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Regression diagnostics

Diagnostics

I The theoretical assumptions for the simple linear regression model
with one response variable Y and one explicative variable x are:

I Linearity: yi = β0 + β1xi + ui , for i = 1, . . . , n
I Homogeneity: E [ui ] = 0, for i = 1, . . . , n
I Homoscedasticity: Var[ui ] = σ2, for i = 1, . . . , n
I Independence: ui and uj are independent for i 6= j
I Normality: ui ∼ N(0, σ2), for i = 1, . . . , n

I We study how to apply diagnostic procedures to test if these
assumptions are appropriate for the available data (xi , yi )

I Based on the analysis of the residuals ei = yi − ŷi



Diagnostics: scatterplots

Scatterplots

I The simplest diagnostic procedure is based on the visual
examination of the scatterplot for (xi , yi )

I Often this simple but powerful method reveals patterns suggesting
whether the theoretical model might be appropriate or not

I We illustrate its application on a classical example. Consider the four
following datasets



Diagnostics: scatterplots

The Anscombe datasets
132 TWO-VARIABLE LINEAR REGRESSION 

TABLE 3-10 
Four Data Sets 

DATASET 1 DATASET 2 
X Y X Y 

10.0 8.04 10.0 9.14 
8.0 6.95 8.0 8.14 

1'3.0 7.58 13.0 8.74 
9.0 8 .81 9.0 8.77 

11.0 8.33 11.0 9.26 
14.0 9.96 14.0 8.10 

6.0 7.24 6.0 6.13 
4.0 4.26 4.0 3.10 

12.0 10.84 12.0 9.13 
7.0 4.82 7.0 7.26 
5.0 5.68 5.0 4.74 

DATASET 3 DATASET 4 
X Y X Y 

10.0 7.46 8.0 6.58 
8.0 6.77 8.0 5.76 

13.0 12.74 8.0 7.71 
9.0 7.11 8.0 8.84 

11.0 7.81 8.0 8.47 
14.0 8.84 8.0 7.04 
6.0 6.08 8.0 5.25 
4.0 5.39 19.0 12.50 

12.0 8.15 8.0 5.56 
7.0 6.42 8.0 7.91 
5.0 5.73 8.0 6.89 

SOURCE: F . J . Anscombe, op. cit. 

mean of X = 9.0, 

mean of Y = 7.5, for all four data sets. 

And yet the four situations-although numerically equivalent in major 
respects-are substantively very different. Figure 3-29 shows how 
very different the four data sets actually are. 

Anscombe has emphasized the importance of visual displays in 
statistical analysis: 

Most textbooks on statistical methods, and most statistical computer 
programs, pay too little attention to graphs. Few of us escape being 
indoctrinated with these notions: 



Diagnostics: scatterplots

The Anscombe example

I The estimated regression model for each of the four previous
datasets is the same

I yi = 3,0 + 0,5xi

I n = 11, x̄ = 9,0, ȳ = 7,5, rxy = 0,817

I The estimated standard error of the estimator β̂1,√
s2
R

(n − 1)s2
x

takes the value 0,118 in all four cases. The corresponding T statistic
takes the value T = 0,5/0,118 = 4,237

I But the corresponding scatterplots show that the four datasets are
quite different. Which conclusions could we reach from these
diagrams?



Diagnostics: scatterplots

Anscombe data scatterplots133 TWO-VARIABLE LINEAR REGRESSION 
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FIGURE 3-29 Scatterplots for the four data sets of Table 3-10 
SOURCE: F. J . Anscombe, op cit. 

(1) numerical calculations are exact, but graphs are rough; 

15 

15 

(2) for any particular kind of statistical data there is just one 
set of calculations constituting a correct statistical analysis; 

(3) performing intricate calculations is virtuous, whereas actually 
looking at the data is cheating. 

A computer should make both calculations and graphs. Both sorts 
of output should be studied; each will contribute to understanding. 

Graphs can have various purposes, such as: (i) to help us perceive 
and appreciate some broad features of the data, (ii) to let us look 
behind those broad features and see what else is there. Most kinds 
of statistical calculation rest on assumptions about the behavior of 
the data. Those assumptions may be false, and then the calculations 
may be misleading. We ought always to try to check whether the 
assumptions are reasonably correct; and if they are wrong we ought 

20 

20 



Residual analysis

Further analysis of the residuals

I If the observation of the scatterplot is not sufficient to reject the
model, a further step would be to use diagnosis methods based on
the analysis of the residuals ei = yi − ŷi

I This analysis starts by standarizing the residuals, that is, dividing
them by the residuals (quasi-)standard deviation sR . The resulting
quantities are known as standarized residuals:

ei

sR

I Under the assumptions of the linear regression model, the
standarized residuals are approximately independent standard normal
random variables

