− 1 to time t and in this case,

Wt = Pt

(
δ−1 − 1

)
.

Typical values for systems without abrupt changes are usually around δ = 0.9.
Small values of δ (below 0.8) imply large levels of uncertainty and lead to
predictions with very wide bounds.

High values represent more smoothly changing systems, and in the limit, when
δ = 1, we have a static system with no information loss.

The following diagrams show the effects of fitting a trend model with discount
factors 0.8, 0.9 and 1 to the sales data. We can see that the higher the
discount factor, the higher the degree of smoothing.





The forward filtering backward sampling algorithm

This algorithm, developed in Carter and Kohn (1994) and Frühwirth-Schnatter
(1994) allows for the implementation of an MCMC approach to DLM’s.

The forward filtering step is the standard normal linear analysis to give p(θt|Dt)
at each t, for t = 1, . . . , n.

The backward sampling step uses the Markov property and samples θ?n from
p(θn|Dn) and then, for t = 1, . . . , n − 1, samples θ?t from p(θt|Dt,θ

?
t+1).

Thus, a sample from the posterior parameter structure is generated.



Example: the AR(p) model with time varying coefficients

Example 84
The AR(p) model with time varying coefficients takes the form

yt = θ0t + θ1t + . . .+ θptyt−p + νt

θit = θi,t−1 + ωit

where we shall assume that the error terms are independent normals:

νit ∼ N (0, V ) and ωit ∼ N (0, λiV ).

Then this model can be expressed in state space form by setting

θt = (θ0t, . . . , θpt)T

F = (1, yt−1, . . . , yt−p)T

G = Ip+1

W = V diag(λ)



Here diag(λ) represents a diagonal matrix with ii’th entry equal to λi, for
i = 1, . . . , p+ 1.

Now, given gamma priors for V and for λ−1
i and a normal prior for θ0, then it

is clear that the relevant posterior distributions are all conditionally conjugate.

Koop (2003) examines data on the annual percentage change in UK industrial
production from 1701 to 1992.



Koop (2003) assumes a time varying coefficient AR(1) model and uses proper
but relatively uninformative prior distributions. The posterior distributions of
λ0 and λ1 estimated from running the Gibbs sampler are as follows.

The posterior means and deviations of both λ0 and λ1 suggest that there is
quite high stochastic variation in both θ0t and θ1t.



Software for fitting DLM’s

Two general software packages are available.

• BATS. Pole et al (1994). This (somewhat out of date) package can be used
to perform basic analyses and is available from:

http://www.stat.duke.edu/~mw/bats.html

• dlm. Petris (2006). This is a recently produced R package for fitting
DLM’s, including ARMA models etc. available from

http://cran.r-project.org/src/contrib/Descriptions/dlm.html



Other work in time series

• ARMA and ARIMA models. Marriot and Newbold (1998).

• Non linear and non normal state space models. Carlin et al (1992).

• Latent structure models. Aguilar et al (1998).

• Stochastic volatility models. Jacquier et al (1994).

• GARCH and other econometric models. Bauwens y Lubrano (1998),
Bauwens et al (2000).

• Wavelets. Nason et al (1999).



11. Other topics

Objective

Introduce the basic ideas of robust Bayesian analysis and nonparametric
Bayesian methods.

Recommended reading

• Berger, J. (1994) An overview of robust Bayesian analysis (with discussion).
Test, 3, 5–124.

• Ŕıos Insua, D. and Ruggeri, F. (eds.) (2000). Robust Bayesian Analysis.
Springer Verlag.



Robustness

In any Bayesian analysis, especially when expert priors have been solicited, it
is important to assess the sensitivity of the results to the election of the prior
distribution p(θ).

Sensitivity to the loss function and likelihood function are also considered in
Dey and Micheas (2000), Kadane et al (2000) and Shyamalkumar (2000).

An informal sensitivity analysis considers robustness to the use of various
different prior distributions.



Example

Example 85
Wilson and Wiper (2000) analyzed the Jelinski Moranda (1972) model for
software reliability.

Let T1, T2, . . . be the times between successive software failures. Then the
Jelinski Moranda model assumes that

Ti|N,φ ∼ E ((N − i+ 1)φ)

so that initially, the program contains N faults, each of which has the same
size or importance, φ, and then after each failure, the fault causing the failure
is identified and removed from the program.



