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Abstract - Although the SOM algorithm has been widely used with vectorial data, its principle
is not restricted to metric vector spaces. Indeed, any set of items for which a similarity
or pseudo-distance measure is available could be mapped onto the SOM grid in an ordered
fashion. As Kohonen and Somervuo (2002) pointed out, the optimal speed of shrinking of
the neighbourhood range function on nonvectorial SOM algorithm should be experimentally
determined. This paper presents the use of the UDL monitoring algorithm for the nonvectorial
approach to SOM learning rule.
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1 Introduction

We are living in the new era of silicon-based biology, where investigations and compa-
rative analysis of complete genomes are, for the first time, possible. Genome analysis is based
on crucial concepts, concerning the processes of evolution, the mechanism of protein folding
and the manifestation of protein functions. The use of computers to model such processes is
restricted by the current limits of our understanding of these concepts. Indeed, no technique
can be applied without a reference to the underlying biology, in other words, “no algorithm
does biology”.

The term Bioinformatics was coined in the mid-1980s to encompass computer applica-
tions in biological sciences. In its broad sense, the term can be considered to mean information
technology applied to the analysis of biological data. In the context of genome analysis, the
term was originally applied to the computational manipulation and analysis of biological
sequence data, such as DNA and proteins.

2 Neural networks in Bioinformatics

This section first reviews the more relevant approaches to protein classification by
means of supervised and unsupervised learning methods.

Supervised learning methods have been used to predict, for example, immunoglobulin
domains [Bengio and Pouliot (1990)], surface exposure of amino acids [Holbrook et al. (1990)],
disulfide-bounding states of cysteines [Muskal et al. (1990)], signal peptides [Ladunga et al.
(1991)], ATP-binding motifs [Hirst and Sternberg (1991)], water-binding sites [Wade et al.
(1992)], three dimensional structure of proteins [Brunak et al. (1990)] and recognizing dis-
tantly related protein sequences [Frishman and Argos (1992); Baldi (2001)].

The secondary structure of proteins has been widely studied with these supervised
learning approaches [Bohr et al. (1988); Quian and Sejnowski (1988); Holley and Karplus
(1989); McGregor et al. (1989); Andreassen et al. (1990); Kneller et al. (1990); Vieth and
Kolinski (1991); Muskal and Kim (1992); Stolorz et al. (1992); Zhang et al. (1992); Rost and
Sander (1993a,b); Baldi and Brunak (2001)].

Feed-forward artificial neural networks have also been applied to the analysis of biolo-
gical sequences [Petersen et al. (1990); Von Heijne (1991); Hirst and Sternberg (1992); Baldi
and Hatfield (2002)] by considering some representation of the sequences as vectorial inputs
for the network.

Concerning nucleic acid sequences, this approach has been used to predict DNA-binding
sites [Stormo et al. (1982); Lukashin et al. (1989); Demeler and Zhou (1991); O’Neill (1991,
1992); Horton and Kanehisa (1992)], mRNA splice sites [Brunak et al. (1990, 1991); Engel-
brecht et al. (1992)], and coding regions in DNA [Lapedes et al. (1990); Uberbacher and
Mural (1991); Farber et al. (1992); Snyder and Stormo (1993)]. Wu et al. (1992) have also
proposed another supervised neural-network-based method to classify protein sequences into
families. They have trained multilayered networks by using the backpropagation algorithm.

Since the number of entries in DNA and protein databases are enormously increasing
due to Genome Projects [Watson (1990); Maddox (1992); Stolorz et al. (1992)], the application
of other methods such as unsupervised learning methods will be appropriated. Moreover,
computing time in standard supervised learning algorithms is usually proportional to the
database size. Furthermore, in many non-hierarchical statistical approaches to cluster data,
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the number of expected classes should be defined before the supervised analysis [Auray et al.
(1990)]. On the other hand, unsupervised learning methods are suitable for clustering proteins
without having previous knowledge of the number and composition of the final clusters.

