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Chapter 3. Comparison of two populations

Contents

I Comparison of two populations: examples, matched data for
experimental reduction of the variability.

I Independent samples:
I Comparison of the means, equal variances, normal populations.
I Comparison of the variances in normal populations.
I Sensitivity of the previous tests.
I Comparison of the means, large samples.
I Comparison of proportions, large samples.

I Matched samples, comparison of the means, normal differences.
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Learning objectives

I Know to distinguish when independent or dependent matched
samples are being used. Know when is convenient to work with
matched samples.

I Know to perform the appropriate hypothesis testing in order to
validate or not the specific comparison.

I Know to build the suitable decision rule depending on the test and
the case we deal with (assumed hypotheses).

I Know what are the consequences on the conclusions when any
assumption is violated.



Chapter 3. Comparison of two populations

Recommended reading

I Meyer, P. “Probabilidad y aplicaciones estad́ısticas”(1992)
I Chapter ¿?

I Newbold, P. “Estad́ıstica para los negocios y la econoḿıa”(1997)
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Examples

1. A researcher wants to know whether a tax proposal is supported by
men and women in the same way.

H0 : pH = pM

H1 : pH 6= pM

pH = men proportion supporting the tax proposal

pM = women proportion supporting the tax proposal

Effect of social level, education, income level, politic trend:

randomize
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Examples

2. For a study it is desired to compare federal and state credit entities in
terms of the ratio between the total debts of the entity and its assets.

H0 : µX = µY

H1 : µX 6= µY

X =
debts

assets
for federal entities

Y =
debts

assets
for state entities

Effect of the size and seniority: matched samples
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Examples

3. An investor wants to compare the risk associated with two different
markets (A and B). Such a risk is measured with the daily fluctuation
associated with the prices. In order to do that 21 data are obtained for
market A and 16 for market B.

H0 : σ2
X = σ2

Y

H1 : σ2
X 6= σ2

Y

X = daily fluctuation in market A

Y = daily fluctuation in market B

Effect of day: randomize
Effect of the macroeconomic situation: same conditions
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Examples

4. Before launching a very aggressive promotion of a product for stores,
the marketing director of a company wants to know whether it is
worth (whether the sales of this product are increased in this kind of
shops). 50 stores are selected in Madrid to carry out this promotion
and the data are collected before the promotion and thereafter.

H0 : µX ≥ µY

H1 : µX < µY

X = turnover in stores before the promotion

Y = turnover in stores after the promotion

Effect ”launch”: matched samples
Effect “site”: randomize
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Examples

5. For an advertising campaign B it is checked whether the turnover
increases. A sample of 10 cities with similar behaviour of consumers is
considered such that in 5 of then the traditional campaign (campaign
A) is followed and in the rest the new campaign, campaign B, is
launched.

H0 : µA ≥ µB

H1 : µA < µB

X = turnover with the traditional campaign (A)

Y = turnover with the new campaign (B)

Effect city:

randomize the choice of cities for each of the campaigns
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Independent Samples: Comparison of means, equal
variances, normal populations

Aim: Given two normal populations with the same variability, such that
their mean can be different, it is desired to test the hypothesis of equal
means.

H0 : µX = µY

H1 : µX 6= µY

I Let (X1, . . . ,Xn1), (Y1, . . . ,Yn2) be two s.r.s. of X ∼ N(µX , σ2) and
Y ∼ N(µY , σ2), respectively, mutually independent.

I Estimator of common variance σ2:

s2
P =

(n1 − 1)s2
X + (n2 − 1)s2

Y

n1 + n2 − 2

I It is an unbiased estimator that uses available whole information.
I It is a weighted estimator of two independent estimators s2

X and s2
Y

with proportional weights with respect to the precision of each
estimator.
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Independent Samples: Comparison of means, equal variances, normal populations

I Basic results:
I

(n1−1)s2
X

σ2 ∼ χ2
n1−1,

(n2−1)s2
Y

σ2 ∼ χ2
n2−1 mutually independent.