The first m = 86 inter failure times for a program were observed as in the
following diagram.

The objective is to predict the next failure time and the number of bugs left in
the program.



The likelihood function is

l(N,φ|t) ∝ N !
(N −m)!

φm exp

(
−

[
(N + 1)mt̄−

m∑
i=1

iti

]
φ

)

and semi-conjugate priors are

N ∼ P(λ) where we assume that λ = 100

φ ∼ G(α, β) where α = 1 and β = .0001

Given these priors, it can be shown that E[N |data] ≈ 104 (MLE = 106)
and the posterior median of the distribution of the time to next failure is
2440× 10−2 seconds (MLE = 2177).



Assume that we contaminate the prior distribution with a long tailed
distribution. We shall consider the class of prior distributions

Γ = {(1− ε)P (N) + εQ(N)}

where P (N) represents the Poisson density and

Q(N) ∝
(

(N − λ+
1
2
)2 + δ

)−1

.

Q is a density with the same mode as the Poisson but with no mean.

The following diagram illustrates the effects of the contamination on the
posterior mean of the number of remaining faults for different values of ε and
δ.



For ε = 0.2 the posterior median of the time to next failure varies between
2410 and 2440 for 100 ≤ δ ≤ 1000000 but when ε = 1, the median is 1960 in
the worst case, δ = 1000000. We can conclude that the results are relatively
insensitive to small changes in the prior.



Global sensitivity analysis

In the global approach, the prior is included within a wider class of distributions,
Γ, and the sensitivity of some function of interest such as the posterior mean
is examined. If there are large differences between the maximum and minimum
estimates over the prior class then the inference is sensitive.

Possible classes are:

• ε-contamination classes

Γ = {π : π(θ) = (1− ε)P (θ) + εQ(θ), g ∈ Q}

where Q is a general class of contaminating distributions, e.g. unimodal
distributions.

• Generalized moment classes: that is all distributions with a given set of
specified moments or quantiles.



• Classes of density bands:

Γ = {π : L(θ) < π(θ) < U(θ)}

for example, L(θ) = (1− ε)f(θ) and U(θ) = (1 + ε)f(θ).



Example 86
Returning to the previous example, suppose that we wish to maintain the
assumption of prior independence between N and φ. Then, we can define the
class

Γ = {π : π(N,φ) = π1(N)π2(φ)}

where (1 − ε1)P (N) < π1(N) < (1 + ε1)P (N) and (1 − ε2)P (φ) < π2(φ) <
(1 + ε2)P (φ) and P (N) and P (φ) are the Poisson and gamma priors we
assumed earlier.

The diagram illustrates the differences between the upper and lower limits in
the value of the posterior mean of N for 0 < ε1, ε2 < 1.



The inference is more sensitive to contaminations of the prior of N than to
contaminations in the prior for φ although it is still quite robust to small
contaminations.



Problems with the global robustness approach

The main difficulty with this approach is that it is not always clear how to
elect a reasonable contamination class. Most standard classes are too large
and include unreasonable choices of prior.

A second problem is that the calculation of the minima and maxima of the
quantity of interest is often very complex except for a very few, relatively
simple contamination classes where analytic results are known.



Local robustness

An alternative approach is local robustness. In this case, influence measures
based on, for example, the norm of the Frechet derivative of the posterior
distribution relative to the prior are used to reflect the sensitivity to the the
prior distribution. See e.g. Gustafson and Wassermann (1995) for more details.



Bayesian nonparametrics

Suppose that X|f ∼ f and that given a sample, x, we wish to carry out
inference about f .

In order to do this from a Bayesian standpoint, it is necessary to define a prior
distribution over the (infinite dimensional) space of distributions. The simplest
and most studied class of prior distributions is Dirichlet process priors.



The Dirichlet process

The definition of the Dirichlet process is a generalization of the Dirichlet
distribution. It was first considered by Ferguson (1973).

Definition 30
Suppose that F is a random probability measure and that t F0 is a (known)
distribution function and α a scalar parameter. For any finite partition,
{C1, . . . , Cr}, of the probability space, the Dirichlet process prior distribution
for F , with parameters α and F0 assigns the distribution

{F (C1), . . . , F (Cr)} ∼ D (αF0(C1), . . . , αF0(Cr)) .