I A plot of these standarized residuals should show no clear pattern



Residual analysis

Residual plots

I Several types of residual plots can be constructed. The most
common ones are:

I Plot of standardized residuals vs. x
I Plot of standardized residuals vs. ŷ (the predicted responses)

I Deviations from the model hypotheses result in patterns on these
plots, which should be visually recognizable



Residual plots examples

Consistency of the theoretical model5.1: Ej: consistencia con el modelo teórico



Residual plots examples

Nonlinearity
5.1: Ej: No linealidad



Residual plots examples

Heteroscedasticity

5.1: Ej: Heterocedasticidad



Residual analysis

Outliers

I In a plot of the regression line we may observe outlier data, that is,
data that show significant deviations from the regression line (or
from the remaining data)

I The parameter estimators for the regression model, β̂0 and β̂1, are
very sensitive to these outliers

I It is important to identify the outliers and make sure that they really
are valid data

I Statgraphics is able to show for example the data that generate
“Unusual residuals” or “Influential points”



Residual analysis

Normality of the errors

I One of the theoretical assumptions of the linear regression model is
that the errors follow a normal distribution

I This assumption can be checked visually from the analysis of the
residuals ei , using different approaches:

I By inspection of the frequency histogram for the residuals
I By inspection of the “Normal Probability Plot” of the residuals

(significant deviations of the data from the straight line in the plot
correspond to significant departures from the normality assumption)



The ANOVA decomposition

Introduction

I ANOVA: ANalysis Of VAriance

I When fitting the simple linear regression model ŷi = β̂0 + β̂1xi to a
data set (xi , yi ) for i = 1, . . . , n, we may identify three sources of
variability in the responses

I variability associated to the model:

SSM =
Pn

i=1(ŷi − ȳ)2,

where the initials SS denote “sum of squares” and M refers to the
model

I variability of the residuals:

SSR =
Pn

i=1(yi − ŷi )
2 =

Pn
i=1 e2

i

I total variability: SST =
Pn

i=1(yi − ȳ)2

I The ANOVA decomposition states that: SST = SSM + SSR



The ANOVA decomposition

The coefficient of determination R2

I The ANOVA decomposition states that SST = SSM + SSR

I Note that yi − ȳ = (yi − ŷi ) + (ŷi − ȳ)

I SSM =
∑n

i=1(ŷi − ȳ)2 measures the variation in the responses due
to the regression model (explained by the predicted values ŷi )

I Thus, the ratio SSR/SST is the proportion of the variation in the
responses that is not explained by the regression model

I The ratio R2 = SSM/SST = 1− SSR/SST is the proportion of the
variation in the responses that is explained by the regression model.
It is known as the coefficient of determination

I The value of the coefficient of determination satisfies R2 = r2
xy (the

squared correlation coefficient)

I For example, if R2 = 0,85 the variable x explains 85 % of the
variation in the response variable y



The ANOVA decomposition

ANOVA table

Source of variability SS DF Mean F ratio
Model SSM 1 SSM/1 SSM/s2

R

Residuals/errors SSR n − 2 SSR/(n − 2) = s2
R

Total SST n − 1



The ANOVA decomposition

ANOVA hypothesis testing

I Hypothesis test, H0 : β1 = 0 vs. H1 : β1 6= 0

I Consider the ratio

F =
SSM/1

SSR/(n − 2)
=

SSM

s2
R

I Under H0, F follows an F1,n−2 distribution

I Test at a significance level α: reject H0 if F > F1,n−2;α

I How does this result relate to the test based on the Student-t we
saw in Lesson 4? They are equivalent



The ANOVA decomposition

Statgraphics output5.2: Ej. ANOVA

Estimación de la varianza

Regression Analysis - Linear model: Y = a + b*X

-----------------------------------------------------------------------------

Dependent variable: Precio en ptas.

Independent variable: Produccion en kg.

-----------------------------------------------------------------------------

                               Standard          T

Parameter       Estimate         Error       Statistic        P-Value

-----------------------------------------------------------------------------

Intercept        74,1151        8,73577         8,4841         0,0000

Slope           -1,35368         0,3002       -4,50924         0,0020

-----------------------------------------------------------------------------

                           Analysis of Variance

-----------------------------------------------------------------------------

Source             Sum of Squares     Df  Mean Square    F-Ratio      P-ValueSource             Sum of Squares     Df  Mean Square    F-Ratio      P-Value

-----------------------------------------------------------------------------

Model                     528,475      1      528,475      20,33       0,0020

Residual                  207,925      8      25,9906

-----------------------------------------------------------------------------

Total (Corr.)               736,4      9

Correlation Coefficient = -0,84714

R-squared = 71,7647 percent

Standard Error of Est. = 5,0981
!
!"



