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Abstract - Self-organizing maps have become standard tools for frequently encountered data-
analytic tasks such as visualization, clustering and classification. Unfortunately, however, a
complete SOM training methodology is not firmly established yet. When using the standard
SOM training method, it is well-known that an appropriate choice of the final adaptation ra-
dius is crucial for obtaining topology-preserving maps. To avoid phase transitions, the neigh-
borhood range at the end of training must create a tradeoff between the approximation accuracy
of weight vector distribution and the stability ordering. There exist several metrics for ‘momni-
toring’ the training process, from which optimization schemes have been put forward for the
neighborhood cooling scheme. However, the usual topology-preservation metrics are not very
sensitive to small topological defects, and, furthermore, they require a lot of computational
effort as a monitoring tool. Here, we propose the SOM+ training algorithm, the first methodo-
logy that estimates the decrementing schedules for the neighborhood range function during the
training automatically, monitoring to lower the risk of phase transitions. The corresponding
topological map so obtained with SOM+ should be very useful in organizing large protein or
DNA databases and for rapidly classifying new sequences, since SOM+ leads automatically
to the map that explains in the best way the real population.
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SOM+ : a monitored SOM and its applica- defects provides a successful tool to visualize clusteg§-{2
tion to Bioinformatics [29].

It is essential to have maps with good topological order,
since contiguous clusters in the input distribution coutldeo-
wise be considered as separate clusters in the visualizatio
the topological map. During training, the map changes from
a large neighborhood range, in which the mapping is general,
to a small one, in which the mapping becomes specific. A
crucial factor for a successfully trained topographic map i
the ‘cooling’ scheme, which determines the rate at which the
neighborhood range decreases over time [14,16,30]—[33].
ABSTRACT To avoid phase transition, the neighborhood range at the end
Self-organizing maps have become standard tools for figfthe training process must be large enough, thus devejopin
quently encountered data-analytic tasks such as vistializa a ‘smooth’ weight distribution [34], that is, the neighbod
clustering and classification. Unfortunately, howeverome range must create a tradeoff between the approximation accu
plete SOM training methodology is not firmly established yefacy of weight vector distribution and the stability orareyi
When using the standard SOM training method, it is well- Although it is commonly suggested that the neighborhood
known that an appropriate choice of the final adaptatiorusadirange should decrease sufficiently slow to a final value, whic
is crucial for obtaining topology-preserving maps. To avoiis sufficiently high, the open questions are how to determine
phase transitions, the neighborhood range at the end pirtgai the appropriate rate at which the neighborhood functiogean
must create a tradeoff between the approximation accuriacydecreases, and also the final value of the neighborhood range
weight vector distribution and the stability ordering. T@ex- |ntuition and common sense may provide a few rules of
ist several metrics for ‘monitoring’ the training procef®m  thumb, but it would be desirable to have principled and
which optimization schemes have been put forward for thrative methods for making these choices. Thus, measuees
neighborhood cooling scheme. However, the usual topolog¥¢quired to estimate the degree of topology preservatidgheof
preservation metrics are not very sensitive to small topiold map. These would then allow, in principle, for the optimiaat
defects, and, furthermore, they require a lot of computatio of the training process.
effort as a monitoring tool. Here, we propose the SOM+ Topology preservation measures, such as the one introduced
training algorithm, the first methodology that estimates tthy [35] and further studied by [36] among others, do not
decrementing schedules for the neighborhood range functigepend on local stretching of the lattice but on large-scale
during the training automatically, monitoring to lower thek violations of the topographic ordering, and, due to their
of phase transitions. The corresponding topological map éémputational cost, they can not be used for monitoring
obtained with SOM+ should be very useful in organizing largge degree of topology-preservation achieved during legrn
protein or DNA databases and for rapidly classifying newurthermore, only for cases in which input and output space
sequences, since SOM+ leads automatically to the map thave the same dimension, the global order of the lattice can
explains in the best way the real population. be uniquely characterized.