I If H0 is true, then X − Y ∼ N(0, σ2( 1
n1

+ 1
n2

))

I Test statistic T (X1, . . . ,Xn1 ;Y1, . . . ,Yn2):

X − Y

sP
√

1
n1

+ 1
n2

=

X−Y

σ
q

1
n1

+ 1
n2√

(n1+n2−2)s2
P/σ2

n1+n2−2

=

=
Z√

χ2
n1+n2−2/(n1 + n2 − 2)

∼H0 tn1+n2−2

I Critical region

Rα =

(x1, . . . , xn1 ; y1, . . . , yn2) /

∣∣∣∣∣∣ X − Y

sP
√

1
n1

+ 1
n2

∣∣∣∣∣∣ ≥ tn1+n2−2; α
2


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Independent Samples: Comparison of means, equal variances, normal populations

I What if we want to perform one-sided testing?

H0 : µX ≤ µY

H1 : µX > µY
Rα =

8<:(x1, . . . , xn1 ; y1, . . . , yn2) /
X − Y

sP

q
1
n1

+ 1
n2

> tn1+n2−2;α

9=;
H0 : µX ≥ µY

H1 : µX < µY
Rα =

8<:(x1, . . . , xn1 ; y1, . . . , yn2) /
X − Y

sP

q
1
n1

+ 1
n2

< −tn1+n2−2;α

9=;
I What if we want to test with a general difference d0 ≥ 0?

H0 : µX − µY = d0

H1 : µX − µY 6= d0

H0 : µX − µY ≤ d0

H1 : µX − µY > d0

H0 : µX − µY ≥ d0

H1 : µX − µY < d0

T (X1, . . . , Xn1 ;Y1, . . . , Yn2) =
X − Y − d0

sP

q
1
n1

+ 1
n2

∼H0 tn1+n2−2
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Independent Samples: Comparison of means, equal variances, normal populations

Example 5

I Suppose that X ∼ N(µA, σ2), Y ∼ N(µB , σ2).

I For the two s.r.s. the following values of turnover are obtained:

campaign A 16 14 42 38 23

campaign B 61 33 37 63 65

I Test statistic: T = X−Y

sP

√
2
5

.

x = 26,6 y = 51,8

s2
X =

P5
i=1 x2

i − 5x2

4
= 162,8 s2

Y =

P5
i=1 y 2

i − 5y 2

4
= 239,2

s2
P =

4s2
X + 4s2

Y

8
= 201

t =
26,6− 51,8√
(201 · 2)/5

= −2,81
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I For the two s.r.s. the following values of turnover are obtained:
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campaign B 61 33 37 63 65

I Test statistic: T = X−Y

sP

√
2
5

.
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i=1 x2

i − 5x2

4
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Independent Samples: Comparison of means, equal variances, normal populations

Example 5 (cont.)

I At α significance level, we reject H0 : µA ≥ µB if
t = x−y

sP

√
2
5

= −2,81 < −t8;α

t8;0,01 = 2,896 t8;0,05 = 1,860 t8;0,1 = 1,397

H0 is rejected at α = 0,1; 0,05 significance levels, and it is not
rejected for α = 0,01.

I The p-value of the hypothesis testing is:

p = Pr{t8 ≤ −2,81} = Pr{t8 ≥ 2,81} ∈ (0,01; 0,025)
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Independent Samples: Comparison of variances, normal
populations

Aim: Given 2 normal populations, it is desired to test the hypothesis of
equal variances.

H0 : σ2
X = σ2

Y

H1 : σ2
X 6= σ2

Y

I Let (X1, . . . ,Xn1), (Y1, . . . ,Yn2) be two s.r.s. of X ∼ N(µX , σ2
X ) e

Y ∼ N(µY , σ2
Y ), respectively, mutually independent.