Nonlinear relationships and linearizing transformations

Introduction

I Consider the case when the deterministic part f (xi ; a, b) of the
response in the model

yi = f (xi ; a, b) + ui , i = 1, . . . , n

is a nonlinear function of x that depends on two parameters a and b
(for example, f (x ; a, b) = abx)

I In some cases we may apply transformations to the data to linearize
them. We are then able to apply the linear regression procedure

I From the original data (xi , yi ) we obtain the transformed data
(x ′i , y

′
i )

I The parameters β0 and β1 corresponding to the linear relation
between x ′i and y ′i are transformations of the parameters a and b



Nonlinear relationships and linearizing transformations

Linearizing transformations

I Examples of linearizing transformations:
I If y = f (x ; a, b) = axb then log y = log a + b log x . We have

I y ′ = log y , x ′ = log x , β0 = log a, β1 = b
I If y = f (x ; a, b) = abx then log y = log a + (log b)x . We have

I y ′ = log y , x ′ = x , β0 = log a, β1 = log b
I If y = f (x ; a, b) = 1/(a + bx) then 1/y = a + bx . We have

I y ′ = 1/y , x ′ = x , β0 = a, β1 = b

I If y = f (x ; a, b) = log(axb) then y = log a + b(log x). We have
I y ′ = y , x ′ = log x , β0 = log a, β1 = b



A matrix treatment of linear regression

Introduction

I Remember the simple linear regression model,

yi = β0 + β1xi + ui , i = 1, . . . , n

I If we write one equation for each one of the observations, we have

y1 = β0 + β1x1 + u1

y2 = β0 + β1x2 + u2

...
...

yn = β0 + β1xn + un



A matrix treatment of linear regression

The model in matrix form

I We can write the preceding equations in matrix form as
y1

y2

...
yn

 =


β0 + β1x1

β0 + β1x2

...
β0 + β1xn

+


u1

u2

...
un


I And splitting the parameters β from the variables xi ,

y1

y2

...
yn

 =


1 x1

1 x2

...
...

1 xn


(
β0

β1

)
+


u1

u2

...
un





A matrix treatment of linear regression

The regression model in matrix form

I We can write the preceding matrix relationship
y1

y2

...
yn

 =


1 x1

1 x2

...
...

1 xn


(
β0

β1

)
+


u1

u2

...
un


as

y = Xβ + u

I y: response vector; X: explanatory variables matrix (or experimental
design matrix); β: vector of parameters; u: error vector



The regression model in matrix form

Covariance matrix for the errors

I We denote as Cov(u) the n × n matrix of covariances for the errors.
Its (i , j)-th element is given by cov(ui , uj) = 0 if i 6= j and
cov(ui , ui ) = Var(ui ) = σ2

I Thus, Cov(u) is the identity matrix In×n multiplied by σ2:

Cov(u) =


σ2 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σ2

 = σ2I



The regression model in matrix form

Least-squares estimation

I The least-squares vector parameter estimate β̂ is the unique solution
of the 2× 2 matrix equation (check the dimensions)

(XTX)β̂ = XTy,

that is,
β̂ = (XTX)−1XTy.

I The vector ŷ = (ŷi ) of response estimates is given by

ŷ = Xβ̂

and the residual vector is defined as e = y − ŷ



The multiple linear regression model

Introduction

I Use of the simple linear regression model: predict the value of a
response y from the value of an explanatory variable x

I In many applications we wish to predict the response y from the
values of several explanatory variables x1, . . . , xk

I For example:
I forecast the value of a house as a function of its size, location, layout

and number of bathrooms
I forecast the size of a parliament as a function of the population, its

rate of growth, the number of political parties with parliamentary
representation, etc.



The multiple linear regression model

The model

I Use of the multiple linear regression model: predict a response y
from several explanatory variables x1, . . . , xk

I If we have n observations, for i = 1, . . . , n,

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ui

I We assume that the error variables ui are independent random
variables following a N(0, σ2) distribution



The multiple linear regression model

The least-squares fit

I We have n observations, and for i = 1, . . . , n

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ui

I We wish to fit to the data (xi1, xi2, . . . , xik , yi ) a hyperplane of the
form

ŷi = β̂0 + β̂1xi1 + β̂2xi2 + · · ·+ β̂kxik

I The residual for observation i is defined as ei = yi − ŷi

I We obtain the parameter estimates β̂j as the values that minimize
the sum of the squares of the residuals



The multiple linear regression model

The model in matrix form

I We can write the model as a matrix relationship,


y1

y2

...
yn

 =


1 x11 x12 · · · x1k

1 x21 x22 · · · x2k

...
...

