Estadística II Curso 2010/11

Guión de la Práctica 2 El modelo de regresión lineal y su tratamiento en Statgraphics

1. Contenidos de la práctica

- Introducción
- El modelo de regresión lineal simple
 - o Estimación de los parámetros del modelo
 - o Intervalos de confianza y contrastes para los parámetros del modelo
 - o Estimación para respuestas promedio y predicciones
 - o Diagnosis del modelo
- Relaciones no lineales y linealización
- Regresión lineal múltiple
- Ejercicio de aplicación

2. Introducción

En esta práctica veremos una introducción al empleo de Statgraphics para el tratamiento de modelos de regresión lineal. Para motivar las distintas tareas que vamos a realizar, nos vamos a basar en la resolución de uno de los ejercicios del Tema 4 (el problema 4):

"Una gasolinera ha recogido información acerca de su recaudación diaria durante una semana, así como del número de clientes que acudieron a la misma en cada día:

Recaudación1,510835152Número de clientes3653,5483,2

a) Realizar un ajuste lineal que exprese la recaudación en función del número de clientes.

b) Determinar cuál sería la recaudación media prevista para aquellos días en los que lleguen a la gasolinera 720 clientes (7,2). Obtener un intervalo de confianza al 95 % para dicha predicción.

c) Determinar cuál sería la recaudación prevista para un día en el que lleguen a la gasolinera 720 clientes (7,2). Obtener un intervalo de confianza al 95 % para dicha predicción."

El primer paso que debemos dar consiste en introducir en Statgraphics los datos anteriores. Una manera posible (ver el guión de la práctica 1) de hacer esto es entrar en Statgraphics y seleccionar "Cancel" en el "StatWizard" para salir del mismo. A continuación introducimos manualmente en dos columnas de una ventana en blanco los datos anteriores. En lo que sigue asumiremos que en "Col_1" se han introducido los datos de recaudación y en "Col_2" se han introducido los datos de número de clientes.

3. El modelo de regresión lineal simple

3.1 Estimación de los parámetros del modelo

Comenzamos calculando los valores de los parámetros del modelo de regresión lineal simple correspondiente a los valores de la muestra que hemos introducido. Para ello

seleccionamos el menú "Relate", y en el mismo escogemos "Simple Regression …" e introducimos en el cuadro de diálogo "Col_1" para la variable Y y "Col_2" para la variable X, ya que parece razonable considerar el número de clientes como la variable independiente en este caso.

Relate → Simple Regression ... Y: Col_1 , X: Col_2

Tras pulsar OK, Statgraphics genera dos ventanas y en la ventana izquierda (la ventana de texto) obtenemos la salida siguiente:

```
Regression Analysis - Linear model: Y = a + b*XDependent variable: Col_1Independent variable: Col_2StandardTParameterEstimateEstimateErrorStatisticP-ValueIntercept-6,312260,547767-11,52360,0001Slope2,71210,11034824,57780,0000
```

Analysis of Variance								
Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value			
Model Residual	145,156 1,20148	1 5	145,156 0,240296	604,07	0,0000			
Total (Corr.)	146,357	6						
Correlation Coeffi	cient = 0,995887							

R-squared = 99,1791 percent Standard Error of Est. = 0,4902

La ventana derecha muestra un gráfico de dispersión con el modelo ajustado.

En la salida anterior podemos encontrar los valores de los diferentes parámetros del modelo (indicados en rojo). En particular, obtenemos las siguientes estimaciones

Intercepto			-6,31226
Pendiente			2,7121
Varianza de	los	errores	0,240296

El modelo de regresión estimado será

```
y = -6,31226 + 2,7121 x
```

Observamos que en la salida anterior aparece también el valor de R^2 , el coeficiente de determinación. Este valor nos indica la variación en la recaudación que se puede explicar si se conoce el número de clientes. En este caso el valor es igual al 99,18% (valor en azul en la salida), esto es, es un valor muy elevado y el ajuste del modelo a los datos es muy bueno, como se puede verificar en el gráfico de dispersión (ventana derecha).