I Basic result:
(n1−1)s2

X

σ2
X

∼ χ2
n1−1,

(n2−1)s2
Y

σ2
Y

∼ χ2
n2−1 indep.

s2
X/σ2

X

s2
Y /σ2

Y

∼ F(n1−1,n2−1)

I Test statistic: If H0 is true:

T (X1, . . . ,Xn1 ;Y1, . . . ,Yn2) =
s2
X

s2
Y

∼H0 F(n1−1,n2−1)
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Independent Samples: Comparison of variances, normal
populations

I Critical Region

Rα =


(x1, . . . , xn1 ; y1, . . . , yn2) /

s2
X

s2
Y

≤ F(n1−1,n2−1);1−α
2

or
s2
X

s2
Y

≥ F(n1−1,n2−1); α
2

ff
I One-sided tests:

H1 : σ2
X > σ2

Y ⇒ Rα = { s2
X

s2
Y

≥ F(n1−1,n2−1);α}

H1 : σ2
X < σ2

Y ⇒ Rα = { s2
X

s2
Y

≤ F(n1−1,n2−1);1−α}
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Independent Samples: Comparison of variances, normal
populations

Example 3
In order to compare the risk of markets A and B 21 data are obtained for
market A and 16 for market B. It is obtained:

Mercado A Mercado B

xA = 0,3 xB = 0,4
sA = 0,25 sB = 0,45

I Test statistic: T =
s2
A

s2
B

∼H0 F(20,15)

I It is obtained t =
(

0,25
0,45

)2

= 0,309

I Critical region:

Rα = {t ≤ F(20,15);1−α
2

or t ≥ F(20,15); α
2
}

We only have one-tailed tables at 5% and 1 %, What do we do?
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Independent Samples: Comparison of variances, normal
populations

Example 3 (cont.)

I If we have a computer: statistics package, or Excel, for obtaining the
critical values, or for calculating the p-value:

p = ḿın
“
2Pr{T ≤ 0,309 |H0}, 2Pr{T ≥ 0,309 |H0}

”
=

= 2F(20,15)(0,309) = 2 · 0,0077677 = 0,01553

What are the significance levels such that it is not rejected H0?

I What if we have no computer? Perform one-sided test with
H1 : σ2

1 > σ2
2 by considering always the estimation with the greatest

value in the numerator. In such a case, sB > sA ⇒

H0 : σ2
B ≤ σ2

A

H1 : σ2
B > σ2

A

Now t = 1
0,309 = 3,236, and we can use the tables to find out

F(15,20);0,05 = 2,20, F(15,20);0,01 = 3,09 What is the conclusion?
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Independent samples: Sensitivity of hypothesis testing

Aim: What are the consequences on the conclusions obtained when the
working hypotheses are not held?

I Lack of Normality
I Comparison of means: from the CLT we know that the means have

always an approximated normal distribution. BE CAREFUL!!!
outliers.

I Comparison of variances: high sensitivity.

I Heteroscedasticity
I Type I error (α): low sensitivity with similar sample sizes. High

sensitivity for very different sample sizes (greater than double)
I Type II error (β): high sensitivity (the probability of not detecting

differences increases)

I Lack of random sample: Very sensitive
Randomization Principle: It prevents the systematic bias when
assigning the sampling units. Useful for avoiding detection of
differences associated with another factors.
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Independent Samples: Comparison of means, large samples

Aim: Given 2 populations, we desire to test the hypothesis of equal means

H0 : µX = µY

H1 : µX 6= µY

I Let (X1, . . . ,Xn1), (Y1, . . . ,Yn2) be two s.r.s. of X and Y ,
respectively, mutually independent, with n1 y n2 large enough.

I Basic result: Approximate method (CLT)

T (X1, . . . ,Xn1 ;Y1, . . . ,Yn2) =
X − Y√
s2
X

n1
+

s2
Y

n2

∼H0 N(0, 1)
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Independent Samples: Comparison of means, large samples

I In general, for d0 ≥ 0:

T (X1, . . . , Xn1 ;Y1, . . . , Yn2) =
X − Y − d0q

s2
X
n1

+
s2
Y
n2

∼H0 N(0, 1)

H1 : µX − µY 6= d0 H1 : µX − µY > d0 H1 : µX − µY < d0

Rα =
n
|T | ≥ z α

2

o
Rα = {T ≥ zα} Rα = {T ≤ −zα}



Independent samples: Comparison of proportions, large
samples

Aim: Given 2 populations, it is desired to test the hypothesis that the
proportion of elements with a specific attribute is the same in both
populations.

