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Abstract - Topographic maps have become standard tools for frequently encountered data-
analytic tasks such as visualization, clustering and classification. Unfortunately, however, a
complete SOM training methodology is not firmly established yet. For example, when using
the standard SOM fitting algorithm, it is well-known that an appropriate choice for the end
adaptation radius or final neighborhood width is crucial for obtaining useful results. This
parameter controls in effect the degree of smoothness (or the amount of quantization error
minimization) in the final map. Several heuristics have been suggested to guide this choice. A
new monitorization idea is introduced in this paper, and a few examples are used to illustrate
the scope of the approach.
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1 Introduction

With respect to the standard Kohonen algorithm, equiprobabilistic maps have been
argued to provide a more faithful representation of the distribution generating the data
[Van Hulle (1998, 2000). Indeed, these maps tend to minimize or eliminate the number of
“dead” or “empty” units commonly found in standard fits. The motivating idea is that all
trained neurons should have the same probability of being the best matching unit for a new
data vector sampled from the same generating distribution. Here we consider two kernel-based
variants of this type of map, namely, the generative topographic mapping (GTM) [Bishop
et al. (1997) and the maximum entropy learning rule (kMER) [Van Hulle (1998)] algorithms.
Just like in the case of the standard Kohonen algorithm, relatively organized structures
are achieved during the early and intermediate stages of training, whereas more tangled-up
structures (typically providing a slight improvement in quantization fit) are obtained when
training continues all the way through the latter stages. Thus, an overfitting problem is also
latent in equiprobabilistic maps. Van Hulle (2000)] has recognized the usefulness of certain
form of monitorization and early-stopping policy to prevent damage to the organized map
once it is achieved.

In this paper we investigate a novel, alternative scheme which is valid for any kind
of equiprobabilistic map. Instead of looking directly at measures of self-organization [Haese
and Goodhill (2001)], we care only about the extent to which equiprobabilism is achieved.
Specifically, the key observation is that we can measure how close to equiprobabilistic a
given map is, and we consider to stop training as soon as the map shows the first signs
of equiprobabilism. This policy is seen to prevent excessive vector quantization indirectly.
Further, the resulting density estimates are also seen to be rather accurate, in the sense that
they recover the modes of the true generating density in many cases. We show that good
results are obtained regardless of the particular training algorithm used.

The organization is as follows. Section 2 revisits the concept of equiprobabilistic map
and Section 3 reviews a number of previous ideas on monitorization. The new criterion is
presented in Section 4, and the experimental evidence is discussed in Section 5. Finally,
Section 6 summarizes some conclusions and points out a few lines for further research.

2 Equiprobabilistic SOMs and density estimation

Inspired by a number of ordered mappings found in certain neural structures, the typical
self-organizing map develops, in an unsupervised way, a mapping from a d-dimensional input
space V ⊆ IRd, into an equal or lower-dimensional discrete lattice with regular, fixed topology
[Kohonen (2001)]. For simplicity, in this paper we only consider 2D squared SOMs equipped
with the standard topology. Although cluster analysis, data visualization and non-parametric
regression are the most common applications, the SOM structure can also be regarded as
a tool for generating non-parametric models of the sampling probability density, p(v) say.
Models of this sort can be termed explicit or implicit depending on whether a formal density
estimate, say p̂(v), is available or not. When such a density is available, standard scoring
measures can be readily used to assess its merit. When not, the areal magnification factor
of a neural map can be used to measure model accuracy, see e.g. [Bauer et al. (1996)]. This
is the exponent µ verifying p(wi) ∝ p(v)µ, where p(wi) is the (asymptotic) neuron weight
density in input space. For the standard training algorithm, however, magnification factors
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are only known in the simplest cases. For example, µ = 2
3 in the limit of an infinite density

of neurons in a linear map [Ritter and Schulten (1986)]. For higher dimensional maps, the
standard algorithm and its variants tend to show the same behaviour, that is, they tend to
underestimate higher density regions and therefore fail to provide a faithful representation of
the sampling distribution [Ritter and Schulten (1986); Lin et al. (1997)].