3.2 Intervalos de confianza y contrastes para los parámetros del modelo

Un paso importante a dar una vez estimado el modelo es contrastar el cumplimiento de las hipótesis de dicho modelo de regresión lineal. En esta práctica vamos a dejar

este paso para más adelante (<u>Diagnosis del modelo</u>), y seguiremos con el orden de las de las materias visto en clase, que se corresponde con el orden de preguntas en el ejercicio. Supondremos por el momento que dichas hipótesis se cumplen razonablemente.

Supongamos que queremos contrastar al 5% de significación si la pendiente del modelo es diferente de cero. Para ello podemos calcular el p-valor asociado al estadístico t para la pendiente, visto en clase. Dicho valor aparece en la tabla de resultados generada por Statgraphics, y está indicado a continuación en rojo.

Regression Analysis - Linear model: Y = a + b*X							
Dependent variable: Col_1 Independent variable: Col_2							
Parameter	Estimate	Standard Error	T Statistic	P-Value			
Intercept Slope	-6,31226 2,7121	0,547767 0,110348	-11,5236 24,5778	0,0001 0,0000			

Analysis of Variance								
Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value			
Model Residual	145,156 1,20148	1 5	145,156 0,240296	604,07	0,0000			
Total (Corr.)	146,357	6						

Correlation Coefficient = 0,995887 R-squared = 99,1791 percent Standard Error of Est. = 0,4902

Este p-valor es el correspondiente a un contraste bilateral con hipótesis nula que establece que la pendiente sea igual a cero. Por tanto, en este caso dado que el p-valor vale 0,0000, rechazamos dicha hipótesis nula al 5%, y concluimos que tenemos suficiente evidencia para considerar que la pendiente es distinta de cero.

Supongamos ahora que estamos interesados en obtener un intervalo de confianza para esta pendiente del modelo de regresión (para un nivel de confianza del 95%, por ejemplo). Este intervalo se puede calcular aplicando las fórmulas vistas en clase, dado que disponemos de la estimación del parámetro y la varianza residual, y solo tendríamos que calcular la varianza de la variable independiente y el cuantil de la distribución t. Esto lo haríamos siguiendo los procedimientos vistos en la primera práctica.

Una manera más sencilla de calcular dichos intervalos en Statgraphics consiste en realizar una regresión múltiple, esto es, seleccionar "Multiple Regression ..." en el menú "Relate",

Tras pulsar OK obtenemos dos ventanas y la siguiente salida en la ventana izquierda

Multiple Regression Analysis ------Dependent variable: Col_1

Parameter	Estimate	Standard Error		T Statistic	P-Value
CONSTANT Col_2	-6,31226 2,7121	0,547767 0,110348		-11,5236 24,5778	0,0001 0,0000
	Analysis of	E Vari	ance		
Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Model Residual	145,156 1,20148	1 5	145,156 0,240296	604,07	0,0000
Total (Corr.)	146,357	6			
R-squared = 99,1 R-squared (adjus Standard Error o Mean absolute er	791 percent ted for d.f.) = 99,0 f Est. = 0,4902 ror = 0,358632)149 p	ercent		

Durbin-Watson statistic = 2,19937

con los mismos valores de los parámetros que en el caso anterior. Haciendo esto tenemos la ventaja de que al pulsar el icono "Tabular Options" podemos marcar la casilla "Confidence Intervals" en el cuadro de diálogo

(I) Tabular options \rightarrow Confidence Intervals \rightarrow OK

para obtener la salida

95,0% confidence intervals for coefficient estimates								
Parameter	Estimate	Standard Error	Lower Limit	Upper Limit				
CONSTANT Col_2	-6,31226 2,7121	0,547767 0,110348	-7,72034 2,42845	-4,90417 2,99576				

y el intervalo de confianza al 95% para la pendiente corresponde a los valores indicados en rojo.

Si se quisiera cambiar el nivel de confianza, se pulsaría el botón derecho del ratón en la ventana izquierda y seleccionaríamos "Pane Options".

