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complete SOM training methodology is not firmly established yet. When using the standard

SOM training method, it is well-known that an appropriate choice of the final adaptation ra-

dius is crucial for obtaining topology-preserving maps. To avoid phase transitions, the neigh-

borhood range at the end of training must create a tradeoff between the approximation accuracy

of weight vector distribution and the stability ordering. There exist several metrics for ‘moni-

toring’ the training process, from which optimization schemes have been put forward for the

neighborhood cooling scheme. However, the usual topology-preservation metrics are not very

sensitive to small topological defects, and, furthermore, they require a lot of computational

effort as a monitoring tool. Here, we propose the SOM+ training algorithm, the first methodo-

logy that estimates the decrementing schedules for the neighborhood range function during the

training automatically, monitoring to lower the risk of phase transitions. The corresponding

topological map so obtained with SOM+ should be very useful in organizing large protein or

DNA databases and for rapidly classifying new sequences, since SOM+ leads automatically

to the map that explains in the best way the real population.
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ABSTRACT
Self-organizing maps have become standard tools for fre-
quently encountered data-analytic tasks such as visualization,
clustering and classification. Unfortunately, however, a com-
plete SOM training methodology is not firmly established yet.
When using the standard SOM training method, it is well-
known that an appropriate choice of the final adaptation radius
is crucial for obtaining topology-preserving maps. To avoid
phase transitions, the neighborhood range at the end of training
must create a tradeoff between the approximation accuracy of
weight vector distribution and the stability ordering. There ex-
ist several metrics for ‘monitoring’ the training process,from
which optimization schemes have been put forward for the
neighborhood cooling scheme. However, the usual topology-
preservation metrics are not very sensitive to small topological
defects, and, furthermore, they require a lot of computational
effort as a monitoring tool. Here, we propose the SOM+
training algorithm, the first methodology that estimates the
decrementing schedules for the neighborhood range function
during the training automatically, monitoring to lower therisk
of phase transitions. The corresponding topological map so
obtained with SOM+ should be very useful in organizing large
protein or DNA databases and for rapidly classifying new
sequences, since SOM+ leads automatically to the map that
explains in the best way the real population.

MOTIVATION
The visualization of large protein and DNA databases in a
compact way may give insights into the data, leading to the
development of new ideas and theories. Since the number of
known DNA and proteins sequences is growing exponentially
as a result of Genome projects [1]–[3], the management of
the resulting databases is of central interest in modern Bioin-
formatics analysis. Many powerful algorithms for comparing
two [4,5] or more proteins [6]–[9] have been developed.
Although these methods are sensible, they are extremely time
consuming. Faster but less precise algorithms for searching
homologies have been proposed [10]–[13]. In this way, a
variety of neural networks have been used to organize protein
sequences into clusters or families according to their sequence
homologies. Since the number and composition of the families
are not known, the use of unsupervised learning algorithms,
such as the SOM [14] type algorithms, seems indeed very
appropriate. The ordered grid it produces can be used as a
visualization surface and a number of techniques have been
proposed to visualize cluster structures of data for various
purposes [14]–[22]. However, only a SOM free of topological

defects provides a successful tool to visualize clusters [23]–
[29].

It is essential to have maps with good topological order,
since contiguous clusters in the input distribution could other-
wise be considered as separate clusters in the visualization of
the topological map. During training, the map changes from
a large neighborhood range, in which the mapping is general,
to a small one, in which the mapping becomes specific. A
crucial factor for a successfully trained topographic map is
the ‘cooling’ scheme, which determines the rate at which the
neighborhood range decreases over time [14,16,30]–[33].

To avoid phase transition, the neighborhood range at the end
of the training process must be large enough, thus developing
a ‘smooth’ weight distribution [34], that is, the neighborhood
range must create a tradeoff between the approximation accu-
racy of weight vector distribution and the stability ordering.

Although it is commonly suggested that the neighborhood
range should decrease sufficiently slow to a final value, which
is sufficiently high, the open questions are how to determine
the appropriate rate at which the neighborhood function range
decreases, and also the final value of the neighborhood range.
Intuition and common sense may provide a few rules of
thumb, but it would be desirable to have principled and
iterative methods for making these choices. Thus, measuresare
required to estimate the degree of topology preservation ofthe
map. These would then allow, in principle, for the optimization
of the training process.