H0 : pX = pY

H1 : pX 6= pY

I Let (X1, . . . ,Xn1), (Y1, . . . ,Yn2) two s.r.s. of both populations that
are mutually independent, with rX and rY being the number of
observations with such an attribute in each sample.

Sampling proportions: p̂X =
rX
n1

, p̂Y =
rY
n2
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Independent samples: Comparison of proportions, large
samples

If H0 is true:

I The best estimator of common proportion p0 is:

p̂0 =
rX + rY
n1 + n2

I p̂X − p̂Y r.v. with E (p̂X − p̂Y ) = 0 and
V (p̂X − p̂Y ) = V (p̂X ) + V (p̂Y ), that is estimated with:

V̂ (p̂X − p̂Y ) =
p̂0(1− p̂0)

n1
+

p̂0(1− p̂0)

n2

I If n1 and n2 are large enough ⇒ CLT

p̂X − p̂Y√
p̂0(1− p̂0)

√
1
n1

+ 1
n2

∼H0 N(0, 1)
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Independent samples: Comparison of proportions, large
samples

In general:

T (X1, . . . , Xn1 ;Y1, . . . , Yn2) =
p̂X − p̂Yp

p̂0(1− p̂0)
q

1
n1

+ 1
n2

H1 : pX 6= pY H1 : pX > pY H1 : pX < pY

Rα =
n
|T | ≥ z α

2

o
Rα = {T ≥ zα} Rα = {T ≤ −zα}



Independent samples: Comparison of proportions, large
samples

Example 1

I Suppose that X ∼ Ber(pH), Y ∼ Ber(pM). It is desired to test:

H0 : pH = pM

H1 : pH 6= pM

I A s.r.s. of 800 men revealed that 320 of them supported the
proposition, and also 150 women from a s.r.s. of 500 women.

I Test statistic: T = p̂H−p̂M√
p̂0(1−p̂0)

√
1

800 + 1
500

.

p̂H =
320

800
= 0,4, p̂M =

150

500
= 0,3

p̂0 =
320 + 150

800 + 500
= 0,3615



Independent samples: Comparison of proportions, large
samples

Example 1

I Suppose that X ∼ Ber(pH), Y ∼ Ber(pM). It is desired to test:

H0 : pH = pM

H1 : pH 6= pM

I A s.r.s. of 800 men revealed that 320 of them supported the
proposition, and also 150 women from a s.r.s. of 500 women.

I Test statistic: T = p̂H−p̂M√
p̂0(1−p̂0)

√
1

800 + 1
500

.

p̂H =
320

800
= 0,4, p̂M =

150

500
= 0,3

p̂0 =
320 + 150

800 + 500
= 0,3615



Independent samples: Comparison of proportions, large
samples

Example 1

I Suppose that X ∼ Ber(pH), Y ∼ Ber(pM). It is desired to test:

H0 : pH = pM

H1 : pH 6= pM

I A s.r.s. of 800 men revealed that 320 of them supported the
proposition, and also 150 women from a s.r.s. of 500 women.

I Test statistic: T = p̂H−p̂M√
p̂0(1−p̂0)

√
1

800 + 1
500

.

p̂H =
320

800
= 0,4, p̂M =

150

500
= 0,3

p̂0 =
320 + 150

800 + 500
= 0,3615



Independent samples: Comparison of proportions, large
samples

Example 1 (cont.)

I

t =
0,4− 0,3√

0,3615(1− 0,3615)
√

1
800 + 1

500

=
0,1

0, 02738
= 3,65

I z0,005 = 2,57 ⇒ we reject H0 at α = 0,01 level.

I What do we do for α = 0,05; 0,1?

I What can you say about the p-value of the test?

I If we build a 95% CI for pH − pM , does 0 belong to the CI?
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Matched samples, comparison of means, normal differences

Example 4
Before launching a very aggressive promotion of a product for stores, the
marketing director of a company wants to know whether it is worth
(whether the sales of this product are increased in this kind of shops). 50
stores are selected in Madrid to carry out this promotion and the data are
collected before the promotion and thereafter.