Various strategies have been explored to minimize this problem [Bauer et al. (1996)].
In this paper we focus on the idea of equiprobabilistic maps. These stick to the information-
theoretic optimal µ = 1, so that all neurons have (in the limit) the same probability to be
maximally excited. While the issue was initially approached as a limit case of mutual in-
formation maximization, a more intuitive approach is perhaps to maximize the entropy of
the map’s outputs directly. Several unsupervised learning rules have been developed follo-
wing this approach [Van Hulle (2000)]. Here we consider two specific algorithms leading to
equiprobabilistic maps : GTM [Bishop et al. (1997)] and kMER [Van Hulle (1998)]. These
kernel-based topographic maps can also be regarded as mixture density models, that is, the
target p(v) is approximated via density functions of the form

p̂(v) =

M
∑

i=1

qiKi(v,wi, σi),

where M is the total number of neurons in the map, qi are the mixing parameters,
Ki is the kernel function allocated at the neuron weight or centroid wi, and the radii σi

determine the spread of the various mixture components. Most kernel-based topographic
maps reported in the literature use Gaussian kernels Ki [Bishop et al. (1997); Van Hulle
(1998); Yin and Allinson (2001); Heskes (2001)]. Both GTM and kMER use homogeneous
mixtures (qi ≡

1
M

). As regards the σi, GTM uses a homoscedastic model (σi ≡ σ), whereas
kMER allows different radii (which are adapted to the local input density together with the
weight vectors or kernel centroids wi). On the other hand, GTM incorporates an optional
regularization term λ which can be added to the objective function (a standard likelihood
function) to control the topological order in the mapping. This control is accomplished via a
joint spherical Gaussian prior (with variance λ−1) on the matrix W defining the non-linear
manifold containing the centroids [Bishop et al. (1997)].

We use the fitted density estimate p̂(v) as the primary evaluation tool. Specifically, we
look at the modes of this density as follows. Steepest ascent Hill-Climbing [Van Hulle (2000)]
is used over the map lattice, that is, all neighbours are compared and the best is selected
(until no further improvement is possible). Since the maps we handle are obtained via the
UDL criterion and thus are rather smooth, we can explore the density surface in greater
detail by using a star-shaped neighbourhood linking at most 8 neurons to any given unit.
More conservative policies can be naturally considered too. Of course, many local maxima
may be present, so that the process is restarted from all possible initial neurons. We illustrate
below the (gray-valued) DENS-matrix, depicting the p̂(wi) values at the lattice nodes, and
the HC-matrix, highlighting all modes estimated by this procedure.

3 Previous work on map monitorization

The underlying motivations for some kind of monitorization of the training process
are as follows. Firstly, the optimal map is that obtained using an “infinitely slow” training
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process. Although good approximations can be derived for synthetic data with many cycles of
training, this long training is not recommended in higher-dimensional real data spaces due to
the enormous amount of time consumed by the algorithms and the impossibility of knowing
when this “long enough” training has been achieved.

Secondly, for finer density estimation purposes (mode detection) and, more specifically,
for its 2D visualization, the output lattice has to be disentangled and well-organized (just like
in cluster analysis). Maps not free of topological defects could lead to contiguous high-density
regions become split, whereas separated areas could be shown as a single region. Several
heuristics have been suggested to guide this choice [Kaski and Lagus (1996); Villmann et al.
(1997); Lampinen and Kostiainen (1999); Haese and Goodhill (2001)]. Still, Lampinen and
Kostiainen (1999)] acknowledge that “the model complexity in SOM is usually chosen ad hoc
by the user”. In the case of the standard SOM, GTM and other algorithms, it has often been
noted that the end adaptation radius or final neighborhood range has a big impact on the
final maps obtained. If the final value of this range is too large, neurons will not properly span
the input data set, but if it is too small, violations in topographic order will occur. Although
it is commonly suggested that this radius should drop to “small” values by the end of the run,
this is not appropriate in many cases [Kaski and Lagus (1996); Haese and Goodhill (2001)].
Similar considerations apply to kMER [Van Hulle (2000); Van Hulle and Gautama (2002)].

Hence, most training algorithms need to monitor somehow the degree of topology pre-
servation achieved during training. What varies is the type of heuristic used to carry out
this monitorization task. Some heuristics proceed by controlling certain amount of “overlap”
among neurons, see e.g. [Van Hulle (2000)]. Others make use of some explicit topology pre-
servation measure [Villmann et al. (1997); Haese and Goodhill (2001)]. Since the topographic
product and other such measures do not involve the training data at all, they can be argued
to have some basic limitations for the present task [Kaski and Lagus (1996); Villmann et al.
(1997)]. Thus, Kaski and Lagus (1996)] propose a goodness of fit measure based on the first
and second best matching units for a given input vector v ; a similar heuristic is implemented
in the well-known SOM PAK software. Going one step further, Lampinen and Kostiainen
(1999) propose a generalization measure based on the disagreement between the projections
of training and test data on the trained SOM. We see that these and related ideas differ
mainly in the role played by the data. While the measure we introduce below is also based on
the training data, it departs substantially from previous approaches. As noted later, however,
approaches that consider the test data are also worth-studying in detail.

