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Lesson 4. Simple linear regression

Learning objectives

>

Know how to construct a simple linear regression model that
describes how a variable X influences another variable Y

Know now to obtain point estimations of the parameters of this
model

Know to construct confidence intervals and perform tests about the
parameters of the model

Know to estimate the mean value of Y for a specified value of X

Know to predict future values for the dependent (response) variable
Y



Lesson 4. Simple linear regression

Recommended bibliography

» Meyer, P. “Probabilidad y aplicaciones estadisticas” (1992)
> Chapter

» Newbold, P. “Estadistica para los negocios y la economia” (1997)
» Chapter 10

> Pefia, D. “Regresién y anilisis de experimentos” (2005)
» Chapter 5



Introduction

A regression model is a model that describes how a variable X influences
the value of another variable Y.

» X: Independent or explanatory or exogenous variable

» Y: Dependent or response o endogenous variable

The aim is to obtain reasonable estimations of Y for different values of
X from a sample of n pairs of values (x1,y1), ..., (Xn, ¥n)-



Introduction

Examples

vV v . v v

Study how the parents’ height may influence their children’s height
Estimate the price of a house depending on its surface
Predict the unemployment level for different ages

Approximate the grades attained in a subject as a function of the
number of study hours per week

Forecast the execution time of a program depending on the speed of
the processor



Introduction
Types of relation

» Deterministic: Given the value of X, the value of Y is perfectly
established. They are of the form:

Y = f(X)

Example: The relationship between the temperature measured in
degrees Celsius (X) and the equivalent measure in degrees
Fahrenheit (Y) is given by:

Y =18X+32

Plot of Grados Fahrenheit vs Grados centigrados
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Introduction
Types of relation

» Non deterministic: Given the value of X, the value of Y is not
completely determined. They are of the form:

y="~f(x)+u

where u is an unknown perturbation (random variable).

Example: A sample is taken regarding the volume of production (X)
and the total cost (Y) associated with a product in a corporate
group.

Plot of Costos vs Volumen
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A relation exists but it is not exact



Introduction

Types of relation

> Linear: When the function f(x) is linear,

f(x) = fo + Pix

» If 31 > 0 there is a positive linear relationship
> If 51 < 0 there is a negative linear relationship

Relacion lineal positiva Relacion lineal negativa

The data show a linear pattern




Introduction

Types of relation

» Nonlinear: When the function f(x) is nonlinear. For exmaple,
f(x) = log(x), f(x) =x*>+3,...

Relacion no lineal

The data do not show linear patterns



Introduction

Types of relation

» Absence of relation: Whenever f(x) = c, that is, whenever f(x)
does not depend on x

Ausencia de relacion




Measures of linear dependency

Covariance
A measure of linear dependency is the covariance:

n

366 R 05 7)
cov (x,y) = =L |

> If there is a positive linear relation, the covariance will be positive
and large

» If there is a negative linear relation, the covariance will be negative
and large in absolute value.

> If there is no relation between the variables or the relation is
significantly linear, the covariance will be close to zero.

but the covariance depends on the units of measurement of the variables



Measures of linear dependency

The correlation coefficient
A measure of linear dependency that doesn’'t depend on the units of
measurement is the correlation coefficient:

cov (x,y)

Mx,y) = Cor (x,y) = <<
x Sy

where .
> (xi—x)° > i—y)?
2 =l

X n—1 4 n—1

» —1<cor(x,y)<1
> cor(x,y) = cor(y,x)

> cor (ax + b, cy + d) = sign(a) sign(c) cor (x,y)
for any values a, b, c, d



The simple linear regression model

The simple linear regression model assumes that,

’yi260+ﬁlxi+ui‘

where:

> y; represents the value of the dependent variable for the i-th
observation

> x; represents the value of the independent variable for the i-th
observation

> u; represents the error for the i-th observation, which we will assume
to be normal,

uj ~ N(O, U’)
> o and (; are the regression coefficients:
> [ : intercept
> (31 : slope
The parameters to estimate are: [y, #1 and o



The simple linear regression model
Our goal is to obtain estimates (o and (1 for By and (3 to define the

regression line
¥ = Do+ Pix

that provides the best fit for the data
Example: Assume that the regression line of the previous example is:

Cost = —15.65 + 1.29 Volume

Plot of Fitted Model
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From this model it is estimated that a company that produces 25
thousand units will have a cost given by:
Cost = —15.65 + 1.29 x 25 = 16.6 thousand euros



The simple linear regression model
The difference between each value y; of the response variable and its
estimation ¥; is called a residual:

&=y — Vi

Valorobservado ~ —*%
Dato (y) J/
.