In this case, we write F ∼ DP(α, F0).

It is straightforward to show that the Dirichlet process prior is conjugate.



Theorem 44
If {X}i is a sequence of exchangeable random variables with Xi|F ∼ F and
F ∼ DP(α, F0), then:

• the marginal distribution of Xi is F0.

• the conditional distribution of F given a sample, x = (x1, . . . , xn), is also
a Dirichlet process such that

{F (C1), . . . , F (Cr)}|x ∼ D

(
αF0(C1) +

n∑
i=1

IC1(xi), . . . , αF0(Cr) +
n∑
i=1

ICr(xi)

)

that is F |x ∼ DP
(
α+ n, α

α+nF0 + n
α+nF̂

)
where F̂ is the empirical c.d.f.



Proof Firstly, the marginal c.d.f. of X is

P (X ≤ x) =
∫
P (X ≤ x|F )p(F ) dF

=
∫
F (x)p(F ) dF

=
αF0(x)
α

= F0(x)

Secondly, we have

P (F (C1), . . . , F (Cr)|x) ∝ P (F (C1), . . . , F (Cr))f(x|F (C1), . . . , F (Cr))

∝
r∏
j=1

F (Cj)
αF0(Ci)+

∑n
i=1 ICj(xi)

which is another Dirichlet distribution and proves the result.



When n increases, the predictive distribution function of Xn+1 approaches the
empirical c.d.f.

Example 87
20 data were generated from a beta distribution, B(4, 6). A Dirichlet process
prior with α = 1 and F0(x) = x, for 0 < x < 1, i.e. a uniform distribution was
assumed. The following diagram shows the predictive and empirical distribution
functions.



Mixtures of Dirichlet processes

An important theoretical disadvantage of the Dirichlet process is that it can
be shown that it assigns probability one to discrete probability measures, see
Blackwell (1973). One way of getting around this is to use continuous mixtures
of Dirichlet processes as developed in Antoniak (1974).

This leads to a hierarchical model

Xi|θi ∼ f(x|θi)
θi|P ∼ P (θ)

P ∼ DP(α, P0)

This model can be interpreted as a countably infinite, mixture model, i.e. as
the limit of a finite mixture model, f(x) =

∑k
i=1wif(x|θi), as the number of

terms, k, goes to infinity.



One problem is how to choose the conditional density f(x|θ). Most applications
have chosen to use a normal density as a flexible option. See e.g. McEachern
and Muller (1998) or Neal (2000). In this case, inference is then carried out
using MCMC techniques.

Example 88
The following diagram shows a fit of the well known galaxy data using the DP
mixture model.



Nonparametric regression

A nonparametric regression model can be expressed as

yi = f(xi) + εi

for i = 1, . . . , n where the function f is unknown. A number of classical
estimation techniques are available for fitting such models, e.g. splines, neural
networks or SVM’s.

Bayesian penalized regression splines are implemented in Winbugs by e.g.
Crainiceanu et al (2007) and a review of Bayesian neural nets is given by Lee
(2004). The Bayesian equivalent of an SVM is the Gaussian process.



The Gaussian process

A Gaussian process defines a distribution over functions, f , where f is a
function mapping some input space, X into R. We shall call this distribution
P (f).

Let f = (f(x1), . . . , f(xn)) be an n dimensional vector of function points
evaluated at x1, . . . ,xn. Then f is a random variable.

Now, P (f) is a Gaussian process if for any finite set, (x1, . . . ,xn) ⊂ X then
the marginal distribution P (f) over that subset has a multivariate Gaussian
distribution.



Gaussian processes are characterized by a mean value function µ(x) and a
covariance function c(x,x′), so that

P (f(x), f(x′) ∼ N (µ,Σ) where

µ =
(

µ(x)
µ(x′)

)
Σ =

(
c(x,x) c(x,x′)
c(x′,x) c(x′,x′)

)
and similarly. Various forms for the covariance function have been considered,
e.g.

c(xi, xj) = ν0 exp
(
−|xi − xj|α

λ

)
+ ν1 + ν2δij

Some software for Gaussian process regression is available. See e.g.

http://www.gaussianprocess.org/gpml/code/matlab/doc/regression.html



Example