4 The UDL stopping policy

This paper explores the novel monitoring criterion based on the uniformity of the
dataload vector, a criterion called UDL— Uniform DataLoad vector [Vegas-Azcárate and
Muruzábal (2005); Muruzábal and Vegas-Azcárate (2005)]. Specifically, our UDL criterion
looks for the moment at which the speed of decrease of the dataload standard deviation
function is nearly zero. Pointer density in the trained equiprobabilistic map serves as an
estimate of the density underlying the data. Thus, each neuron would cover about the same
proportion of the data, leading to a uniform dataload vector. It appears that the stochastic
Gaussian behaviour in the equiprobabilistic case can be approximately detected when it is
first reached [Vegas-Azcárate and Muruzábal (2005); Muruzábal and Vegas-Azcárate (2005)].
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Algorithm 1
UDL monitoring scheme.

Train the map with a constant neighbourhood range.
Store the obtained disentangled lattice, Q0.
Starting from Q0, perform one complete training with γ1 = 1.
Determine the number of epochs, t1udl, and the corresponding range, σ1

Λ,udl,

for which the speed of decrease of SD1 function is nearly zero.
repeat, for each monitoring run, j > 1,

Perform a new training, starting from Q0, with T j = 2 · tj−1
udl and

γj = −
ln

0.9·σj−1
Λ,udl

σΛ(0)

2 · σΛ(0)
(1)

to cool at a slower rate, but only run the simulation as long as necessary.
Determine the epoch, t

j
udl, and the range, σ

j
Λ,udl, for which the speed of

decrease of SDj function is nearly zero.
until σ

j
Λ,udl ≃ σ

j−1
Λ,udl.

Do a complete run with Tudl = t
j
udl and γudl = γj .

Hence, the associated UDL stopping rule could be stated as follows : quit as soon as the
trained map shows the first signs of having reached the reference Gaussian DL distribution—
a moment referred to as the UDL stage. In other words, quite as soon as SD function reaches
its stability.

Furthermore, minor gains in quantization error brought by training beyond the UDL
stage seem to enforce the loss of useful organization, implying fuzzier displays for analysis.
Indeed, the UDL stage also signals approximately the beginning of the fine-tuning phase in
quantization error [Vegas-Azcárate and Muruzábal (2005); Muruzábal and Vegas-Azcárate
(2005)]. Note that during the learning process, the best matching unit of each datum is
calculated, so the overhead in obtaining the dataloads and its standard deviation is minimal.

The problem now is to obtain tudl or σudl
Λ , since a complete long enough training has to

be done. Indeed, this is not possible with real-world data where ‘long enough’ is not known. To
solve the ‘long enough’ problem, a scheme similar to the one presented in [Van Hulle (2000)]
is developed here. In it, the rate at which the neighbourhood function range decreases is
adjusted during training, ensuring that the final range value is the one desired, σudl

Λ . Hence,
in a finite and affordable number of cycles the same optimal map as the one achieved in an
infinitely slow training is obtained. The neighbourhood cooling scheme is developed following,

σΛ(t) = σΛ(0) · exp

(

−2 · σΛ(0) ·
t

Tudl

· γudl

)

, (2)

where γudl and Tudl provide the map that has a range value of σudl
Λ . Algorithm 1 reflects the

proposed UDL monitoring scheme.
The monitoring processes converge, since in a slow enough training the neighbourhood
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range value at which SD function reaches its stability does exist [Vegas-Azcárate and Mu-
ruzábal (2005); Muruzábal and Vegas-Azcárate (2005)]. Hence, if the training algorithm em-
ploys a neighbourhood function to ensure topographic ordering, as in the case of SOM-like
and kMER algorithms, it is possible to use UDL monitoring scheme.

5 Density-based approach

This section shows how to use the density estimate p(wi) as the primary tool to extract
a structure from a UDL-monitored topographic map. Focusing on the HC-winning neurons
and the highest density regions should be helpful to approach a precise mode estimation,
provided that the map is appropriately organized. A gray-valued density matrix depicting
p(wi), the density values at the lattice nodes, is used to visualize the estimated density,
namely DENS-matrix. In this matrix darker means larger.