3.3 Estimación para respuestas promedio y predicciones

Describimos a continuación la manera de responder a las preguntas b) y c) del ejercicio introducido al comienzo de la práctica. En particular, queremos calcular una estimación puntual y un intervalo de confianza para la recaudación media prevista para aquellos días en los que lleguen a la gasolinera 720 clientes ($x_0 = 7,2$), y para la recaudación prevista para un día en el que lleguen a la gasolinera 720 clientes.

Queremos por tanto llevar a cabo inferencia sobre respuestas promedio y predicciones. Podemos emplear los estadísticos vistos en clase, al final del Tema 4. Alternativamente, y directamente desde Statgraphics, con los datos introducidos obtenemos el modelo de regresión mediante

Relate → Simple Regression ... Y: Col_1 , X: Col_2

Una vez generadas las ventanas de resultados, pulsamos el icono "Tabular Options" y marcamos la casilla "Forecasts" para obtener las predicciones y los intervalos de confianza deseados. Para modificar el valor de la variable independiente a 7,2, pulsamos con el botón derecho en la ventana izquierda, seleccionamos "Pane Options" e introducimos en el campo de la ventana emergente "Forecast at X:" el valor deseado.

(I) Tabular Options \rightarrow Forecasts (BD) Pane Options \rightarrow Forecast at X: \rightarrow 7,2

El resultado es el siguiente:

Predicted Values									
	Predicted	95,00% Prediction Limits		95,00% Confidence Limits					
Х	YY	Lower	Upper	Lower	Upper				
7,2	13,2149	11,6887	14,741	12,3539	14,0759				

El valor predicho correspondiente a las dos preguntas es el mismo, 13,2149. Sin embargo, obtenemos dos intervalos: uno para la predicción puntual, correspondiente a los valores

[11,6887 , 14,741]

y otro para la estimación de la respuesta promedio, dado por

[12,3539 , 14,0759]

Estos valores proporcionan las respuestas a los apartados c) y b) respectivamente (ya que por defecto están calculados para un nivel de confianza del 95%).

3.4 Diagnosis del modelo

En este apartado retomamos la valoración del cumplimiento de las hipótesis del modelo, que dejamos pendiente anteriormente. Una manera de llevar a cabo este análisis, al menos de forma gráfica, consiste en generar un diagrama de los residuos, y verificar en dicho diagrama las propiedades de los mismos.

Para obtener los diagramas de residuos, generamos en primer lugar el modelo de regresión,

Relate → Simple Regression ... Y: Col_1 , X: Col_2

y a continuación seleccionamos el botón "Graphical Options" (el tercer botón en la parte superior), y marcamos la caja "Residuals versus Predicted", como se indica en la imagen siguiente.

(I) Graphical Options \rightarrow Residuals versus Predicted \rightarrow OK

El gráfico resultante (que aparece en la ventana derecha generada por Statgraphics) presenta los valores de los residuos "estudentizados" (esto es, divididos por la estimación de su desviación típica, s_R) frente a los valores predichos para la variable dependiente (la recaudación) y se incluye a continuación.

Para estudiar el cumplimiento de las hipótesis del modelo podemos comprobar si en este gráfico los valores de los residuos no muestran estructura. Si se cumplen dichas hipótesis, los valores de estos residuos deben corresponder a valores independientes obtenidos de una variable aleatoria normal con media cero y desviación típica igual a uno.

En este caso por ejemplo podemos observar una cierta estructura no lineal en los mismos, y podríamos dudar del cumplimiento de la condición de linealidad en la relación entre las variables.

4. Relaciones no lineales y linealización

En algunos casos los datos de que disponemos parecen seguir una relación no lineal, pero podemos aplicar una transformación no lineal que haga que los datos transformados se aproximen mejor a través de una relación lineal.

Para ilustrar el uso de estas transformaciones en Statgraphics empleamos algunos de los datos del fichero "undata.sf3" (datos de la UNECE Statistical Database). Almacenamos dichos datos en una carpeta adecuada, y a continuación los leemos en Statgraphics empleando

File \rightarrow Open \rightarrow Open Data File ...

