
Nonvectorial kmer and topology preservation

Susana Vegas-Azcárate

Statistics and Decision Sciences Group
University Rey Juan Carlos

28933 Móstoles, Spain
susana.vegas@urjc.es

Temujin Gautama

Laboratorium voor Neuro- en Psychofysiologie
Katholieke Universiteit Leuven

Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
temujin.gautama@philips.com

Marc M. Van Hulle

Laboratorium voor Neuro- en Psychofysiologie
Katholieke Universiteit Leuven

Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
marc@neuro.kuleuven.ac.be

Abstract - In nonvectorial topographic maps the data sequences are not previously converted
into histogram vectors, thus avoiding the shortcomings associated to these representations.
Like in standard vectorial topographic maps, in nonvectorial learning algorithms the optimal
speed of shrinking of the neighbourhood range should be experimentally determined. This paper
shows how UDL monitoring scheme can be extended to the case of the kernel-based Maximum
Entropy Learning Rule (kMER).

Key words - Topographic maps, monitoring studies, mixture models.

Acknowledgement - SVA gratefully acknowledge the financial support for this research gi-
ven by MCYT, CICYT, Autonomous Community of Madrid, URJC, Complutense University
of Madrid, DMR Consulting Foundation, European Science Foundation and TED Program.



Technical Report 2005, Rey Juan Carlos University

1 Introduction

Similarity and distance measures have been routinely used to compare two biological
sequences, such as proteins or nucleic acids. The basis of such comparisons is the information
from the biochemist as to the linear sequence of elements comprising such molecules [Smith
and Waterman (1981)]. Similarity measures such as Smith-Waterman, BLAST or FASTA, are
appropriate for clustering large protein sequence databases with topographic maps [Somervuo
and Kohonen (2000)]. In nonvectorial topographic maps, unlike the previous vectorial ones,
the data sequences are not converted into histogram vectors in order to perform the clustering.

2 The nonvectorial SOM

Kohonen and Somervuo (2002) have shown how to implement the SOM algorithm
principle to nonvectorial data in the case of fixed-size standard maps. Interestingly, they
have illustrated their method by using protein sequences as basic items and FASTA scores
[Pearson and Lipman (1988); Pearson (1999)] as similarity values. Specifically, if x and y are
any entities, a sufficient condition for them to be mapped into a SOM diagram is that some
kind of symmetric distance function, d(x, y), is definable for all pairs (x, y).

Furthermore, Kohonen and Somervuo (2002) have shown how this extension of the
SOM, called here SOM-nv (see Algorithm 1), can be used for the clustering, organization
and visualization of large databases of nonvectorial items such as protein sequences. The new
method, originally suggested in Kohonen (1996), allows the construction of the SOM when
only a similarity measure is defined for pairs of items. Hence, a vectorial representation is
not really needed, avoiding the important drawbacks and limitations typically derived from
the vectorial representation of biological data. To define an ordered projection, it will be
sufficient to compare the pairwise distances or dissimilarities among items [Kohonen and
Somervuo (2002)].

The nonvectorial SOM is based on the batch-learning version of the SOM, and it re-
quires the computation of the generalized median of symbol strings [Kohonen (1985, 1995)].
Here, the way a winning neuron is selected is

i∗n = arg min
i
{d[xn, zi]} (1)

where d(·, ·) is the underlying pseudo-distance measure. Notice that vn and wi were used to
define input vectors and weight vectors, respectively, living in R

d. Now, xn and zi term the
items and the pointers, respectively, living in the symbolic (e.g. protein) space.

The generalized median is defined as follows [Kohonen (1985, 1995)]. Let Υ = {xn} be
a set of items, and let d[xn, xn′ ] be some distance, pseudo-distance or dissimilarity measure
between xn and xn′ ∈ Υ. The generalized median m over Υ is defined as the item that
minimizes the sum of distances to all other items in Υ,

m = arg min
xn∈Υ

∑

xn′∈Υ:n 6=n′

d[xn, xn′ ]. (2)

This way, if the input samples had been real scalars and the distance measure were the abso-
lute value of their difference, the generalized median would coincide with the usual arithmetic
median.



Technical Report 2005, Rey Juan Carlos University

Algorithm 1

The nonvectorial version of SOM algorithm (SOM-nv).

Initialize the map (see below).
repeat for each iteration, t,

for each input sequence, xn, do

Find the best matching unit for xn, see Equation 1.
end for.
Recollect in Zi (see Equation 3) the input items associated to pointer zi.
Store in Ωi (see Equation 4) the items associated to each pointer in its
neighbourhood Ni.
Update each zi as the generalized median (see Equation 2) of Ωi.

until Zt
i = Zt−1

i , ∀i.