A kernel-based density estimate can be computed by positioning equivolume Gaussian
kernels at the neuron weights. For the topographic map developed by kMER, these kernels
will be variable in width, proportional to the neuron radii σi. The standard and batch SOM
will be developed with both fixed and variable kernel density estimation. The widths in the
variable approach will be computed following the kth nearest-neighbour method, in which a
hypersphere is centered at the neuron weights with a radius chosen in such a way that it
contains the kth nearest-neighbour input samples. For selecting k-value, we will follow the
next scheme. During the learning of kMER algorithm, kernel radii are adjusted in such a way
that, at convergence, the probability for neuron i to be active is ρ

M
,∀i, with ρ the scale factor.

Since kMER neuron weights ‘capture’, at convergence, ρ
M

·N inputs, we will take k = ρ
M

·N
nearest-neighbour input samples for computing the variable kernel density estimation with
SOM and SOM-batch. For the fixed kernel approach, all σi are set to 0.1. The optimal degree
of smoothing, ρs, will be determined as that that maximize the likelihood over the data set
with the current weights.

Steepest ascent Hill-Climbing (HC)— a graph search algorithm where the current path
is extended with a successor node which is closer to the solution than the end of the current
path [Howe (2005)]— is developed on the network structure. This way, all neighbours are
compared and the best is selected, until no further improvement is possible. Since the maps
we handle are obtained via the UDL criterion and thus are rather smooth, we can explore
the density surface in greater detail by using a star-shaped neighbourhood linking at most
8 neurons to any given unit. More conservative policies can be naturally considered too. Of
course, many local maxima may be present, so that the process is restarted from all possible
initial neurons. This way all local maxima are detected, each of them corresponds in principle
to a different mode.

The Hill-Climbing standard approach requires a spatially continuous function since a
density estimate is needed, yielding to a high computational complexity. Van Hulle (2000)
proposed to determine density estimate only at the M weight vectors, guaranteing a local
maximum in a finite number of steps, always smaller than M . This procedure follows next
scheme. Let dispose of the input density estimates at weight vector wi, allocate there a hy-
persphere that contains the ι nearest-neighbour weights, choosing its radius in an appropriate
way [Van Hulle (2000)].
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Fig. 1 – Performance on the trimodal data set by GTM (top) and kMER (bottom) : (a)
trained map with data set highlighted ; (b) DL-matrix ; (c) 2D isolines generated from the
density estimate ; (d) DENS-matrix ; (e) HC-matrix.
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Fig. 2 – 3M-2D data set, DENS-matrix (top) and HC-Labels-matrix (bottom). (a) SOM;
(b) SOM-batch ; (c) SOM-cx ; (d) GTM ; (e) kMER.

The neuron with the highest density estimate of this ι + 1 neurons in the ith hyper-
sphere is called the top-weight, say weight wj . It is said that weight wi points to wj. In-
teresting weights are those top-weights that point towards themselves, namely, the ultimate-
top-weights. This weights belong to separate clusters, since their density estimates represent
local maxima in the input density. Hence, the number of modes in the density estimate is
obtained, for a given choice of the free hypersphere parameter ι.

Although this algorithm does not require a spatially continuous function, the ability
to build continuous density functions will tend to provide more sensible results. HC-matrix
highlights all estimated modes by the previous HC routine. In simulations, this set of local
maxima is contrasted with the set of true modes in the data-generating density.
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6 Experimental results

First, some artificial data sets of varying nature concerning balanced Gaussian mixtures
are investigated. A 2D trimodal and 5D seven-modal data sets, together with a 10D bimodal,
a 50D unimodal, a 50D four-modal and a 50D five-modal data sets are explored. As pointed
before, in all high-dimensional cases the maps projected via Sammon are shown. By displaying
this set of projections together with the inherited connections between immediate neighbours,
the degree of self-organization in the underlying SOM structure can be informally assessed.
The maps discussed here have all been monitorized following UDL criterion.

6.1 Three modes in 2D

Trimodal 2D data set is simulated from a mixture of three Gaussians, with two of the
modes close enough to illustrate the finer detail in each algorithm. Good results are obtained
using GTM (Figure 1 top plots). A precise approximation to the true modes’ locations is
obtained in the sense that each of the highlighted units in Figure 1e is also the closest to
one of the three modes. As regards kMER, we see a mild border effect in Figure 1b bottom
plot, yet mode estimation is very precise again in Figure 1e. Very different densities arise in
Figures 1c, though, kMER appearing better suited to describe the larger gap in these data.