In the case of the standard SOM,
MOTIVATION

The visualization of large protein and DNA databases in a Aw; =1 Aoa(t)) - (vn = w;),

compact way may give insights into the data, leading to tivehere {v,,w;} € R? denote the input data and weight
development of new ideas and theories. Since the numbervettors, respectively, and the neighborhood function, typ-
known DNA and proteins sequences is growing exponentiallyally chosen with a Gaussian shape and a monotonically
as a result of Genome projects [1]-[3], the management ddcreasing range, (), several heuristics have been suggested
the resulting databases is of central interest in moderinBioto guide the choice of the neighborhood range. Interesting
formatics analysis. Many powerful algorithms for compagrincriteria for the evaluation of the degree of ordering haverbe
two [4,5] or more proteins [6]-[9] have been developedleveloped by [37]-[41]. However, is noted in [40,33] that
Although these methods are sensible, they are extremedy tithe computation of these measures may be computationally
consuming. Faster but less precise algorithms for seagchitemanding in general. Still, [41] point out that the main
homologies have been proposed [10]-[13]. In this way, ragularization issue is far from settled: “the map may siart
variety of neural networks have been used to organize proteiverfit as soon as the neighborhood is reduced to any prhctica
sequences into clusters or families according to theirsecgl level, indicating that some other forms of regularizatioaym
homologies. Since the number and composition of the familialso be needed”.

are not known, the use of unsupervised learning algorithms,An alternative heuristic is proposed and tested in [42]-
such as the SOM [14] type algorithms, seems indeed vegn4] for the monitoring of topographic maps. The proposed
appropriate. The ordered grid it produces can be used amanitoring criterion— called UDL criterion, since is basewl
visualization surface and a number of techniques have bdbe Uniformity of the Datal.oad vector— is a new systematical
proposed to visualize cluster structures of data for varioway to monitor the degree of topology-preservation during
purposes [14]-[22]. However, only a SOM free of topologicdéarning by adjusting the decreasing rate of the neightmmho

S. Vegas-Azérate and J. Muruzabal in memoriam

Statistics and Decision Sciences Group
University Rey Juan Carlos, 28933 Mostoles, Spain
susana.vegas@urjc.es



Technical Report 2006, Rey Juan Carlos University 2

range. UDL scheme is able to obtain topology-preserv&tDL criterion looked for the moment at which the speed of
maps from all topographic map formation algorithms [33Hecrease of the dataload standard deviation function idynea
Moreover, it was shown that this method is optimal witlzero. A new heuristic is developed in [42] for determining th

respect to density estimation [45]. point at which the map is most likely to correspond to that
found using the log-likelihood criterion.
SOM+ TRAINING ALGORITHM Dataloads— the number of data vectors projecting onto each