2.1 Unsupervised learning methods

Ferrán and Ferrara (1991, 1992) have proposed the unsupervised Kohonen learning rule
to cluster protein sequences into families according to their degree of sequence similarity. The
final map they obtain transforms the degrees of similarity between the protein sequences of
the learning set into a much simpler Euclidean distance relation in a 2D space. Furthermore,
the SOM configuration results from an information compression that only retains the most
relevant common features of the set of input sequences. This approach has also been applied
to detect signal peptide coding regions [Arrigo et al. (1991)] and to cluster small organic
molecules of analogue structure into families of similar activity [Rose et al. (1991)]. Ferrán
and Ferrara (1991, 1992) studies show that the sequential SOM can be trained to obtain
topological maps of protein sequences, where related proteins are finally associated to the
same winner neuron, or to close neighbouring ones. The final map provides a two-dimensional
geometrical representation of the relationships between the bipeptide compositions of the
protein sequences. Hence, these trained maps can be applied to rapidly classify new sequences.
Ferrán and Ferrara (1991) have also highlighted how this approach opens new possibilities to
find efficient algorithms to organize and search for homologies in the whole protein database.

However, the predetermined structure and size of Kohonen’s model may yield to limi-
tations on the resulting mappings, especially when the data to be classified are biological
sequences [Dopazo and Carazo (1997)]. A variety of models have been proposed concerning
networks with variable topology or variable number of elements. Kangas et al. (1990) pre-
sented a minimum-spanning-tree network where the preservation of neighbourhood relations
is done only to a small degree due to the sparse connectivity of the network. Blackmore and
Miikkulainen (1992) introduced an approach with a network growing on a grid. The Neural
Gas algorithm [Martinetz and Schulten (1991)] produces networks which preserve the neigh-
bourhood relations extremely well [Fritzke (1994)]. However, this algorithm does not perform
dimensionality reduction, so it is not indicated for the visualization of large biological data.
Other models allow a variable number of elements, but have predefined structures such as
rectangular arrays. Some examples are the interpolative algorithm [Rodrigues and Almeida
(1990)] and the learning expectation method introduced by Xu (1990).

3 Vectorial representation of sequences

Since proteins may have different lengths, Ferrán and Ferrara (1991) have considered
the input signals to be the 400 components of a 20 × 20 matrix obtained from the bipeptide
composition of the protein to be learned. This way, each of the 400 components, say ςij , is the
normalized frequency of the bipeptide ij in the sequence— i and j are integer numbers bet-
ween 1 and 20, indicating one of the 20 possible different amino acids. These 20 × 20 matrices
allow the algorithm to work with proteins of different lengths. A protein representation also
based on the bipeptide composition was early used to classify proteins by applying statistical
techniques [Nakayama et al. (1988); Van Heel (1991)]. The transformation of nucleic acid
sequences having different lengths into a learning set of patterns with a constant number of
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signals is also possible— by reducing the previous alphabet from 20 symbols (amino acids)
to only 4 symbols (nucleic acids).

In this 20 × 20 matrix representation, each amino acid is taken as a different residue.
In Ferrán et al. (1994) similar amino acids were grouped together before computing the 400-
dimensional dipeptide histogram vectors. They consider three different representations. In
the first, eleven groups of residues were considered, say, {V,L, I}, {T, S}, {N,Q}, {E,D},
{K,R,H}, {Y, F,W}, {M}, {P}, {C}, {A} and {G}. A 11 × 11 matrix representation of
the sequence was built by taking into account an alphabet of 11 symbols instead of 20,
based on considering amino acids of similar physicochemical properties as a same kind of
residue. In the second representation, six groups of residues were used to build the matrix,
say, {V,L, I,M} (hydrophobic), {Y, F,W} (hydrophobic, aromatic), {P,A,G, S, T} (weakly
hydrophobic, neutral), {N,Q,E,D} (hydrophilic, acid), {KRH} (hydrophilic, basic) and {C}
(crosslink forming). Thus, a 6× 6 matrix is obtained. This grouping is the one considered by
the GCG software package [Devereux et al. (1984)] to determine the percentage of sequence
similarity between 2 protein sequences according to the Needleman-Wunsh method. The third
representation exposed by Ferrán et al. (1994) considers three groups of residues to build a
3×3 matrix, {V,L, I,W,A} (hydrophobic), {Y, F, P,G,C,M} and {N,Q,E,D,K,R,H, T, S}
(hydrophilic).