Matched data
They come from a measurement of the same variable in the same
individual just before and after applying a treatment.
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Matched samples, comparison of means, normal differences

Aim
Deal with a couple of measures taken in very similar conditions in order
to make comparison of two experimental units that are a priori as equal
as possible.

Why?

I Reduce population variability: to detect differences

I Control the effect of another factors: to avoid blaming the
differences on other factors (another way?)
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Matched samples, comparison of means, normal differences

Example 2
For a study it is desired to compare federal and state credit entities in
terms of the ratio between the total debts of the entity and its assets.

Aim
We want to control the effect of another factors: size and seniority.
Deal with a couple of measures taken in very similar conditions in order
to make comparison of two experimental units that are a priori as equal
as possible.

Matched dependent samples
145 pairs of credit entities were chosen. Each pair contained one state
unit and one federal unit. The matching was performed such that the 2
members were as similar as posible in size and seniority
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Matched samples, comparison of means, normal differences

Any other option?

Add the information about the size and seniority in the analysis

Analysis of Variance

Furthermore, it permits to extend the test of equality of means in normal
populations to k > 2 populations with equal variances.
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Matched samples, comparison of means, normal differences
Aim: Given 2 populations it is desired to test the hypothesis of equal
means.

H0 : µX = µY

H1 : µX 6= µY

I Let (X1,Y1), . . . , (Xn,Yn) a s.r.s. from a normal bivariate
distribution with parameters µX , µY ,σ2

X , σ2
Y and ρ.

The univariate s.r.s. Di = Xi − Yi , i = 1, . . . , n with normal
distribution is enough.

I If H0 is true, then D is normal with E (D) = 0 and

V (D) =
σ2

X +σ2
Y−2σX σY ρ

n .
I Test statistic

T (D1, . . . ,Dn) =
D

sD/
√

n
∼H0 tn−1

where s2
D = V̂ (D) is the sample quasivariance of the differences:

s2
D =

∑n
i=1(Di − D)2

n − 1
=

∑n
i=1 D2

i − nD
2

n − 1
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Matched samples, comparison of means, normal differences

In general:

T (D1, . . . , Dn) =
D − d0

sD/
√

n

H1 : µX − µY 6= d0 H1 : µX − µY > d0 H1 : µX − µY < d0

Rα =
n
|T | ≥ tn−1; α

2

o
Rα = {T ≥ tn−1;α} Rα = {T ≤ −tn−1;α}



Matched samples, comparison of means, normal differences

Example 2

I For the aforementioned sample:
145 pairs of credit entities were chosen. Each pair contained a state unit

and a federal unit. The matching was performed such that the 2 members

were as similar as possible in size and seniority

The mean of the differences (federal minus state) was 0,0518, with a
standard deviation equal to 0,3055.

I Test statistic: t = 0,0518

0,3055/
√

145
= 2,0417

I n− 1 is very high, we can work with the critical values of the normal
distribution and approximate the p-value of the test by:

p − value = 2P{Z ≥ 2,04} = 2 · 0, 0207 = 0, 0414
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Comparison of two populations

Summary for two independent s.r.s., two-sided tests

Difference of Hypothesis Statistic Critical region

Normal data
Equal variances

X−Y

sP

r
1
n1

+ 1
n2

∼H0
tn1+n2−2 {|T| ≥ tn1+n2−2; α

2
}

Means Not normal data
Large samples

X−Ys
s2
X
n1

+
s2
Y
n2

∼H0
N(0, 1) {|T| ≥ z α

2
}

Proportions
Large samples

p̂X−p̂Yp
p̂0(1−p̂0)

r
1
n1

+ 1
n2

∼H0
N(0, 1) {|T| ≥ z α

2
}

Variances
Normal data

s2X
s2
Y

∼H0
F(n1−1,n2−1) {T ≤ F(n1−1,n2−1);1−α

2
or

T ≥ F(n1−1,n2−1); α
2
}

s2
P =

(n1−1)s2
X +(n2−1)s2

Y
n1+n2−2