Algorithm 2

Initialization method for SOM-nv in the case of proteins.

Convert input sequences into 400-dimensional dipeptide histogram vectors.
Provide each map neuron with a 400-dimensional vector.
repeat,

Train a SOM-batch cycle,
until neurons are 2D ordered.
Label neurons by those proteins that represent the generalized medians of
the sequences associated to them.

The main features of SOM-nv are now highlighted. To initialize the algorithm, auxiliary
vectorial pointers are introduced. Indeed, the convergence of this algorithm is significantly
faster and safer if the initial pointers are already two-dimensionally ordered [Kohonen and
Somervuo (2002)]. In the case of proteins, these vectorial pointers can be selected as the
usual 400-dimensional dipeptide histogram vectors [Ferrán and Ferrara (1991)]. Thus, each
map node is provided with a 400-dimensional vector, each component of which is initialized
with a random value between zero and unity— the whole vector is finally normalized to unit
length. The standard SOM-batch algorithm is then trained with the dipeptide vectors, and
the final pointers obtained are recoded to get nonvectorial SOM initialized. Specifically, for
each vectorial pointer the usual subset of input items (including all items having that pointer
as winner in the vectorial sense) is associated to it, and the corresponding nonvectorial pointer
is chosen as the generalized median of that subset. With this labelling, a 2D set of relatively
ordered input sequences is achieved, so that the nonvectorial SOM can proceed. From this
point on, all vectorial representations are dropped. This initialization method for SOM-nv is
summarized in Algorithm 2.

For each pointer zi, two sets are then defined. First, one would recollect in Zi the input
items associated to it, i.e., the input items that have zi as its best-matching unit. Winning
neurons could be determined as usual according to the FASTA method, but note that an



Technical Report 2005, Rey Juan Carlos University

input item could then have exactly the same distance to two or more pointers. Therefore,
in order to make the winner unique in this case, one would ask the winner to minimize the
sum of distances from the input to all pointers in a small neighbourhood around the winner
candidate i, say Ni. This neighbourhood includes all pointers within a certain radius from
node i on the grid. Like in the traditional SOM, this radius can shrink monotonically with
time. Mathematically, xn ∈ Zi if and only if

zi = arg min
l

∑

k∈Nl

d[xn, zk]. (3)

Recollect now in Ωi the input items associated to each pointer in Ni in the previous
sense, that is,

Ωi =
⋃

k∈Ni

Zk, (4)

and update each zi as the generalized median of Ωi. Thus, this is called the adaptation process.
For each new pointer zi, recollect in Zi the new input items associated to it as before. If the
old Zi, say Zt−1

i , coincide with the new Zt
i for all i, then the process has converged. If not,

continue with the adaptation process. When convergence is reached, pointers approximate the
input items in an orderly fashion, since each pointer coincides with the generalized median
of the input items mapped onto its neighbourhood.

In this context, El Golli et al. (2004a,b) have proposed an extension of the standard
Kohonen learning rule that can also handle symbolic data. Specifically, they have presented
an adaptation of the SOM-batch to dissimilarity data. As in Kohonen and Somervuo (2002)
work, the main difference with traditional SOM is that El Golli et al. (2004a) are not working
on R

d but on an arbitrary set on which a dissimilarity is defined. The experiments in El Golli
et al. (2004a,b) show the usefulness of their method applied to symbolic data.

3 The nonvectorial kMER

The nonvectorial kMER algorithm is based on the batch-learning version of kMER
[Gautama and Van Hulle (2005)]. kMER-batch update rule is illustrated in Algorithm 3. As
in the SOM-batch algorithm, in kMER-batch a learning rate function is no longer required,
and training only depends on the neighbourhood range, σΛ.

As Gautama and Van Hulle (2005) have shown, the nonvectorial kMER, called here
kMER-nv, can be derived from the kMER-batch learning rule by means of the generalized
median of Equation 1, that is, the input item for which the distance to the other inputs items
is the smallest (see Algorithm 4). Following the notation previously introduced, xn and zi are
used for nonvectorial items and pointers, respectively, while vn and wi are used for vectorial
data and weights, respectively, living in R

d.

As in the nonvectorial SOM, all pointers coincide with actual input items, and the map
is trained by means of only the matrix of pairwise dissimilarity measure. Notice that, while
in SOM-batch a neuron is updated as the mean of its Voronoi region, in nonvectorial SOM
and nonvectorial SOTA each neuron is updated by means of the generalized median of its
neighbourhood.