In Hanke and Reich (1996) the sequences were aligned and then converted into vectors
by fractal encoding. In Andrade et al. (1996), each position of the sequence was represented as
a 20D vector— each vector component corresponded to one amino acid. The whole sequence
is then converted into an L-by-20-dimensional matrix, where L is the length of the global
alignment of all sequences.

However, the simplification in the protein representation implies a degradation in sen-
sitivity. Next section deals with the organization and clustering of nonvectorial data items.
Indeed, the final aim is to cope with the masses of biological nonvectorial data in an unsu-
pervised way.

4 The nonvectorial SOM

Similarity and distance measures have been routinely used to compare two biological
sequences, such as proteins or nucleic acids. The basis of such comparisons is the information
from the biochemist as to the linear sequence of elements comprising such molecules [Smith
and Waterman (1981)]. Similarity measures such as Smith-Waterman, BLAST or FASTA, are
appropriate for clustering large protein sequence databases with topographic maps [Somervuo
and Kohonen (2000)]. In nonvectorial topographic maps, unlike the previous vectorial ones,
the data sequences are not converted into histogram vectors in order to perform the clustering.

Kohonen and Somervuo (2002) have shown how to implement the SOM algorithm
principle to nonvectorial data in the case of fixed-size standard maps. Interestingly, they
have illustrated their method by using protein sequences as basic items and FASTA scores
[Pearson and Lipman (1988); Pearson (1999)] as similarity values. Specifically, if x and y are
any entities, a sufficient condition for them to be mapped into a SOM diagram is that some
kind of symmetric distance function, d(x, y), is definable for all pairs (x, y).

Furthermore, Kohonen and Somervuo (2002) have shown how this extension of the
SOM, called here SOM-nv (see Algorithm 1), can be used for the clustering, organization
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and visualization of large databases of nonvectorial items such as protein sequences. The new
method, originally suggested in Kohonen (1996), allows the construction of the SOM when
only a similarity measure is defined for pairs of items. Hence, a vectorial representation is
not really needed, avoiding the important drawbacks and limitations typically derived from
the vectorial representation of biological data. To define an ordered projection, it will be
sufficient to compare the pairwise distances or dissimilarities among items [Kohonen and
Somervuo (2002)].

The nonvectorial SOM is based on the batch-learning version of the SOM, and it re-
quires the computation of the generalized median of symbol strings [Kohonen (1985, 1995)].
Here, the way a winning neuron is selected is

i∗n = arg min
i
{d[xn, zi]} (1)

where d(·, ·) is the underlying pseudo-distance measure. Notice that vn and wi were used to
define input vectors and weight vectors, respectively, living in R

d. Now, xn and zi term the
items and the pointers, respectively, living in the symbolic (e.g. protein) space.

The generalized median is defined as follows [Kohonen (1985, 1995)]. Let Υ = {xn} be
a set of items, and let d[xn, xn′ ] be some distance, pseudo-distance or dissimilarity measure
between xn and xn′ ∈ Υ. The generalized median m over Υ is defined as the item that
minimizes the sum of distances to all other items in Υ,

m = arg min
xn∈Υ

∑

xn′∈Υ:n 6=n′

d[xn, xn′ ]. (2)

This way, if the input samples had been real scalars and the distance measure were the abso-
lute value of their difference, the generalized median would coincide with the usual arithmetic
median.