Vamos a estudiar la relación entre las variables correspondientes al GDP per capita y la mortalidad infantil (Infant_Mortality_Rate). Para ello seleccionamos

Relate → Simple Regression ... Y: Infant_Mortality_Rate , X: GDP_per_Capita

Los resultados obtenidos se pueden ver en la salida siguiente:

Regression	Analysis - Line	ear model:	Y = a	+ b*X		
Dependent v Independent	ariable: Infan variable: GDP	t_Mortalit _per_Capit	y_Rate a			
Parameter	Estimate	Stan Er	Standard T Error Statistic		P-Val	ue
Intercept Slope	11,3761 -0,000184079	0,941033 0,0000312106		12,089 -5,89798	0,0000 0,0000	
		Analysis	of Va 	riance		
Source	Sum of	Squares	Df 	Mean Square	F-Ratio	P-Value
Model Residual		386,703 489,13	1 44	386,703 11,1166	34,79	0,0000
Total (Corr	•)	875,833	45			
Correlation R-squared = Standard Er	Coefficient = 44,1526 percent ror of Est. = 3	-0,664474 nt 3,33415				

En particular, el valor de R^2 es 0.44, que no es demasiado elevado.

Vamos a repetir este ejercicio, pero ahora llevaremos a cabo la regresión empleando los logaritmos de las mismas variables, intentando atenuar el efecto no lineal asociado a los valores mayores de ambas variables. Para ello, seleccionamos

Relate \rightarrow Simple Regression ...

y al introducir la definición de las variables escribimos directamente la forma de la transformación no lineal que queremos llevar a cabo. En este caso, en la ventana correspondiente de Statgraphics escribimos "log(Infant_Mortality_Rate)" para Y y "log(GDP_per_Capita)" para X.

Y: log(Infant_Mortality_Rate) , X: log(GDP_per_Capita)

La siguiente captura de pantalla muestra como debe quedar la ventana de selección de variables:

isk Plot Describe	Compare Relate 3	pecal View Window Help	(*	12		
ill unde	ita.sf3	Country	Unemployment_Rate	GDF_Growth_Rate	Life]*	
1	Arnenia		6,9	-14,2	73,5 _	
2	Austria	Simple Regression			80,4	
3	Azerbaijan	ample regression			72,4	
4	Belarus	Country y.			70,3	
5	Belgiun	GDP Growth Ri	ality Ratel	-	79,9	
6	Bosmia and Her	Inlant_Motality_1	and?	_	74,8	
7	Bulgaria	Life_Expectation			73	
•	Canada			_	80,7	
9	Cyprus	► log(GDP_per_C	apta		80	
10	Czech Republic				77	
- 11	Dennark	(Select.)			78,4	
12	Estonia				73,1	
13	Finland				79,7	
34	France	Soft			01,3	
15	Georgia		1	1	75,1	
16	Бехналу	OK. Cancel Delete	Transform Help	>	80,1	
17	Greece		9,5	-2,3	79,4	
18	Hungary		10	-6,3	73,6	
19	Iceland		7,2	-6,8	81,5	
20	Ireland		11,9	-7,1	79,8	
21	Israel		2,6	8,7	80,7	
22	Italy		2,8	-5	81,6	
• [*]	Faarkhatan				44 A.C.	

Una vez pulsado "OK", obtenemos como resultado

Regression Analysis - Linear model: Y = a + b*X
-----Dependent variable: log(Infant_Mortality_Rate)
Independent variable: log(GDP per Capita)

Parameter	Estimate	Standard Error	T Statistic	P-Value	
Intercept Slope	8,26339 -0,659579	0,743168 0,0746038	11,1191 -8,8411	0,0000 0,0000	

Analysis of Variance								
Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value			
Model Residual	10,3666 5,83546	1 44	10,3666 0,132624	78,17	0,0000			
Total (Corr.)	16,202	45						

Correlation Coefficient = -0,799895R-squared = 63,9831 percent Standard Error of Est. = 0,364176

y ahora el valor de R^2 pasa a ser 0.64, mejorando el valor anterior.

5. Regresión lineal múltiple

Comentamos muy brevemente en este apartado como ajustar modelos de regresión lineal múltiple utilizando Statgraphics. Lo haremos utilizando datos del fichero "cardata.sf3", disponibles en la página Web de prácticas de la asignatura.