Topology preservation measures, such as the one introduced
by [35] and further studied by [36] among others, do not
depend on local stretching of the lattice but on large-scale
violations of the topographic ordering, and, due to their
computational cost, they can not be used for monitoring
the degree of topology-preservation achieved during learning.
Furthermore, only for cases in which input and output space
have the same dimension, the global order of the lattice can
be uniquely characterized.

In the case of the standard SOM,

∆wi = η · Λ(σΛ(t)) · (vn − wi),

where {vn, wi} ∈ R
d denote the input data and weight

vectors, respectively, andΛ the neighborhood function, typ-
ically chosen with a Gaussian shape and a monotonically
decreasing rangeσΛ(t), several heuristics have been suggested
to guide the choice of the neighborhood range. Interesting
criteria for the evaluation of the degree of ordering have been
developed by [37]–[41]. However, is noted in [40,33] that
the computation of these measures may be computationally
demanding in general. Still, [41] point out that the main
regularization issue is far from settled: “the map may startto
overfit as soon as the neighborhood is reduced to any practical
level, indicating that some other forms of regularization may
also be needed”.

An alternative heuristic is proposed and tested in [42]–
[44] for the monitoring of topographic maps. The proposed
monitoring criterion— called UDL criterion, since is basedon
the Uniformity of the DataLoad vector— is a new systematical
way to monitor the degree of topology-preservation during
learning by adjusting the decreasing rate of the neighborhood
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range. UDL scheme is able to obtain topology-preserved
maps from all topographic map formation algorithms [33].
Moreover, it was shown that this method is optimal with
respect to density estimation [45].

SOM+ TRAINING ALGORITHM
During the development of a topographic map, two undesired
phase transitions can occur, one due to a topological mismatch
between lattice and data manifold, the other due to the
transition from principal curve mapping to overfitting [30]–
[32,14,16]. These phase transitions can happen, respectively,
when the neighborhood function range decreases too rapidly
due to which the map has insufficient time to unfold itself
to the principal manifold, and when the final value of the
neighborhood range is too small due to which the neighbor-
hood influences become too small and the mapping becomes
too specific. Thus, an ideal cooling scheme should beslow
enough, such that the map can unfold properly, and the final
value of the neighborhood range should belarge enough, such
that overtraining is avoided. In this context, the ‘monitoring’
process can be defined as iteratively refining the cooling
scheme, such that it is slow enough and the final value of
the neighborhood function is large enough.

The predictive log-likelihood is based on test data extracted
from the same source but not used for training— a kind of
cross-likelihood. When training the map, the second type of
phase transition occurs when the neurons begin to learn more
about the concrete train set than about the underlying density
function, adding noise to the final estimated distribution.The
aim of the stopping criterion is to find the map with maximum
predictive likelihood in which overtraining has not appeared
yet and the resulting neurons’ distribution provides the map
with the highest likelihood. This map will be the one that
explains in the best way the real population, and not just
the sample. Moreover, at the cycle which corresponds to
the maximum predictive likelihood, the map is completely
disentangled— at the moment of maximum predictive likeli-
hood, topographic order is maintained [42]. From this moment
on, overtraining problems arise, since the learning process
stresses local regions instead of global relationships, and this
is reflected on both the loss of organization and a lower
predictive likelihood value.

Consequently, the neighborhood value for which the maxi-
mum predictive likelihood function is reached is the one with
which the training process should be ended in order to avoid
the phase transition due to overtraining. This value is the
optimal one, provided that an infinitely slow training, that
begins with an unfolded map, is developed.

Unfortunately, the predictive log-likelihood function
presents some difficulties when used as a monitoring tool
during the learning process [42]. First, a representative
test set is not always easy to find in real-world examples.
Second, the estimated density function at each test vector
has to be computed at every cycle of training, leading to a
computationally expensive monitoring process.

In Ref. [42] the ‘uniform dataload’ vector (UDL) is pro-
posed as a computationally cheap alternative to the log-
likelihood (early reports have been made in [44]). Originally,

UDL criterion looked for the moment at which the speed of
decrease of the dataload standard deviation function is nearly
zero. A new heuristic is developed in [42] for determining the
point at which the map is most likely to correspond to that
found using the log-likelihood criterion.

