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28933 Móstoles, Spain

jorge.muruzabal@urjc.es

Abstract - We are living the blast of the silicon-based biology era, an era in which investiga-
tion of complete genomes is viable for the first time. We need computer-based technologies to
cope with the vast quantities of data generated by genome projects, seeking not only increased
facilities in data storage and access, but also assistance in computational manipulation and
post-processing. Without methods that help us to analyze this deluge of data, the information it
contains becomes useless. This paper reconsiders the basic toolkit for cluster analysis —based
on the relative distance from each pointer to its immediate neighbours on the network— from
this monitoring perspective. It is shown that the idea works nicely, that is, much useful infor-
mation can be encoded and recovered via the trained map alone (ignoring any possible density
estimate available). Moreover, the fact that a topographic map is not restricted to metric vec-
tor spaces makes this learning structure a perfect tool to deal with biological data, such as
DNA or protein sequences of living organisms, for which only a similarity measure is readily
available.

Key words - Topographic maps, monitoring studies, neuron interdistances.

Note - This paper constitutes an extension of the one presented at the Workshop on Biosignal
Processing and Classification (BPC), Barcelona, Spain, 2005, On cluster analysis via neuron
proximity in monitored self-organizing maps, Susana Vegas-Azcárate and Jorge Muruzábal.
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1 Introduction

The Self-Organizing Map (SOM) [Kohonen (2001)] is a popular neural network model
for unsupervised learning that tries to ‘imitate’ the self-organization process taking place
in the sensory cortex of the human brain (by which neighbouring neurons will typically
be activated by similar stimuli). This model develops a mapping from a d-dimensional input
space, into an equal or lower-dimensional discrete lattice with regular, fixed topology. Thanks
to a simple competitive learning process — whereby only weights connected to the winner (or
best matching unit) and its neighbours are updated—, the SOM structure is often organized
(topologically ordered).

We are interested in applying the SOM neural structure for sound clustering of bio-
logical signals. We have a particular application in mind, namely, clustering proteins. This
problem has some tradition in the literature [Ferrán and Ferrara (1991); Kohonen and So-
mervuo (2002)], and it prompts a number of interesting issues, beginning with the issue of the
‘vectorial vs. nonvectorial’ data representation. However, in this paper we consider only the
vectorial case and pursue some foundational research (i) focusing on the use of interneuron
proximity information alone, and (ii) emphasizing the need to monitor the training process.
While both theory and applications have developed substantially in the SOM literature, there
is probably not a wide awareness yet (among practitioners) of the technical requirements for
the extracted maps, nor there seems to be a wide consensus on how to best monitor, train or
even analyze the SOM structure.

For clustering purposes, a good density estimate of the sampling distribution can of
course be very valuable, and certain kernel-based learning algorithms are naturally suited
to yield such estimates. While conventional kernel-based estimates [Gray and Moore (2003);
Davies and Kovac (2004)] seem to provide generally good results, drawbacks in higher di-
mensions should still occur in the multivariate case [Scott and Szewczyk (2000)]. Recent
approaches to SOM training usually incorporate some statistical machinery yielding richer
models and more principled fitting algorithms (the standard framework lacks a statistical
model for the data and thus provides no density estimate).

As regards monitoring, we have introduced an early-stopping criterion called UDL (for
uniform data load) and we have shown that it provides sensible density estimates in a wide
array of cases [Muruzábal and Vegas-Azcárate (2005)]. Here we show that the UDL criterion
is also useful for the usual basic proximity summaries (available in all training algorithms).
To this end, four algorithms are tested. Specifically, the batch version (SOM-B) [Kohonen
(2001)] and a convex adjustment (SOM-Cx) [Zheng and Greenleaf (1996)] of the standard
SOM algorithm are compared to two kernel-based learning rules : the generative topographic
mapping (GTM) [Bishop et al. (1997b)] and the kernel-based maximum entropy learning
rule (kMER) [Van Hulle (1998)]. The latter three tend to achieve the ‘equiprobabilistic state’
that motivates the UDL criterion [Muruzábal and Vegas-Azcárate (2005)] ; it appears unlikely
that SOM-B can achieve this state, but it is still monitored in the same way for the sake of
reference.