Leemos dichos datos (después de haberlos descargado a una carpeta adecuada) seleccionando

File \rightarrow Open \rightarrow Open Data File ...

e indicando la carpeta y el nombre del archivo deseado ("cardata.sf3").

Supongamos que deseamos calcular los parámetros de un modelo de regresión para explicar los valores de la variable "accel" (aceleración) en función de la variable "horsepower" (potencia). Para ello seleccionamos

Relate → Multiple Regression ... Dependent Variable: accel Independent Variables: horsepower

y obtenemos como resultado la siguiente salida

Multiple Regressio	on Analysis				
Dependent variable	e: accel				
Parameter	Estimate	Standar Err	d or S	T Statistic	P-Value
CONSTANT horsepower	20,7949 -0,0509812	0,679 0,00736	216 125	30,6161 -6,92562	0,0000 0,0000
	Analysis o	f Varianc	e		
Source	Sum of Squares	Df Me	an Square	F-Ratio	P-Value

 Model
 232,566
 1
 232,566
 47,96
 0,0000

 Residual
 722,463
 149
 4,84874

 Total (Corr.)
 955,029
 150

 R-squared = 24,3517 percent
 84874
 149

 R-squared (adjusted for d.f.)
 = 23,844 percent

 Standard Error of Est.
 = 2,20199

 Mean absolute error = 1,73477
 Durbin-Watson statistic = 1,52416

y el modelo

accel = 20,7949 - 0,0509812 x horsepower

donde ambos coeficientes son significativos (ver sus p-valores) y el valor de R^2 es igual a 23,84% (un valor relativamente bajo).

Si ahora añadimos una nueva variable explicativa, y construimos el modelo para "accel" en función de "horsepower" y la nueva variable "weight" (peso)

Relate → Multiple Regression ... Dependent Variable: accel Independent Variables: horsepower , weight

obtenemos el resultado siguiente

Multiple Regression Analysis _____ Dependent variable: accel _____ Standard Т P-Value Statistic Error Parameter Estimate _____ CONSTANT16,97140,59488728,52870,000horsepower-0,136360,00912925-14,93660,0000weight0,004266850,00036944711,54930,0000 ------_____ _____ Analysis of Variance _____ Sum of Squares Df Mean Square F-Ratio P-Value Source

 Source
 Sum of Squares
 Df Mean Square
 F-Ratio
 P-Value

 Model
 575,037
 2
 287,518
 111,98
 0,0000

 Residual
 379,992
 148
 2,56751
 10000

 Total (Corr.)
 955,029
 150
 150
 150

R-squared = 60,2114 percent
R-squared (adjusted for d.f.) = 59,6738 percent
Standard Error of Est. = 1,60235
Mean absolute error = 1,19181
Durbin-Watson statistic = 1,95717

El modelo es ahora

accel = 16,9714 - 0,13363 x horsepower + 0,00426685 x weight

donde los tres coeficientes son significativos y el valor de R^2 es igual a 59,67% (bastante más elevado que para el modelo anterior).

6. Ejercicio de aplicación

En la página Web de la asignatura y para la práctica 1 tienes disponible un conjunto de datos denominado Datos_1, "cardata.sf3". Sobre este conjunto de datos se pide que realices las tareas siguientes:

- I. Calcula los coeficientes del modelo de regresión lineal simple para las variables "weight" (variable dependiente) en función de "horsepower" (variable independiente) (Resultados. Intercepto: 896,111, Pendiente: 20,0097, R²: 65,57%)
- II. Determina si el valor de la pendiente es significativo (Respuesta: sí ¿Por qué?)
- III. Calcula un intervalo de confianza al 98% para el valor de la pendiente (Respuesta: [17,2164 ; 22,803])
- IV. Da una estimación para el valor del peso del vehículo correspondiente a una potencia de 130 hp e indica un intervalo de confianza para dicha predicción al 99% (Respuestas: 3497,37 y [2558,57; 4436,17])
- V. Genera el gráfico de los residuos frente a los valores predichos por el modelo y comenta sobre el cumplimiento de las condiciones del mismo.