® Rectade
regresion
estimada

x

Example (cont.): Undoubtedly, a certain company that has produced
exactly 25 thousand units is not going to have a cost exactly equal to
16.6 thousand euros. The difference between the estimated cost and the
real one is the error. If for example the real cost of the company is 18
thousand euros, the residual is:

e; = 18 — 16.6 = 1.4 thousand euros



Hypotheses of the simple linear regression model

» Linearity: The existing relation between X and Y is linear,

f(x) = Bo + fix

v

Homogeneity: The mean value of the error is zero,
E[U,‘] =0
» Homoscedasticity: The variance of the errors is constant,

Var(u;) = o°

> Independence: The observations are independent,
E[U,‘Uj] =0
> Normality: The errors follow a normal distribution,

uj ~ N(0,0’)



Hypotheses of the simple linear regression model

Linearity
The data have to look reasonably straight

Plot of Fitted Model
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Otherwise, the regression line doesn't represent the structure of the data

Plot of Fitted Model




Hypotheses of the simple linear regression model

Homoscedasticity
The dispersion of the data must be constant for the data to be

homoscedastic

Plot of Costos vs Volumen

Costos

26 31 36 41 46 51
Volumen

If this condition does not hold, the data are said to be heteroscedastic

Plot of Gastos vs Ingresos
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Hypotheses of the simple linear regression model
Independence

» The data must be independent

» An observation must not give information about the rest of the
observations

» Usually, it is known from the type of the data if they are adequate or
not for this analysis

> In general, time series do not satisfy the independence hypothesis

Normality

» We will assumed that the data are a priori normal

2
Vi =Bo+ Bixi +u, u; > N(0,o )‘

Vi
B+ Bix



Least squares estimators

Gauss proposed in 1809 the method of least squares for obtaining the
values (3p and (3; that best fit the data:

Vi = Bo + Bixi

The method consists of minimizing the sum of the squares of the vertical
distances between the data and the estimations, that is, minimize the
sum of the squared residuals

n n

ie,? = Z (i —91) = Z <}’i - (Bo + BlXi))z
i—1

i=1 i=1

]
Yi °/
]



Least squares estimators

The results are given by

> (i =) (vi— )
A COV(va) i=1
1= = —
) > (xi—x)°
i—1
Go =y — Bix
y= ﬁo + :le

=l

Pendiente

A




Least squares estimators

Exercise 4.1
The data regarding the production of wheat in tons (X) and the price of the
kilo of flour in pesetas (Y) in the decade of the 80’s in Spain were:

Wheat production ‘ 30 28 32 25 25 25 22 24 35 40

Flour price ‘25 30 27 40 42 40 50 45 30 25

Fit the regression line using the method of least squares



Least squares estimators

Exercise 4.1
The data regarding the production of wheat in tons (X) and the price of the
kilo of flour in pesetas (Y) in the decade of the 80’s in Spain were:

Wheat production ‘ 30 28 32 25 25 25 22 24 35 40

Flour price ‘ 25 30 27 40 42 40 50 45 30 25
Fit the regression line using the method of least squares

Results

10
ZX,' Yi — nxy
Bl =1

10
E x? — nx?
i—1

Bo =y — Pix = 35.4+ 1.3537 x 28.6 = 74.116

9734 — 10 x 28.6 x 35.4

8468 _ 10 x 2862 %

The regression line is:
y =74.116 — 1.3537x



Least squares

estimators

Plot of Fitted Model

Precio en ptas

Dependent variable: Precio en ptas.

I ndependent vari abl

Produccion en kg.

Standar d T
Error Statistic P-Val ue
8, 73577 8, 4841 0, 0000
0, 3002 - 4,50924 0, 0020

Model 528, 475 1 528, 475 20, 33 0, 0020
Resi dual 207, 925 8 25, 9906
Total (Corr.) 736, 4 9

Correl ation Coefficient = -0,84714
R-squared = 71, 7647 percent
Standard Error of Est. = 5,0981



Estimation of the variance

To estimate the variance of the errors, o2, we can use,

which is the maximum likelihood estimator of o2, but it is a biased
estimator.
An unbiased estimator of o2 is the residual variance,

n
2
> e

2 i=1
Sp = ————
A




Estimation of the variance

Exercise 4.2
Compute the residual variance in exercise 4.1



Est

imation of the variance

Exercise 4.2

Compute the residual variance in exercise 4.1

Results

We first compute the residuals, e;, from the regression line,

$i = 74.116 — 1.3537x;

Xi 30 28 32 25 25 25 22 24 35 40
Vi 25 30 27 40 42 40 50 45 30 25
yi | 335 36.21 30.79 40.27 40.27 40.27 4433 4162 26.73 19.96
e | -850 -6.21 -3.79 -0.27 1.72 -0.27 5.66 3.37 3.26 5.03
The residual variance is:
> e
> =1 207.92
sR_nf2_ 8 = 25.99



Estimation of the variance

Regression Analysis - Linear nodel: Y = a + b*X

Dependent variable: Precio en ptas.
I ndependent vari abl Produccion en kg.