The organization is as follows. Section 2 briefly describes the four topographic map
formation algorithms considered in the paper. Section 3 spells out the particular training and
testing strategies examined in the experiments reported in section 4. Some conclusions are
drawn in section 5.
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2 SOM training algorithms

Before we actually describe the details of the algorithms, it is appropriate to begin with
a bit of background for the work presented here. As often noted, the quality of the SOM fit
will be assessed in the first place by the extent to which the organization or topology preserva-
tion property holds. A substantial amount of research has been devoted to the formalization
and quantification of this idea. Proposed approaches vary from the early measures based en-
tirely on the map pointers [Bauer and Pawelzik (1992)] to increasingly sophisticated variants
that also incorporate some aspects of the data into the analysis [Kaski and Lagus (1996);
Villmann et al. (1997); Lampinen and Kostiainen (1999); Haese and Goodhill (2001)]. While
much progress has been done in the area, there is no universally accepted methodology for
practitioners to follow. Many proposed measures are not easy to interpret, and the available
implementations are scarce. At any rate, empirical confirmation is needed in each case.

Determination of the most sensible criterion is also complicated by the nature of the
training algorithms. Most importantly, algorithms differ in their magnification factors, that
is, in the ability to reflect exactly the true density generating the data. When the match
between pointer density and data density is exact (at least asymptotically) we talk of equi-
probabilistic maps [Van Hulle (2000)]. These have been argued to overcome the output unit
underutilization problem found in the standard SOM training algorithm. But even among
theoretically equiprobabilistic algorithms there are, as we shall see, substantial differences in
practical behaviour.

Finally, training algorithms vary also in the amount of modelling machinery involved.
As noted above, the traditional SOM structure lacks a statistical model for the data, whereas
modern training algorithms like GTM and kMER provide an explicit density estimate that
can be very useful for clustering purposes. These estimates enhance the framework and raise
questions about the preferred training strategy. Denote the SOM weight or pointer vectors as
wi ∈ IRd, i = 1, ..., N , and the data as vm ∈ IRd,m = 1, ...,M . In this paper we consider 2D
SOMs only ; besides, we restrict consideration to squared maps equipped with the standard
topology.

2.1 The Batch SOM

The original version of the SOM is a sequential algorithm, which makes a separate
update for each data point, taken one at a time. There is also a batch version of the SOM
algorithm (SOM-batch) [Kohonen (2001)], for which each update of model parameters is based
on all data points. The batch version of Kohonen’ SOM algorithm resembles the Linde-Buzo-
Gray algorithm for vector quantization [Linde et al. (1980)], which, if a batch computation
is considered, is usually called the k-means algorithm. Moreover, SOM-batch corresponds
to the Heskes’ approach when β → ∞ and the neighbourhood function verify Λij ∈ {0, 1}.
SOM-batch algorithm is summarized in Algorithm 1.

Since SOM-batch contains no learning rate parameter, no convergence problems arise, so
more stable asymptotic values for the weight vectors are obtained [Kohonen (2001)]. As in
the sequential SOM, a usual choice is a Gaussian-shaped neighbourhood function.
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Algorithm 1
Self-Organizing Map, batch version (SOM-batch).

Initialize the weight vectors, w0

i .
repeat for each iteration, t,

for each data point, vn, do
Find its the best matching unit.

end for.
Update weight vectors by

wt
i =

∑N
n=1

vn · Λt
i∗ni

∑N
n=1

Λt
i∗ni

. (1)

Decrease the width of the neighbourhood function.
until t reaches T .

2.2 Convex adjustment

The convex SOM (SOM-cx) [Zheng and Greenleaf (1996)] is a nonlinear model of weight
adjustments based on the original SOM, developed to approach the probability distribution of
the inputs. SOM-cx uses a convex model to adjust weights to produce equiprobabilistic maps,
preserving the simplicity of the basic SOM to retain the biological plausibility. This model
provides more efficient data representation, whereas the convergence rate is comparable to
that of the linear model [Zheng and Greenleaf (1996)], see Algorithm 2.

