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Abstract - This paper shows how the SOM structure derived from a topographic map for-

mation algorithm provides a powerful approach to multivariate mode detection. Three classic

approaches to mode detection are studied in detail first. The bkde method for univariate data

and the bkde2D and kde2d methods for bivariate data.
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1 Introduction

The data sets considered in the univariate case are some of the Gaussian mixture
densities developed by Marron and Wand (1992). The strongly skewed density (Figure 1b top)
departs in the direction of skewness and was chosen to resemble to log-normal. The bimodal
(Figure 1c top), skewed bimodal (Figure 2a top) and trimodal (Figure 2b top) densities are
mildly multimodal and one expect to estimate them fairly well with a data set of moderate
size. The claw density (Figure 2c top) is an interesting strongly multimodal density, and will
be very hard to recover in full with classic methods. The smooth and discrete comb densities
(Figures 3a,b top), are enhancements of the basic idea of the bimodal density. The data sets
used in the bivariate case are our generalizations of the claw, discrete comb, smooth comb
and strongly skewed densities.
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Fig. 1 – Marron and Wand data sets. Original (top) bkde (bottom). (a) Uniform ; (b) Stron-
glySkewedDensity ; (c) Bimodal.

1.1 The bkde method

Wand and Jones (1995) have developed a binned approximation to the ordinary kernel
density estimate, the bkde method for univariate data. Figures 1, 2 and 3 show how this
method copes with Marron and Wand (1992) data sets. Good results are obtained using the
uniform density. On the contrary, the unimodal strongly skewed density appears to be mildly
multimodal, since bkde method is not able to reflect appropriately the smoothness of this
density.
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Fig. 2 – Marron and Wand data sets. Original (top) bkde (bottom). (a) SkewedBimodal ; (b)
Trimodal ; (c) Claw.
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Fig. 3 – Marron and Wand data sets. Original (top) bkde (bottom). (a) SmoothComb ; (b)
DiscreteComb.
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Fig. 4 – Bivariate claw density. (a) Original ; (b) bkde2D ; (c) kde2d ; (d) Kohonen’s map.
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Fig. 5 – Bivariate discrete comb density. (a) Original ; (b) bkde2D ; (c) kde2d ; (d) Kohonen’s
map.
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The two modes of the bimodal density are well placed, and also in the skewed bimodal
one. The middle mode of the trimodal density in not well reflected, since small changes in the
bandwidths will make it disappear. The same happens in the claw density, were the choice of
the bandwidths values is crucial. The bkde method is able to catch 4 out of 5 modes in the
smooth comb density. Although it is able to place the 6 modes of the discrete comb density,
the last three components of this mixture are not properly weighted.

1.2 The bkde2D and kde2d methods

A bivariate extension of the bkde method was developed by Wand (1994); Wand and
Jones (1995). The bkde2D method is the binned approximation to the 2D kernel density
estimate. The kernel is the standard bivariate Gaussian density. Recently, Venables and Ripley
(2002) has developed another bivariate method, the kde2d method. This is a two-dimensional
kernel density estimation with an axis-aligned bivariate Gaussian kernel evaluated on a square
grid. Both methods are studied here. Their behaviour on some bivariate data sets is analyzed
and compared to the results obtained with the Kohonen’s learning rule.

Figure 4 shows the bivariate claw density. The five modes of this density are well placed
by the bkde2D method, but the lack of smooth of the resulting estimated density provides
many local maxima that do not correspond to real modes. The kde2d method, besides the
many false positives in the low density regions of the estimated density, it is not able to catch
a single real mode. On the contrary, the SOM’s estimated density resembles the real density.
The five mode are accurately placed and no false local maxima appear in the low density
regions.

The bivariate discrete comb density is illustrated in Figure 5. bkde2D method highlights
the first three components of the mixture, but not properly weighted. Moreover, the last three
components are mixed into one in the estimated density. In kde2d estimated density, the two
first components are badly weighted, showing also local maxima that do not correspond to the
real modes. Further, the last four components are mixed into one, showing also false positives.
On the other hand, the SOM’s estimated density is able to show the first three components
with its real weight (note the difference in z-scale between Figures 5a and 5d) and with the
appropriate smoothness. Moreover, each of the first three modes are well placed. Furthermore,
the SOM algorithm is able to distinguish between two of the three last components, placing
properly their modes and catching their smoothness. However, the SOM algorithm misses
one component.

The bivariate smooth comb density is shown in Figure 6. In bkde2D estimated density,
the two first components are shown, but wrong weighted. The third and fourth components
are mixed into one, which shows two local maxima. The fifth component is missed with
bkde2D method. In kde2d estimated density appears a variety of local maxima that do not
corresponds to any of the real modes. Even the first and easier component is not properly
showed with kde2d method. On the contrary, the SOM structure is able to imitate the real
density. All components but the last one are properly placed and weighted in the SOM’s
estimated density.

Figure 7 presents the bivariate strongly skewed density. bkde2D estimated density is
well placed but badly weighted. kde2d estimated density, besides that it is wrongly weighted,
shows many local maxima in the low density regions. On the other hand, the SOM algorithm
is able to reproduce accurately the real density.
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Fig. 6 – Bivariate smooth comb density. (a) Original ; (b) bkde2D ; (c) kde2d ; (d) Kohonen’s
map.
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Fig. 7 – Bivariate strongly skewed density. (a) Original ; (b) bkde2D ; (c) kde2d ; (d) Koho-
nen’s map.
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2 Conclusions

The main drawbacks in the previously studied methods are the following. First, the
choice of the bandwidths. These methods develop density estimation as a smoothing opera-
tion ; hence, there is a trade-off between bias in the estimate and the estimate’s variability. In
other words, large bandwidths will produce smooth estimates that may hide local features of
the density, while small bandwidths may introduce spurious bumps into the estimate. These
bandwidths are usually chosen ad hoc by the user. Moreover, when dealing with bivariate
data the difficulties in choosing the appropriate bandwidth values increase.

Second, the difficulties in the post-processing of the outputs. bkde method returns the
coordinates of the binned kernel density estimate of the probability density of the data, while
bkde2D method returns the set of grid points in each coordinate direction, and the matrix of
density estimates over the mesh induced by the grid points. This way, modes’ location in the
bkde and bkde2D estimated densities can only be assessed graphically, since the coordinates
of the binned kernel and the set of grid points do not involve data directly.

And third, how to jump to higher dimensions ? A complete methodology on density
estimation and mode detection in higher dimension is not established yet

The SOM structure is an excellent alternative to classic methods since, it provides
better results even with bivariate data, it has no bandwidths to select before hand (SOM’s
crucial parameter is the neighbourhood range and the way it is decreased during training,
and it can be automatically monitorized [Vegas-Azcárate and Muruzábal (2005); Muruzábal
and Vegas-Azcárate (2005)]), the output post-processing possibilities are enormous (due to
the topological relationship between neurons and data inputs) and, finally, the jump to higher
dimensions is straightforward (the SOM structure has long been used for multivariate data
visualization, clustering and classification).
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