The main features of SOM-nv are now highlighted. To initialize the algorithm, auxiliary
vectorial pointers are introduced. Indeed, the convergence of this algorithm is significantly
faster and safer if the initial pointers are already two-dimensionally ordered [Kohonen and
Somervuo (2002)]. In the case of proteins, these vectorial pointers can be selected as the
usual 400-dimensional dipeptide histogram vectors [Ferrán and Ferrara (1991)]. Thus, each
map node is provided with a 400-dimensional vector, each component of which is initialized
with a random value between zero and unity— the whole vector is finally normalized to unit
length. The standard SOM-batch algorithm is then trained with the dipeptide vectors, and
the final pointers obtained are recoded to get nonvectorial SOM initialized. Specifically, for
each vectorial pointer the usual subset of input items (including all items having that pointer
as winner in the vectorial sense) is associated to it, and the corresponding nonvectorial pointer
is chosen as the generalized median of that subset. With this labelling, a 2D set of relatively
ordered input sequences is achieved, so that the nonvectorial SOM can proceed. From this
point on, all vectorial representations are dropped. This initialization method for SOM-nv is
summarized in Algorithm 2.

For each pointer zi, two sets are then defined. First, one would recollect in Zi the input
items associated to it, i.e., the input items that have zi as its best-matching unit. Winning
neurons could be determined as usual according to the FASTA method, but note that an
input item could then have exactly the same distance to two or more pointers. Therefore,
in order to make the winner unique in this case, one would ask the winner to minimize the
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Algorithm 1
The nonvectorial version of SOM algorithm (SOM-nv).

Initialize the map (see below).
repeat for each iteration, t,

for each input sequence, xn, do
Find the best matching unit for xn, see Equation 1.

end for.
Recollect in Zi (see Equation 4) the input items associated to pointer zi.
Store in Ωi (see Equation 5) the items associated to each pointer in its
neighbourhood Ni.
Update each zi as the generalized median (see Equation 2) of Ωi.

until Zt
i = Zt−1

i , ∀i.

Algorithm 2
Initialization method for SOM-nv in the case of proteins.

Convert input sequences into 400-dimensional dipeptide histogram vectors.
Provide each map neuron with a 400-dimensional vector.
repeat,

Train a SOM-batch cycle,
until neurons are 2D ordered.
Label neurons by those proteins that represent the generalized medians of
the sequences associated to them.

sum of distances from the input to all pointers in a small neighbourhood around the winner
candidate i, say Ni. This neighbourhood includes all pointers within a certain radius from
node i on the grid. Like in the traditional SOM, this radius can shrink monotonically with
time. Mathematically, xn ∈ Zi if and only if

zi = arg min
l

∑

k∈Nl

d[xn, zk]. (4)

Recollect now in Ωi the input items associated to each pointer in Ni in the previous
sense, that is,

Ωi =
⋃

k∈Ni

Zk, (5)

and update each zi as the generalized median of Ωi. Thus, this is called the adaptation process.
For each new pointer zi, recollect in Zi the new input items associated to it as before. If the
old Zi, say Zt−1

i , coincide with the new Zt
i for all i, then the process has converged. If not,

continue with the adaptation process. When convergence is reached, pointers approximate the
input items in an orderly fashion, since each pointer coincides with the generalized median
of the input items mapped onto its neighbourhood.
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Algorithm 3
UDL monitoring scheme for nonvectorial SOM. Initialization.

Convert input sequences into an auxiliar vectorial representation.
Provide each map neuron with the same vectorial representation.
repeat,

Train the map with the vectorial SOM-batch and a constant
neighbourhood range, say,

σΛ(t) = σΛ(0) (3)

until neurons are 2D ordered.
Store the obtained disentangled lattice, say Q0.
Label neurons by those proteins that represent the generalized medians (see
Equation 2) of the sequences associated to them.

In this context, El Golli et al. (2004a,b) have proposed an extension of the standard
Kohonen learning rule that can also handle symbolic data. Specifically, they have presented
an adaptation of the SOM-batch to dissimilarity data. As in Kohonen and Somervuo (2002)
work, the main difference with traditional SOM is that El Golli et al. (2004a) are not working
on R

d but on an arbitrary set on which a dissimilarity is defined. The experiments in El Golli
et al. (2004a,b) show the usefulness of their method applied to symbolic data.

5 UDL monitoring scheme for nonvectorial SOM

This section shows how the novel UDL monitoring scheme can also be applied to nonvec-
torial algorithms, such as SOM-nv. The UDL-monitored algorithms presented in this section
have been successfully tested on the data sets considered in Muruzábal and Vegas-Azcárate
(2005).