Zheng and Greenleaf (1996) have focused their studies on the mapping between the
1D output density and the input probability p(v), presenting numerical demonstrations to
validate their methods, but did not discuss other properties of SOMs. They revised Ritter and
Schulten (1986), Hertz et al. (1991) and Ritter (1991) techniques to prove the equiprobabilism
of linear maps trained with SOM-cx. Following the derivation of output units density for the
1D SOM case the density of output units appears to be proportional to p(v)

2

3 . What Zheng
and Greenleaf (1996) have found is that the 1D output density is proportional to the input
probability p(v) if a convex function of (v − wi) is used— convex in the sense of the ∆wi

axis. Therefore, the relative size of the weight adjustments of inputs having high probabilities
is increased. Moreover, regardless of the probability distribution of inputs, all output units
have similar winning frequencies, a desired feature for efficient data representation with a
minimum number of under-utilized units.

2.3 Generative Topographic Mapping

The Generative Topographic Mapping (GTM) [Bishop et al. (1997b)] defines a non-
linear parametric mapping from a low-dimensional latent space to a high-dimensional data
space. Thanks to its topology preserving properties, nearby points in latent space will map
to nearby points in data space. Specifically, the mapping is denoted y(u,W), where u ∈ R

l,
y ∈ R

d (where l < d) and W denotes the matrix of parameters. The mapping is governed by
W, and could consist, for example, of a feed-forward neural network in which case W would
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Algorithm 2
Self-Organizing Map, convex version (SOM-cx).

Initialize the weight vectors, w0

i .
repeat for each iteration, t,

Select a data point, vn.
Find the best matching unit for vn.
Update weight vectors so that

wt
i = wt−1

i + ηt · Λt
i∗ni · (vn − wt−1

i )
1

κ , (2)

with κ a positive odd integer.
Decrease the value of η and the width of the neighbourhood function.

until t reaches T .

represent the weights and biases.
The transformation y(u,W) maps the latent-variable space into an l-dimensional ma-

nifold S embedded within the data space. By suitably constraining the model to a grid in
latent space, a posterior distribution over the latent grid is readily obtained using Bayes’
theorem for each data point [Bishop et al. (1997a)]. GTM training process is based on a
standard EM procedure [Dempster et al. (1977)] aimed at the standard Gaussian-mixture
log-likelihood [Bishop et al. (1997b, 1996)]

logL =

N
∑

n=1

log

{

M
∑

i=1

p(vn|i)P (ui)

}

, (3)

where P (ui) is the prior mass at each point in the latent grid, and p(·|i) is the Gaussian density
centered at yi = y(ui,W) (equal, of course, to the weight vector wi) with spherical covariance
and common variance σ2 = β−1. A generalized linear regression model is typically chosen
for the embedding map, namely y(u,W) = WΦ(u), where Φ ≡ Φ(u) is a M × B matrix
containing the scores by B fixed basis functions and W is the free matrix to be optimized
together with β. The prior distribution in latent space is a sum of equally-weighted Dirac
functions allocated at the M nodes of the lattice, that is,

P (ui) =
1

M

M
∑

j=1

δuj
(ui). (4)

The posterior p(u|vn) concentrates to a single node as training proceeds. A regulari-
zation term λ can be added to the objective function to control the topological order in the
mapping. This is accomplished via a Gaussian prior

p(W) =

(

λ

2π

)
Bd
2

exp

{

−
λ

2
‖ W ‖2

}

.

Hence, GTM leads to an homoscedastic and homogenous mixture density model possibly
penalized by excessive complexity in the embedding mapping. This way, the GTM algorithm
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Algorithm 3
Generative Topographic Mapping (GTM).

Generate the grid of latent points.
Generate the grid of basis function centers.
Select the basis function width.
Compute the matrix of basis function activations.
Initialize the matrix of parameters, W, randomly or using PCA.
Initialize the common variance, β−1.
repeat

E-step
Compute the posterior probability that vn was generated by yi.
Compute the generalized least squares.