Standar d T
Par anet er Estimate Error Statistic P-Val ue
I ntercept 74,1151 8, 73577 8, 4841 0, 0000
Sl ope -1,35368 0, 3002 - 4,50924 0, 0020

Model 528, 475 1 20, 33 0, 0020
Resi dual 207,925 8
Total (Corr.) 736, 4 9

Correl ation Coefficient = -0,84714
R-squared = 71, 7647 percent
Standard Error of Est. = 5,0981




Inference on the regression model

» Up to this point we have obtained only point estimates for the
regression coefficients

» Using confidence intervals we can obtain a measure of the precision
of the above mentioned estimates

» Using hypothesis testing we can verify if a certain value can be the
true value of the parameter



Inference about the slope

The estimator (3; follows a normal distribution because it is a linear
combination of normals,

Bl —Z(( — 2}/; —ZWI_YI

i=1

where y; = B + B1x; + uj, satisfying y; ~ N (8o + Bix;, 02) .
Additionally, 87 is an unbiased estimator for i,

E [EJ = imt_[}/i] =

i=

and its variance is given by

n %) \2 -
Var [ﬂl} = Z ((57'1)5))%) Var [yi] = m

Thus,



Confidence intervals for the slope
We want to obtain a confidence interval for 3; at a 1?7« level. Since o2 is
unknown, it will be estimated using s2. The basic result when the
variance is unknown is:

B — B
—— ~
Sk
(n—1)s%

that allows us to obtain a confidence interval for (31:

A s3
+t,_ —
/81 n 2,04/2 (n _ 1)5)2(
The length of this interval will decrease if:
» The sample size increases
» The variance of the independent observations x; increases

» The residual variance decreases



Hypothesis testing on the slope

Using the previous result we can perform hypothesis testing for ;. In
particular, if the true value of 3y is zero then Y does not depend linearly
on X. Therefore, the following contrast is of special interest:

Hozﬂ;l:O
Hy: 31 #0

The rejection region for the null hypothesis is:

> tn—2,o¢/2

s3/(n—1)sy

Equivalently, if the value zero is outside of the confidence interval for [3;
at a 17« level, we reject the null hypothesis at this level. The p-value of
the test is:

‘ By

b

p-value =2Pr | t, s > | —————
( sz/(n—1)sx




Inference for the slope
Exercise 4.3

1. Compute a 95% confidence interval for the slope of the regression line
obtained in exercise 4.1

2. Test the hypothesis that the price of flour depends linearly on the
production of wheat, using a 0.05 significance level



Inference for the slope
Exercise 4.3

1. Compute a 95% confidence interval for the slope of the regression line
obtained in exercise 4.1

2. Test the hypothesis that the price of flour depends linearly on the
production of wheat, using a 0.05 significance level

Results
1. th_2a/2 = ts0.005 = 2.306
—2.306 < M < 2.306
25.99
9x32.04

—2.046 < B, < —0.661

2. As the interval does not contain the value zero, we reject 81 = 0 at the 0.05
level. In fact:

| -1.3537
a \/ 25.99
Tx32.04

p-value = 2Pr(tz > 4.509) = 0.002

= 4.509 > 2.306

‘ by
VR (n=1) %




Inference for the slope

A
\sp/(n=1)s%

Regression Analysis - Linear nodel:
Dependent variable: Precio en ptas.
I ndependent vari abl e: Produccion en

Par anet er Estimte Statistifc P-Val ue
I ntercept 74,1151 0, 0000
Sl ope -1,35368 0, 0020

Source
Model 528, 475 1 528, 475 20,33 0, 0020
Resi dual 207,925 8 25,9906

Total (Corr.) 736, 4 9

Correlation Coefficient = -0,84714
R-squared = 71,7647 percent
Standard Error of Est. = 5,0981



Inference for the intercept

The estimator 3y follows a normal distribution, as it can be written as a
linear combination of normal random varaibles,

BOZZ (’11_>_<Wi) Yi

i=1

where w; = (x; — X) /ns% and y; = o + Bix; + uj, satisfying
yi ~ N (Bo + B1xi,02). Additionally, (3 is an unbiased estimator for 3,