Like in traditional self-organizing maps for vectorial data, the radius of the neighbou-
rhood function at the beginning of the process may be selected as fairly large and put to
shrink monotonically in further iterations. As Kohonen and Somervuo (2002) pointed out,
the optimal speed of shrinking should be experimentally determined. UDL stopping policy
estimates the neighbourhood range function during the training of SOM-nv automatically,
see Algorithms 3, 4 and 5.

6 Discussion

The visualization of large protein and DNA databases in a compact way may give in-
sights into the data, leading to the development of new ideas and theories. Since the number of
known DNA and proteins sequences is growing exponentially as a result of Genome projects,
the management of the resulting databases is of central interest in modern Bioinformatics
analysis. Many powerful algorithms for comparing two [Needleman and Wunsch (1970); Smith
and Waterman (1981)] or more proteins [Waterman (1984); Corpet (1988); Higgins (1994);



Technical Report 2006, Rey Juan Carlos University

Algorithm 4
UDL monitoring scheme for nonvectorial SOM. First run.

Select Q0 as the initial neurons configuration.
repeat for each iteration, t,

for each input sequence, xn, do
Find the best matching unit for xn,

end for.
Select the neighbourhood range function to be

σΛ(t) = σΛ(0) · exp

(

−2 · σΛ(0) ·
t

T 1
· γ1

)

, (6)

where γ1 = 1 and T 1 = #neurons.
Recollect in Z1

i (see Equation 4) the input items associated to pointer zi.
Store in Ω1

i (see Equation 5) the items associated to each pointer in
neighbourhood N1

i .
Update each zi as the generalized median of Ω1

i .
Obtain the dataloads and store their standard deviations in SD1(t).

until t = T 1.
Determine the number of epochs, t1udl, and the corresponding range, σ1

Λ,udl,

for which the speed of decrease of SD1 function is nearly zero.

Mahabhashyam et al. (2005)] have been developed. Although these methods are sensible,
they are extremely time consuming. Faster but less precise algorithms for searching homolo-
gies have been proposed [Wilbur and Lipman (1983); Lipman and Pearson (1985); Altschul
and Lipman (1990); Altschul et al. (1990)]. In this way, a variety of neural networks have
been used to organize protein sequences into clusters or families according to their sequence
homologies. However, since the number and composition of the families are not known, the
use of unsupervised learning algorithms, such as the SOM type algorithms, seems indeed
very appropriate. The corresponding topological maps so obtained should be very useful in
organizing large protein or DNA databases and for rapidly classifying new sequences.

In contrast to earlier works, the extension of the SOM batch allows for the use of any
similarity measure in sequences. The combination of the nonvectorial topographic maps with
the previously presented UDL monitoring ideas is expected to be a helpful tool to deal with
biological sequences.
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Algorithm 5
UDL monitoring scheme for nonvectorial SOM. Monitoring runs.

repeat for each monitoring run, j > 1,
Select Q0 as the initial neurons configuration.
repeat for each iteration, t,

for each input sequence, xn, do
Find the best matching unit for xn,

end for
Select the neighbourhood range function to be

σΛ(t) = σΛ(0) · exp

(

−2 · σΛ(0) ·
t

T j
· γj

)

, (7)

where T j = 2 · tj−1
udl

and

γj = −
ln

0.9·σj−1
Λ,udl

σΛ(0)

2 · σΛ(0)
. (8)

Recollect in Z
j
i the input items associated to pointer zi.

Store in Ωj
i the items associated to each pointer in N

j
i .

Update each zi as the generalized median of Ωj
i .

Obtain the dataloads and store its standard deviation in SDj(t).
until t = T j .
Determine the epochs, t

j
udl, and the range, σ

j
Λ,udl, for which the speed of

decrease of SDj function is nearly zero.
until σ

j
Λ,udl

≃ σ
j−1
Λ,udl

.
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397–402, Amsterdam : North-Holland.

McGregor, M., Flores, T. and Sternberg, M. (1989). Prediction of b-turns in proteins using
neural networks, Protein Engineering , 2 : 521–526.
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