In Figure 2 the estimated density matrices of standard SOM, SOM-bacth, SOM-cx,
GTM and kMER algorithms are shown. HC procedure is highlighted together with the label
of each neuron. An accurate approximation to the true modes’ locations is obtained in all
cases. However, GTM shows a false positive in the second component (see Figure 2d).
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Fig. 3 – 7M-5D data set, DENS-matrix (top) and HC-Labels-matrix (bottom). (a) SOM ;
(b) SOM-batch ; (c) SOM-cx ; (d) GTM ; (e) kMER.

6.2 Seven modes in 5D space

Data are generated in a two-step process. First, we sample the locations of the Gaussian
centroids, then we sample each Gaussian in term. All Gaussians are spherical and have the
same size. The standard deviation of the centroid distribution is much larger than that of
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the data, so modes are well separated. Figure 3 shows the estimated density matrices of the
five algorithms. The seven components of the mixture are well identify in all DENS-matrices.
Moreover, HC procedure highlights each mode of each component. Note that standard SOM
and SOM-batch trained maps show one false positive, in the first and fifth components, res-
pectively (see Figures 3a,b). HC-matrix of trained GTM algorithm shows four false positives,
in the first, third, sixth and seventh component. On the contrary, the UDL-monitored maps
of SOM-cx and kMER algorithms obtain a precise estimation to the seven modes’ locations.

6.3 Two modes in 2D space

Next, a data set generated from a mixture of two 10D Gaussians with modes relatively
apart from each other, called 2M-10D, is studied.

Figures 4 and 5 show the analysis based on early-stopped and fully-trained maps in
this simple high-dimensional problem. As it concerns GTM, good results are obtained at
UDL-stage (top plots of Figure 4). A well-organized map is reflected, over which the density-
based approach provides an excellent estimation of location : the two HC winners correspond
exactly to the two neurons closest to the real modes. As GTM continues all the way to
the end (Figure 4 bottom plots), the organization seems weaker, leading to a diffuse DENS-
matrix— the density-based approach is spoiled by too many local optima (Figure 4d). Indeed,
as highlighted before, the higher the level of organization appreciated in its Sammon’s map,
the more we tend to trust the conclusions derived from this topographic map.

Figure 5 illustrates the analysis of the two maps obtained using kMER. Accurate mode
estimation is obtained again at UDL-stage (Figure 5 top plots), where a well-organized map
and a rather uniform DL-matrix are achieved. The density-based approach pinpoints the
modes’ locations exactly (Figure 5d). By the end of training (Figure 5 bottom plots), however,
the density estimate is somewhat diluted— being difficult to make a distinction between
correct estimations and noise (Figure 5d).

6.4 Single mode in 50D

The single 50D spherical Gaussian centered at the origin is considered in Figure 6.
Whenever the training data exhibits a single mode at the origin, a gray-scaled matrix based
on the ‖ wi ‖ norms is used to assist the assessment of the strategy ; this is termed the
Distance from each Pointer to the Origin or DPO-matrix. Note that, even when faced in
isolation, Gaussian modes are increasingly harder to notice in higher dimensions.

In the case of GTM (Figure 6 top plots), the map provides very precise information :
the density estimate is unimodal, and the neuron with the highest density is also the closest
to the origin— indeed, note the similarity between Figures 6c and 6d. Sammon’s projection
suggests that a good deal of organization is obtained in this case. Turning now to kMER
(Figure 6 bottom plots), we see that a well-organized map is obtained in this case. Indeed,
the quality of density estimation is accurate again.
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Fig. 4 – GTM on 2M-10D data set. A partially trained map (top) and the result of full
training (bottom). (a) Sammon’s projected map ; (b) DL-matrix ; (c) DENS-matrix ; (d) HC-
matrix showing true modes (solid squares) and false positives (gray squares).
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Fig. 5 – kMER on 2M-10D data set. Interpretation is as in Figure 4.
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Fig. 6 – Early stopped maps on the single-mode problem 1M-50D data set (top : GTM,
bottom : kMER). (a) Sammon’s projected map ; (b) DL-matrix ; (c) DPO-matrix ; (d) DENS-
matrix.
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Fig. 7 – Performance on 4M-50D data set by sequential SOM (top) and kMER (bottom). (a)
Sammon’s projected map ; (b) LAB matrix ; (c) DENS matrix with Variable Kernel approach ;
(d) HC matrix with Variable Kernel approach.
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Fig. 8 – 5M-50D data set. Density matrices (top), MID matrices (bottom) performed by (a)
sequential SOM; (b) SOM-batch ; (c) SOM-cx ; (d) GTM ; (e) kMER.