...
. . .

...
1 xn1 xn2 · · · xnk




β0

β1

β2

...
βk

+


u1

u2

...
un


and in compact form as

y = Xβ + u

I y: response vector; X: explanatory variables matrix (or experimental
design matrix); β: vector of parameters; u: error vector



The multiple linear regression model

Least-squares estimation

I The least-squares vector parameter estimate β̂ is the unique solution
of the (k + 1)× (k + 1) matrix equation (check the dimensions)

(XTX)β̂ = XTy,

and as in the k = 1 case (simple linear regression) we have

β̂ = (XTX)−1XTy.

I The vector ŷ = (ŷi ) of response estimates is given by

ŷ = Xβ̂

and the residual vector is defined as e = y − ŷ



The multiple linear regression model

Variance estimation

I For the multiple linear regression model, an estimator for the error
variance σ2 is the residual (quasi-)variance,

s2
R =

∑n
i=1 e2

i

n − k − 1
,

and this estimator is unbiased
I Note that for the simple linear regression case we had n − 2 in the

denominator



The multiple linear regression model

The sampling distribution of β̂

I Under the model assumptions, the least-squares estimator β̂ for the
parameter vector β follows a multivariate normal distribution

I E (β̂) = β (it is an unbiased estimator)

I The covariance matrix for β̂ is Cov(β̂) = σ2(XTX)−1

I We estimate Cov(β̂) using s2
R(XTX)−1

I The estimate of Cov(β̂) provides estimates s2(β̂j) for the variance

Var(β̂j). s2(β̂j) is the standard error of the estimator β̂j

I If we standardize β̂j we have

β̂j − βj

s(β̂j)
∼ tn−k−1 (the Student-t distribution)



The multiple linear regression model

Inference on the parameters β̂j

I Confidence interval for βj at a confidence level 1− α

β̂j ± tn−k−1;α/2 s(β̂j)

I Hypothesis testing for H0 : βj = 0 vs. H1 : βj 6= 0 at a confidence
level α

I Reject H0 if |T | > tn−k−1;α/2, where

T =
β̂j

s(β̂j)

is the test statistic



The ANOVA decomposition

The multivariate case

I ANOVA: ANalysis Of VAriance

I When fitting the multiple linear regression model
ŷi = β̂0 + β̂1xi1 + · · ·+ β̂kxik to a data set (xi1, . . . , xik , yi ) for i = 1, . . . , n,
we may identify three sources of variability in the responses

I variability associated to the model:

SSM =
Pn

i=1(ŷi − ȳ)2,

where the initials SS denote “sum of squares” and M refers to the
model

I variability of the residuals:

SSR =
Pn

i=1(yi − ŷi )
2 =

Pn
i=1 e2

i

I total variability: SST =
Pn

i=1(yi − ȳ)2

I The ANOVA decomposition states that: SST = SSM + SSR



The ANOVA decomposition

The coefficient of determination R2

I The ANOVA decomposition states that SST = SSM + SSR

I Note that yi − ȳ = (yi − ŷi ) + (ŷi − ȳ)

I SSM =
∑n

i=1(ŷi − ȳ)2 measures the variation in the responses due
to the regression model (explained by the predicted values ŷi )

I Thus, the ratio SSR/SST is the proportion of the variation in the
responses that is not explained by the regression model

I The ratio R2 = SSM/SST = 1− SSR/SST is the proportion of the
variation in the responses that is explained by the explanatory
variables. It is known as the coefficient of multiple determination

I The value of this coefficient satisfies R2 = r2
ŷy (the squared

correlation coefficient)

I For example, if R2 = 0,85 the variables x1, . . . , xk explain 85 % of
the variation in the response variable y



The ANOVA decomposition

ANOVA table

Source of variability SS DF Mean F ratio

Model SSM k SSM/k (SSM/k)/s2
R

Residuals/errors SSR n − k − 1 SSR/(n − k − 1) = s2
R

Total SST n − 1



The ANOVA decomposition

ANOVA hypothesis testing

I Hypothesis test, H0 : β1 = β2 = · · · = βk = 0 vs. H1 : βj 6= 0 for
some j = 1, . . . , k

I H0: the response does not depend on any xj

I Consider the ratio

F =
SSM/k

SSR/(n − k − 1)
=

SSM

s2
R

I Under H0, F follows an Fk,n−k−1 distribution

I Test at a significance level α: reject H0 if F > Fk,n−k−1;α