E {Bo} => (,17 —>_<Wi> E [yil = 5o
and its variance is

Var {BO} - En: (/:: - )?Wi)2 Varly] = o* (}7 B (n—)_(i)s)%)

i=1

A > (1 x?
o (30 (74 2 pg)

implying



Confidence interval for the intercept

We wish to obtain a confidence interval for 3y at a 1?7« level. Since o2 is

unknown, this value will be estimated using 5,%. The basic result when
the variance is unknown is:

Bo — Bo

(2 57m)

From it we can obtain a confidence interval for [y:

~ lp—2

=2

Bo + th2.0/21/ Sh (% + (,,:(71)5)%)

The length of the confidence interval decreases if:
» The sample size increases
» The variance of the independent observations x; increases

» The residual variance decreases
» The mean of the independent observations decreases



Hypothesis testing on the intercept

Using the previous result we can perform hypothesis testing for 5y. In
particular, if the true value of [y is zero then the regression line passes
through the origin. Therefore, the following test is of special interest:

Ho:ﬂozo
Hy: 8o #0

The critical region for this test is:
Do

2 (1 =2
SR (n T =2

> th-2,0/2

Equivalently, if zero lies outside the confidence interval for Gy at a level
1 — «, we reject the null hypothesis at that level. The p-value is given by:

p-value =2Pr | t,_» >




Inference for the intercept

Exercise 4.4

1. Compute a 95% confidence interval for the intercept of the regression line
obtained in exercise 4.1

2. Test the hypothesis that the regression line passes through the origin,
using a 0.05 significance level



Inference for the intercept

Exercise 4.4
1. Compute a 95% confidence interval for the intercept of the regression line
obtained in exercise 4.1

2. Test the hypothesis that the regression line passes through the origin,
using a 0.05 significance level

Results
1ty 2.a/2 = ts,0.005 = 2.306

74.1151 — S,
—2.306 < < 2.306 < 53.969 < By < 94.261

2
25.99 (10 + 9>2<8326 04)

2. As the computed interval does not contain the value zero, we reject that 3y = 0 at the level
0.05. In fact,

Bo 74.1151
2
\/5}2? (%«k \/25 99 10Jr 9>2<832604)

p-value = 2Pr(tg > 8.483) = 0.000

= 8.484 > 2.306




Inference for the intercept

Regression Analysis - Linear nodel:
Dependent variabl e: Precio en ptas.
I ndependent vari abl e: Produccion en

Par anet er Estimate P-Val ue
I ntercept 74,1151 0, 0000
Sl ope -1,35368 0, 0020

Model 528, 475 1 528, 475 20,33 0, 0020
Resi dual 207,925 8 25, 9906

Total (Corr.) 736, 4 9

Correl ation Coefficient = -0,84714
R-squared = 71,7647 percent
Standard Error of Est. = 5,0981



Inference for the variance

The basic result is:
(n—2) 512? 2
2 ~ Xnp-2
o
Using this result we can:

» Compute a confidence interval for the variance:

a2 a2

(n—2)sp <2< (n—2)sg
2 S0 = 5

Xn—2,a/2 Xn—21-a/2

> Perform hypothesis testing of the form:

HoZO'ZIJg
Hy : 0? # o}



Estimation of the mean response and prediction of a new
response

We consider two types of problems:

1. Estimate the mean value of the variable Y corresponding to a given
value X = xp

2. Predict a future value of the variable Y for a given value X = xg

For example, in exercise 4.1 we might be interested in the following
questions:

1. What will be the mean price of a Kg of flour in those years where
wheat production equals 30 tons?

2. If in a given year wheat production is 30 tons, which will be the price
of a Kg of flour?

In both cases the estimation is:
%o = Bo+ Bixo
=7+ b1 (x0 —X)

but the precision in the estimations is different



Estimation of a mean response

Taking into account that:

Var (90) = Var (y) + (x — )’()2 Var (Bl)

_ o1, (x _’?)2
- (i k)

the confidence interval for the mean response is:

o 2 (1, bo— x)?
Yot th2a/24| Sk - + m
X




Prediction of a new response

The variance of the prediction of a new response is the mean squared
error of the prediction:

E {(,Vo —}70)2] = Var (yo) + Var (%)
o2 f1a L bo=%"
B <1+n+(n—1)s§<>

The confidence interval for the prediction of a new response is:

00t 2 14+ 1 + (XO - )?)2
_ S — — 5
.yO n 2,(1/2 R n (ni 1) 5)2(

The length of this interval is larger than the one for the preceding case
(we have less precision), as we are not estimating a mean value but a
specific one.



Estimation of the mean response and prediction of a new
response

The intervals for the estimated means are shown in red in the figure
below, while those for the predictions are drawn in pink
It is readily apparent that the size of the latter ones is considerably larger

Plot of Fitted Model

Precio en ptas.

Produccion en kg.