6.5 Four modes in 50D space

The data set consists of four 50D spherical Gaussians, namely 4M-50D, with all the
mixture components well-separated, although one of them is more separated from the others.
Figure 7 presents the density-based mode detection approach developed over sequential SOM
and kMER UDL monitored maps.

Top plots of Figure 7 show SOM UDL-monitored map. Despite of the high dimensio-
nality, the underlying SOM structure presents a high degree of self-organization, since the
amount of overcrossing connections in the respective Sammon’s map is closely null. Label and
DENS matrices reflects the existence of four separated clusters. Further, HC-matrix point out
the existence of the four modes.

Bottom plots of Figure 7 illustrate kMER optimal map, showing a completely well-
organized Sammon’s projection. A precise Label-matrix is observed, with few nonactive neu-
rons in the low density area. When looking to the Sammon’s map and DENS-matrix, one can
conclude the existence of four components in the mixture. Moreover, HC-matrix highlights
the four modes.

6.6 Five modes in 50D space

Before jump to a real-world example, we consider a mixture of five Gaussians in 50D.
Figure 8 shows how, when dealing with highly dimensional data sets, the multimodality is
better analyzed with DENS-matrix than with MID-matrix. Note that top plots of Figure 8
have more intermediate gray values than the bottom plots (where most of the cells are just
black or white).
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Fig. 9 – Performance on Mfeat data set by sequential SOM, SOM-batch, GTM and kMER,
from top to bottom. (a) contour plot ; (b) label matrix ; (c) DENS matrix with Variable
Kernel approach ; (d) HC matrix with Variable Kernel approach.
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Fig. 10 – Performance on Mfeat data set by sequential SOM and SOM-batch. (a,c) DENS
matrix with Fixed Kernel approach ; (b,d) HC matrix with Fixed Kernel approach.
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6.7 A real-world example

We finally examine how UDL criterion does with a highly dimensional real-world
example. We consider the Multiple Features database from the UCI repository [Blake and
Merz (1998)] to validate the whole UDL approach. This data set (referred to as Mfeat) consists
of features of handwritten numerals (0, . . . , 9), with 200 patterns per class for a total of 2,000
patterns. Hence, in this case d = 649, N = 2000 and we look for 10 decision classes. Figure 9
shows UDL monitored maps of sequential SOM, SOM-batch, GTM and kMER learning rules.
Sammon maps are nearly-perfect organized— some corners are a bit twisted but note that
we are in a 649th dimensional space. The labelled matrices split the region in 10 accurate and
precise areas. Although the four algorithms present well-defined labelled matrices (only the
edges of the 10 areas could lead to misclassification problems), kMER optimal map seems the
best, with the best organized Sammon’s projection and the clearest matrix of labels. In SOMs
some nonactive neurons have appeared. kMER DENS-matrix, as well as the Variable Kernel
approach to SOM Batch and sequential SOM provide an accurate Hill-Climbing procedure,
which places a mode in each of the clusters marked by the corresponding labelling matrices.

It can be observed that, as in the low dimensional case, the Fixed Kernel approach
reflects well the nature of the data set, but in a stiffer way than the Variable approximation.
Indeed, the drawbacks of Fixed Kernel approach are patent in Figure 10, where the addition
of false positives or the remove of true ones from HC-matrices is appreciated.

7 Summary and conclusions

We have introduced a new monitorization idea for equiprobabilistic maps and we have
tested it using two particular learning rules, GTM and kMER. Early stopping seems indeed
very appropriate (almost a requirement) if the ultimate goal of the analysis depends on having
a faithful approximation to the data-generating distribution. The proposed UDL criterion is
easy to apply and has provided sensible answers in our test problems. Hence, the benefits
of the new criterion should be more carefully evaluated against other methods. We have
briefly discussed here other such stopping criteria based on the resulting density estimate.
Further research is needed on this point. Specifically, various ideas related to other uses of
data combined with the predictive densities deserve further study.
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