12 estadística I, notas breves

6 Diagnosis del modelo

- Estudiaremos, mediante contrastes de bondad de ajuste, si la distribución que suponemos es adecuada para los datos que tenemos.

6.1 Contraste de la chi-cuadrado \mathcal{X}^2

- Comparamos el histograma muestral con el teórico. Si existe mucha discrepancia entre los valores muestrales y los valores esperados, es razonable pensar que el modelo utilizado no es el correcto.
- En la práctica dividimos la muestra en k clases:

clase	1	 k	total
frecuencia observada	O_1	 O_k	n
probabilidad supuesta	p_1	 p_k	1
frecuencia esperada	$E_1 = np_1$	 $E_k = np_k$	n

- Así, la regla del contraste es

(*) Si la muestra es grande o cada $E_i \geq 5$, tenemos que $\sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i} \sim \mathcal{X}_{k-r-1}^2$ siendo r el número de parámetros no conocidos (y estimados) del modelo.

6.2 Contraste de Kolmogorov-Smirnov

- Comparamos la distribución muestral con la distribución teórica. Así, si existe mucha discrepancia entre la distribución muestral y la teórica, es razonable pensar que el modelo utilizado no es el correcto.
- Calcularemos el estadístico $\{D_n = \max |F_n(x) F(x)|\}$ siendo la distribución empírica de la muestra

$$F_n(x) = \begin{vmatrix} 0 & \text{si } x < x_{(1)} \\ \frac{i}{n} & \text{si } x_{(i)} \le x_{(i+1)} \\ 1 & \text{si } x \ge x_{(n)} \end{vmatrix}$$

donde $x_{(1)} \leq x_{(2)} \leq ... \leq x_{(n)}$ es la muestra inicial ordenada de menor a mayor.

- Para el contraste

$$| H_0: X \sim \mathcal{F} \qquad \Longrightarrow^{(\star)} \qquad \text{Rechazar } H_0 \text{ si } D_n \geq D_{n,\alpha}$$

$$| H_1: X \nsim \mathcal{F}$$

- (\star) Bajo H_0 se cumple que D_n sigue una distribución perfectamente tabulada
- En la práctica calculamos D_n mediante la siguiente tabla, $D_n = \max\{|D_i^-|, |D_i^+|\}$

$x_{(i)}$	$F_n(x_{(i)}) = \frac{i}{n}$	$F(x_{(i)})$	$D_i^- = \frac{i}{n} - F(x_{(i)})$	$D_i^+ = F(x_{(i)}) - \frac{i-1}{n}$

estadística I, notas breves

Contraste de Kolmogorov-Smirnov-Lilliefors

- Caso particular del contraste de Kolmogorov-Smirnov para contrastar normalidad.

 $^{(\star)}$ siendo $D_{n,\alpha}$ el valor que encontramos en las tablas Kolmogorov-Smirnov-Lilliefors

Análisis de homogeneidad de la muestra. Tablas de contingencia

- Utilizaremos las tablas de contingencia para ver la posible homogeneidad de la muestra en variables cualitativas. Diremos que una muestra es heterogénea si existen al menos dos elementos que no proceden de la misma población.
- Contrastaremos

 H_0 : no existe asociación entre los atributos H_1 : existe asociación entre los atributos

mediante la siguiente tabla de contingencia $I \times J$

X Y	1	 J	total
1	O_{11}	 O_{1J}	n_1
I	O_{I1}	 O_{IJ}	n_I
total	n_1	 n_J	n

calculamos el valor esperado en cada celda como $\hat{E}_{ij} = \frac{n_i n_j}{n}$ y si existe mucha discrepancia entre los valores observados y los esperados inferiremos que existe relación entre los atributos.

- Así, la regla del contraste es

(*) Si la muestra es grande o cada $\hat{E}_{ij} \geq 5$, tenemos que $\sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i} \sim \mathcal{X}_{(I-1)(J-1)}^2$

13