Dataloads— the number of data vectors projecting onto each
trained unit— are the natural estimate of the probability ofac-
tivation given new data generated by the sampling distribution
[46]. In the truly equiprobabilistic case— whereby all neurons
have an equal probability to be maximally excited [16]—
the dataload vector should be distributed as a multinomial
with equal component probabilities, since the pointer density
in the trained equiprobabilistic map serves as an estimate
of the density underlying the data. From an information-
theoretic point of view, equiprobabilistic maps transfer the
maximum amount of information available about input dis-
tribution, leading to a ‘faithful’ representation [47] of the
sampling distribution. This way, in the truly equiprobabilistic
case each neuron would cover about the same proportion of
the data, so the dataload vector would follow asymptotically
a joint multivariate Gaussian distribution with correlations
getting weaker with increasing sample size [44].

It appears that the stochastic Gaussian behavior in the
equiprobabilistic case can be approximately detected when
it is first reached [44]. Hence, the associated UDL stopping
rule could be stated as follows: quit as soon as the trained
map shows the first signs of having reached the reference
Gaussian DL distribution— a moment referred to as the UDL
stage. In other words, quit as soon as the dataload standard
deviation function reaches its stability. Furthermore, minor
gains in quantization error brought about by training beyond
the UDL stage seem to enforce the loss of useful organization,
implying fuzzier displays for analysis. Indeed, the UDL stage
also signals approximately the beginning of the fine-tuning
phase in quantization error [44].

The previous result can now be incorporated into a monitor-
ing scheme similar to that presented in [16]. Each monitoring
run consists of the training of the map following a given cool-
ing scheme. After each monitoring run, this cooling scheme is
adjusted in such a way that the probability of a phase transition
is expected to be smaller— longer training and terminating
training when the optimal neighborhood function range is
reached. Hence, in a finite and affordable number of training
cycles, the same optimal map as that achieved in an infinitely
slow training, is obtained. The following neighborhood cooling
scheme is used,

σΛ(t) = σΛ(0) · exp

(

−2 · σΛ(0) ·
t

Tudl

· γudl

)

, (1)

whereσΛ(0) is the initial neighborhood range,γudl the param-
eter that controls the slope of the cooling scheme andTudl the
number of cycles needed to reach the optimal neighborhood
function range, in other words, whereγudl and Tudl provide
the map that has the optimal neighborhood range value.

After each monitoring iteration, the cooling scheme is
adjusted such that it better approximates, in loose terminology,
the relevant part of the infinitely long training process, by
increasing the number of epochs to reach the optimal neigh-
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Fig. 1. Performance by SOM+ on the ‘7 clusters in 5D space’ data set,
(a) Density matrix; (b) Labels matrix combined with the local maxima of the
Hill-Climbing procedure

borhood range determined in the current monitoring iteration.
Indeed, it has been shown that using a slow enough cooling
scheme, the neighborhood range value at which the dataload
standard deviation function reaches its stability exists [44].
The convergence of the monitoring process can be evaluated
by observing the convergence of the minimal dataload standard
deviation value [42].

Specifically, while the neighborhood range functionσΛ(t)

in the standard SOM is usually chosen ad hoc by the user,
in SOM+ learning ruleσΛ(t) follows Eq. (1), leading au-
tomatically to the map that explains in the best way the
real population. This way, SOM+ methodology estimates the
decrementing schedules for the neighborhood range function
during the training automatically, monitoring to lower therisk
of phase transitions, and to approximate the relevant part of a
infinitely slow cooling scheme.

An artificial data set concerning balanced Gaussian mixtures
is presented. Data are generated in a two-step process. First,
the locations of the Gaussian centroids is sampled, then each
Gaussian is sampled in term. All Gaussians are spherical and
have the same size,

∑7

i=1

1

7
N(ct

i
, 0.1·I5), with ci ∼ N(05, I 5)

independent and identically distributed. Hence, this dataset
consists of 2,000 input patterns living in a five-dimensional
space and we look for 7 decision classes.

SOM+ algorithm obtains an accurate estimation to the
seven clusters’ locations (see Fig. 1). In order to support
the assessment, we consider a minimum Euclidean labelling
scheme, in which each neuron is marked with the label that
most occurs within its activation region. Note that an extra
label is needed for the case a neuron has no data projected into
it. Moreover, when a map has been trained properly, the neuron
positions are related to the density function underlying the
training data. Therefore, a density estimate can be constructed
from the map by positioning a Gaussian or other kernel
at each neuron position, the width of which can be either
fixed or variable. A gray-valued density matrix depicting the
density values at the lattice nodes, is used to visualize the
estimated density. In this matrix darker means larger. Then,
steepest ascent Hill-Climbing [16] is developed on the network
structure. This way, all neighbors are compared and the best
is selected, until no further improvement is possible.
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