M-step
Update the matrix of parameters, W.
Update the common variance, β−1.

until convergence.

has a connection with Utsugi (1997) proposal, an homoscedastic Gaussian mixture model
for density estimation with equal mixing and a single Gaussian smoothing prior to reflect
centroid variations in the neuron space.

GTM algorithm is mainly used to visualize and modelize high-dimensional data in a low
dimensional latent variable space. In fact, the GTM is proposed as a principled dimensional
reduction method. See Algorithm 3.

2.4 Kernel-based Maximum Entropy learning Rule (kMER)

The kernel-based Maximum Entropy Learning Rule (kMER) [Van Hulle (2000)] was in-
troduced as an unsupervised competitive learning rule for non-parametric density estimation.
Its main purpose is to obtain equiprobabilistic topographic maps on regular, fixed-topology
lattices. Here, neurons receptive fields are radially overlapping symmetric kernels, whose radii
are adapted to the local input density together with the weight vectors that define the kernel
centroids. Note that, in the case of the standard SOM algorithm, the receptive fields are the
standard Voronoi regions defined by the minimum Euclidean distance rule.

A sequential version of kMER is developed in Van Hulle (1998, 2000), and can be seen in
Algorithm 4. As in the standard SOM algorithm, the neighbourhood function Λ decreases over
time to achieve a topographically organized lattice. This function is a critical factor towards
the generation of topology-preserving mappings, in as far as it achieves the cooperation and
specialization of neighbouring neurons for similar input signals. Apart from this cooperative
state, there is also a competitive element in the learning process of the receptive field centers,
wi, which achieves the input space to be evenly filled with receptive fields according to
the input distribution statistical properties [Van Hulle (2000)]. This competitive element is
introduced by the fuzzy function Ξ, providing a convenient extension of the winner-take-all
scheme. This fuzzy code membership function is quite different from those used in the fuzzy-
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Algorithm 4
Kernel-based Maximum Entropy Learning Rule (kMER), sequential version.

Initialize the weight vectors w0

i and the radii σ0

i of the receptive fields.
repeat for each iteration, t,

Select a data point, vn.
Find the best matching unit for vn.
Determine active neurons— the neurons that have a receptive field
in which the current input vn falls.
Update weight vectors, employing a learning rate η, a neighbourhood
function Λ, a sing function Sgn and a fuzzy code membership Ξ,

wt
i = wt−1

i + ηt ·

M
∑

j=1

Λt
i∗ni · Ξj(vn) · Sng(vn − wt−1

i ). (5)

Update radii, using a scale factor ρ and a characteristic function ϑ,

σt
i = σt−1

i + ηt

(

ρ

M − ρ
(1 − ϑi(vn)) − ϑi(vn)

)

. (6)

Decrease the value of η and the width of the neighbourhood function.
until t reaches T .

clustering literature. In fact, Ξi is a measure for the probability that neuron i belongs to the
subset of activated neurons, rather than just the probability that neuron i is active. This
way, Ξ expands the winner-take-all scheme of the original SOM algorithm, allowing receptive
fields to overlap. Function Ξ takes the following form,

Ξi(v) =
ϑi(v)

∑M
j=1

ϑj(v)
, (7)

where ϑi

ϑi(v) =

{

1 if v ∈ Si

0 if v /∈ Si
(8)

is the characteristic function of the d-dimensional hyperspherical receptive field region Si,
which is defined as the cross-section of the kernel function at centroid wi with a threshold that
varies along learning. Thus, receptive field centers wi will be updated proportionally to Ξj in
the direction of the current input vn. Moreover, kMER derives a different standard deviation
σi for each mixture Gaussian component. Specifically, the kernel radii σi are adjusted so
as to verify, at convergence, that the probability of each neuron i to be active is given by
P (ϑi 6= 0) = ρ

M
, that is, Equation 6, where ρ is a scale factor that controls the degree of

overlap among receptive fields. Then, the radii are guaranteed to converge to a lattice whose
neurons have an equal probability to be active, when the probability density is continuous
and statistically stationary. It can be seen that the receptive field weight centers wi and the
radii σi are adapted to achieve a topographic map maximizing the unconditional information-
theoretic entropy [Van Hulle (2000)].
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Furthermore, the density estimate output by kMER can be written in terms of a mixture
distribution where the kernel functions Ki represent the component Gaussian densities and
the prior probabilities are all equal to 1

M
. This way, kMER provides an heteroscedastic and

homogeneous mixture density model. Moreover, kMER log-likelihood can be computed just
like in Equation 3.

