2nd Partial Exam [2h]

1. Let $(X(t), t \geq 0)$ be a right-continuous process on a numerable set \mathbb{S} , starting at $i \in \mathbb{S}$. We assume that its jump chain, $(Y_n)_{n\geq 0}$ with $Y_n = X(J_n)$, is a $\mathrm{HMC}(\delta_i, \mathbf{\Pi})$ and for each $n \geq 1$, conditional on $Y_0, Y_1, \ldots, Y_{n-1}$, the holding times S_1, S_2, \ldots, S_n , with $S_n = J_n - J_{n-1}$, are independent exponential random variables with parameters $q(Y_0), q(Y_1), \ldots, q(Y_{n-1})$. We define \mathbf{Q} as the \mathbf{Q} -matrix on \mathbb{S} with jump matrix $\mathbf{\Pi}$ and rate vector $(q(i), i \in \mathbb{S})$.

Show that the matrix $\mathbf{P}(t) = (p_{ij}(t))_{i,j \in \mathbb{S}}$, with $p_{ij}(t) = \mathbb{P}_i(X(t) = j)$, is the minimal non-negative solution of the Kolmogorov Backward Equations

$$\mathbf{P}'(t) = \mathbf{Q} \mathbf{P}(t), \quad \mathbf{P}(0) = \mathbb{I}.$$

(3 Puntos)

- 2. Let $X(t) = \sigma B(t)$ be a Brownian motion with no drift and volatility $\sigma > 0$. In the formula, B(t) denotes a standard Brownian motion. Compute:
 - (a) the covariance function $\mathbb{C}ov_X(s,t)$, for $s,t\geq 0$
 - (b) the distribution of T_x , that is, the hitting time of level x, with x > 0.

(3 Puntos)

3. Let $(X(t), t \ge 0)$ be a HMC on $\{0, 1, 2, \ldots\}$ with transition rates equal to

$$q_{01} = q_{i,i+1} = 3$$
 $i \ge 2$
 $q_{10} = q_{i,i-1} = 2$ $i \ge 2$

and the remaining q_{ij} with $i \neq j$ equal to 0.

Assuming that X(0) = 4, compute:

- (a) the probability to visit the state 0.
- (b) the limit distribution of the chain conditioned to visit the state 0 in finite time.
- (c) the $\lim_{t\to\infty} \mathbb{P}_i(X(t)=j)$ for $i,j\geq 0$.

(4 Puntos)