During the development of a topographic map, two undesiréf@ined unit— are the natural estimate of the probabilitpof
phase transitions can occur, one due to a topological migmativation given new data generated by the sampling distiobut
between lattice and data manifold, the other due to tf#6]. In the truly equiprobabilistic case— whereby all nens
transition from principal curve mapping to overfitting [30] have an equal probability to be maximally excited [16]—
[32,14,16]. These phase transitions can happen, resphgtivthe dataload vector should be distributed as a multinomial
when the neighborhood function range decreases too rapidligh equal component probabilities, since the pointer dgns
due to which the map has insufficient time to unfold itself the trained equiprobabilistic map serves as an estimate
to the principal manifold, and when the final value of thef the density underlying the data. From an information-
neighborhood range is too small due to which the neighbdheoretic point of view, equiprobabilistic maps transfae t
hood influences become too small and the mapping beconmg@ximum amount of information available about input dis-
too specific. Thus, an ideal cooling scheme shouldslev tribution, leading to a ‘faithful’ representation [47] ohe
enough such that the map can unfold properly, and the finghmpling distribution. This way, in the truly equiprobastic
value of the neighborhood range shouldléxge enoughsuch case each neuron would cover about the same proportion of
that overtraining is avoided. In this context, the ‘mornitg?  the data, so the dataload vector would follow asymptotcall
process can be defined as iteratively refining the cooliggjoint multivariate Gaussian distribution with corretats
scheme, such that it is slow enough and the final value @gtting weaker with increasing sample size [44].
the neighborhood function is large enough. It appears that the stochastic Gaussian behavior in the
The predictive log-likelihood is based on test data extdct equiprobabilistic case can be approximately detected when
from the same source but not used for training— a kind df is first reached [44]. Hence, the associated UDL stopping
cross-likelihood. When training the map, the second type vfle could be stated as follows: quit as soon as the trained
phase transition occurs when the neurons begin to learn morap shows the first signs of having reached the reference
about the concrete train set than about the underlying fengbaussian DL distribution— a moment referred to as the UDL
function, adding noise to the final estimated distributibhe stage. In other words, quit as soon as the dataload standard
aim of the stopping criterion is to find the map with maximundeviation function reaches its stability. Furthermore naomi
predictive likelihood in which overtraining has not appegr gains in quantization error brought about by training bejon
yet and the resulting neurons’ distribution provides thepmahe UDL stage seem to enforce the loss of useful organization
with the highest likelihood. This map will be the one thaimplying fuzzier displays for analysis. Indeed, the UDLgsta
explains in the best way the real population, and not justso signals approximately the beginning of the fine-tuning
the sample. Moreover, at the cycle which corresponds phase in quantization error [44].
the maximum predictive likelihood, the map is completely The previous result can now be incorporated into a monitor-
disentangled— at the moment of maximum predictive likeling scheme similar to that presented in [16]. Each monigprin
hood, topographic order is maintained [42]. From this moimerun consists of the training of the map following a given eool
on, overtraining problems arise, since the learning pcesg scheme. After each monitoring run, this cooling schesne i
stresses local regions instead of global relationshipd,this adjusted in such a way that the probability of a phase triansit
is reflected on both the loss of organization and a lowés expected to be smaller— longer training and terminating
predictive likelihood value. training when the optimal neighborhood function range is
Consequently, the neighborhood value for which the maxeached. Hence, in a finite and affordable number of training
mum predictive likelihood function is reached is the onehwitcycles, the same optimal map as that achieved in an infinitely
which the training process should be ended in order to avaitbw training, is obtained. The following neighborhood kg
the phase transition due to overtraining. This value is tilseheme is used,
optimal one, provided that an infinitely slow training, that
begins with an unfolded map, is developed. oa(t) = oa(0) - exp (—2 ~op(0) - "Yudl) , (D)
Unfortunately, the predictive log-likelihood function
presents some difficulties when used as a monitoring taghereo, (0) is the initial neighborhood range,.; the param-
during the learning process [42]. First, a representatieter that controls the slope of the cooling schemeBpd the
test set is not always easy to find in real-world examplesumber of cycles needed to reach the optimal neighborhood
Second, the estimated density function at each test vedhanction range, in other words, whetgq and 7,4 provide
has to be computed at every cycle of training, leading tothe map that has the optimal neighborhood range value.
computationally expensive monitoring process. After each monitoring iteration, the cooling scheme is
In Ref. [42] the ‘uniform dataload’ vector (UDL) is pro- adjusted such that it better approximates, in loose terogyp
posed as a computationally cheap alternative to the ldotpe relevant part of the infinitely long training process, by
likelihood (early reports have been made in [44]). Origial increasing the number of epochs to reach the optimal neigh-
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Fig. 1. Performance by SOM+ on the ‘7 clusters in 5D spacea d=t,
(a) Density matrix; (b) Labels matrix combined with the Ibnzaxima of the
Hill-Climbing procedure
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borhood range determined in the current monitoring iterati
Indeed, it has been shown that using a slow enough cool(iﬁ%j
scheme, the neighborhood range value at which the dataloa
standard deviation function reaches its stability exigt§].[

The convergence of the monitoring process can be evaluakted
by observing the convergence of the minimal dataload staind?lz]
deviation value [42].

Specifically, while the neighborhood range functiep(t) 12!
in the standard SOM is usually chosen ad hoc by the usgy
in SOM+ learning rulec, (t) follows Eq. (1), leading au-
tomatically to the map that explains in the best way th&S]
real population. This way, SOM+ methodology estimates the
decrementing schedules for the neighborhood range functio
during the training automatically, monitoring to lower thigk [16]
of phase transitions, and to approximate the relevant gat o
infinitely slow cooling scheme. [17]

An artificial data set concerning balanced Gaussian migtur

is presented. Data are generated in a two-step procest. Firs
the locations of the Gaussian centroids is sampled, theim egi®]
Gaussian is sampled in term. All Gaussians are spherical and
have the same siz&,|_, 1N (ct,0.1-15), with ¢; ~ N (05, 15) 20l
independent and identically distributed. Hence, this deth
consists of 2,000 input patterns living in a five-dimension#&1]
space and we look for 7 decision classes.

SOM+ algorithm obtains an accurate estimation to tHe2]
seven clusters’ locations (see Fig. 1). In order to suppTég
the assessment, we consider a minimum Euclidean labell g]
scheme, in which each neuron is marked with the label that)
most occurs within its activation region. Note that an extra
label is needed for the case a neuron has no data projected A
it. Moreover, when a map has been trained properly, the meuro
positions are related to the density function underlying tH26]
training data. Therefore, a density estimate can be caristiu
from the map by positioning a Gaussian or other kerngh;
at each neuron position, the width of which can be either
fixed or variable. A gray-valued density matrix depicting th
density values at the lattice nodes, is used to visualize g
estimated density. In this matrix darker means larger. Then
steepest ascent Hill-Climbing [16] is developed on the oetw
structure. This way, all neighbors are compared and the bgsg%
is selected, until no further improvement is possible.
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