3 SOM-based mode detection

Once we have trained the appropriate topographic map, suitable summaries of its struc-
ture will be extracted and analyzed to ascertain the modes’ location. In particular, we here
consider the Sammon’s projection, the median interneuron distances, the data loads and a
label matrix.

In order to check the goodness of the obtained maps, Sammon’s projection [Sammon
(1969)] can be employed. Indeed, to visualize high-dimensional SOM structures the use of
Sammon’s projection is customary. Sammon’s map provides a useful global image while esti-
mating all pairwise Euclidean distances among weight vectors and projecting them directly
onto 2D space. Furthermore, by displaying the set of projections together with the connections
between immediate neighbours, the degree of self-organization in the underlying topographic
structure can be informally assessed in terms of the amount and nature of overcrossing connec-
tions in this image. Since it is not clear how much organization is possible for a given data
set, the amount of connection overcrossing lacks an absolute scale for assessment. Sammon’s
map tends to provide informative and reliable images. In general, the higher the level of
organization appreciated in it, the more the tendency to trust the conclusions derived from
this topographic map.

Thus, since pointer concentrations in data space will tend to be maintained in the
projected image, one can proceed to identify high-density regions directly on the projected
SOM. This aspect of the analysis is rather important, because the main problem with the
SOM structure, namely poor organization, needs to be controlled somehow. As usual, it
is crucial to avoid poorly-organized structures (whereby immediate neighbours tend to be
relatively distant from each other) but this goal is not so easy to reach when working with
high-dimensional data [Kiviluoto and Oja (1998); Kohonen (2001)].

3.1 Median Interneuron Distances

Since we are interested in regions with higher weight vector density, the relative distance
from each weight to its immediate neighbours on the network will provide a useful bit of
information. Interneuron distance or proximity information has also been traditionally used
for cluster detection in the SOM literature. Inspection of weight interdistances was pioneered
by Ultsch [Ultsch (1993)], who defined the Unified matrix (U-matrix) to visualize Euclidean
distances between weights in Kohonen’s SOM. However, emphasis in the U-matrix is on
cluster analysis, not on mode detection.



Technical Report 2006, Rey Juan Carlos University

a b c d

Fig. 1 – Performance on 3M-2D data set by sequential SOM (top), SOM-B (middle-up),
SOM-Cx (middle) ; GTM (middle-down) and kMER (bottom) : (a) trained maps with data
set highlighted ; (b) DL matrices ; (c) MID matrices ; (d) Labels matrices.
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a b c d

Fig. 2 – Performance on 7M-5D data set by sequential SOM (top), SOM-B (middle-up),
SOM-Cx (middle) ; GTM (middle-down) and kMER (bottom) : (a) Sammon projected maps ;
(b) DL matrices ; (c) MID matrices ; (d) Labels matrices.
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An alternative Median Interneuron Distance matrix, say MID-matrix, was proposed
in Muruzábal and Muñoz (1997) an used in Vegas-Azcárate and Muruzábal (2005) with
successful results. Each MID entry is the median of the Euclidean distances between the cor-
responding weight vector wi and all weights belonging to a star-shaped, fixed-radius neigh-
bourhood typically containing eight units. The median can be seen as a conservative choice ;
more radical options based on extremes can also be implemented. In order to facilitate the
visualization of higher weight concentrations, a linear transformation onto a 256-tone gray
scale is standard, where the lower the value, the darker the cell.

3.2 Dataloads

The dataloads are the natural estimate of the probability of activation, given new data
are generated by the sampling distribution. Since the density of weight vectors in the trained
topographic map should serve as an estimate of the density underlying the data, each neuron
would cover about the same proportion of data. In this ideal case, a uniform DL-matrix
should be obtained. In order to easily visualize the dataload distribution over the map, a
gray image called DL-matrix is computed— in this case darker means higher.

To support the assessment, we consider a minimum Euclidean labelling scheme, in
which each neuron is marked with the label that most occurs within its activation region. We
denote this as the Label-matrix. Note that an extra label is needed for the case a neuron has
no data projected into it.

3.3 A strategy for mode detection

The above summaries of the topographic maps structure constitute the basis of the
following scheme for exploring mode estimation. To train the model we can follow the UDL
criterion presented in Muruzábal and Vegas-Azcárate (2005). Special care must be taken
with a well-known problem related to the SOM trained structure, namely the border effect.
By this is meant that units on edges of the network do not stretch out as much as they
should [Kohonen (2001)], which leads to confusing gray-scaled matrices on these map regions.
Fortunately, these spurious concentrations rarely spread towards the interior of the network,
although their traditional presence is somewhat annoying.

4 Synthetic examples

The experiments concern synthetic, balanced Gaussian mixtures of size N = 1, 500 in
total. The trimodal 2D data set is first analyzed. Next, a data set generated from a mixture
of seven Gaussians, called 7M-5D, is studied. The maps discussed here have all been stopped
early, following the ideas exposed in Muruzábal and Vegas-Azcárate (2005).

4.1 Three modes in 2D space

This data set is simulated from a mixture of three Gaussians, with two of the modes
close enough to illustrate the finer detail in each algorithm. Figure 1 shows good organization
and suitable DL matrices in all cases— albeit more uniform DL matrices can be seen in
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the case of GTM and kMER. As a result, the three modes are correctly identified via MID
analysis, yet we note that kMER and SOM-Cx provide the cleanest assignments.

a b c d

Fig. 3 – Performance on Mfeat data set by SOM-B (top), SOM (middle-up), GTM (middle-
down) and kMER (bottom) : (a) Sammon projected maps ; (b) DL matrices ; (c) MID ma-
trices ; (d) Labels matrices.

4.2 Seven modes in 5D space

Data are generated in a two-step process. First, we sample the locations of the Gaussian
centroids, then we sample each Gaussian in term. All Gaussians are spherical and have the
same size. The standard deviation of the centroid distribution is much larger than that of
the data, so modes are well separated. Figure 2 shows a generally nice behaviour except in
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the GTM case, where a relatively high number of dead units is unexpectedly observed. In all
other cases, the seven modes are very clearly exhibited by the MID matrices.

5 A real-world example

We finally examine how UDL criterion does with a highly dimensional real-world
example. We consider the Multiple Features database from the UCI repository [Blake and
Merz (1998)] to validate the whole UDL approach. This data set (referred to as Mfeat) consists
of features of handwritten numerals (0, . . . , 9), with 200 patterns per class for a total of 2,000
patterns. Hence, in this case d = 649, N = 2000 and we look for 10 decision classes. As Figure
3 shows, interestingly organized maps are obtained in all cases. These maps involve rather
uniform DL matrices and result in pretty good mode predictions. GTM ranks worst in terms
of cluster separation.

6 Summary and conclusions

We have revisited a universal approach to cluster detection based on the SOM struc-
ture and neuron proximity. We have shown that good results are obtained most of the time
when maps are monitored (stopped early) via the UDL criterion introduced in Muruzábal
and Vegas-Azcárate (2005). Early stopping seems indeed almost a requirement if the ulti-
mate goal of the analysis depends on having a faithful approximation to the data-generating
distribution. Other stopping criteria can be seen in Villmann et al. (1997).

Perhaps the Gaussian kernels in GTM are too constrained by the transformation from
lattice to input space, for it appears that these kernels cannot move freely when needed at
some point along the training process. We have also seen that many of the previous drawbacks
are avoided by kMER, which produces more flexible and more effective maps, yet SOM-B
and SOM-Cx seem also very well behaved and quite useful in the cases studied.

The scope of the above ideas for SOM-based biosignal clustering is important in as much
as vectorial data keep on being worked out by researchers. Our results should be reassuring
for practitioners following strategies based on neuron proximities, but they should also be
recalled of the need to monitor map formation closely.
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