Technical Report 2005, Rey Juan Carlos University

Algorithm 3

The kMER batch version (kMER-batch).

Initialize the weight vectors, w0
i , and the radii, σ0

i , of the receptive fields.
repeat for each iteration, t,

for each data point, vn, do

Find its best matching unit,
end for.
Update the weight vectors, wt

i, with the median of all data points, vn,
weighted by

M
∑

j=1

Λt
ij · Ξj(vn). (5)

Update the radii, σt
i , with the distance between wt

i and the ρN
M

-th nearest
data point— being ρ the scale factor.
Decrease the width of the neighbourhood function.

until t reaches T .

Algorithm 4

The nonvectorial version of kMER algorithm (kMER-nv).

Initialize the pointers, z0
i , and the radii, σ0

i , of the receptive fields.
repeat for each iteration, t,

for each data point, xn, do

Find its best matching unit, see Equation 1,
end for.
Update the weight vectors, zt

i , with the generalized median (see Equation 2)
of all items xn, weighted by Equation 5.
Update the radii, σt

i , with the distance between zt
i and the ρN

M
-th nearest

input item.
Decrease the width of the neighbourhood function.

until t reaches T .

4 The UDL stopping policy

UDL criterion looks for the moment at which the speed of decrease of the dataload
standard deviation function is nearly zero. Pointer density in the trained equiprobabilistic
map serves as an estimate of the density underlying the data. Thus, each neuron would cover
about the same proportion of the data, leading to a uniform dataload vector. It appears
that the stochastic Gaussian behaviour in the equiprobabilistic case can be approximately
detected when it is first reached [Vegas-Azcárate and Muruzábal (2005); Muruzábal and



Technical Report 2005, Rey Juan Carlos University

Algorithm 5

UDL monitoring scheme.

Train the map with a constant neighbourhood range.
Store the obtained disentangled lattice, Q0.
Starting from Q0, perform one complete training with γ1 = 1.
Determine the number of epochs, t1udl, and the corresponding range, σ1

Λ,udl,

for which the speed of decrease of SD1 function is nearly zero.
repeat, for each monitoring run, j > 1,

Perform a new training, starting from Q0, with T j = 2 · tj−1
udl and

γj = −
ln

0.9·σj−1
Λ,udl

σΛ(0)

2 · σΛ(0)
(6)

to cool at a slower rate, but only run the simulation as long as necessary.
Determine the epoch, t

j
udl, and the range, σ

j
Λ,udl, for which the speed of

decrease of SDj function is nearly zero.
until σ

j
Λ,udl ≃ σ

j−1
Λ,udl.

Do a complete run with Tudl = t
j
udl and γudl = γj .

Vegas-Azcárate (2005)]. Hence, the associated UDL stopping rule could be stated as follows :
quit as soon as the trained map shows the first signs of having reached the reference Gaussian
DL distribution— a moment referred to as the UDL stage. In other words, quite as soon as
SD function reaches its stability.

Furthermore, minor gains in quantization error brought by training beyond the UDL
stage seem to enforce the loss of useful organization, implying fuzzier displays for analysis.
Indeed, the UDL stage also signals approximately the beginning of the fine-tuning phase in
quantization error [Vegas-Azcárate and Muruzábal (2005); Muruzábal and Vegas-Azcárate
(2005)]. Note that during the learning process, the best matching unit of each datum is
calculated, so the overhead in obtaining the dataloads and its standard deviation is minimal.

The problem now is to obtain tudl or σudl
Λ , since a complete long enough training has to

be done. Indeed, this is not possible with real-world data where ‘long enough’ is not known. To
solve the ‘long enough’ problem, a scheme similar to the one presented in [Van Hulle (2000)]
is developed here. In it, the rate at which the neighbourhood function range decreases is
adjusted during training, ensuring that the final range value is the one desired, σudl

Λ . Hence,
in a finite and affordable number of cycles the same optimal map as the one achieved in an
infinitely slow training is obtained. The neighbourhood cooling scheme is developed following,

σΛ(t) = σΛ(0) · exp

(

−2 · σΛ(0) ·
t

Tudl

· γudl

)

, (7)

where γudl and Tudl provide the map that has a range value of σudl
Λ . Algorithm 5 reflects the

proposed UDL monitoring scheme.



Technical Report 2005, Rey Juan Carlos University

Algorithm 6

UDL monitoring scheme for nonvectorial kMER. Initialization.

Convert input sequences into auxiliar vectorial representation.
Provide each map neuron with the same vectorial representation.
repeat,

Train the map with the vectorial kMER-batch and a constant range.
until neurons are 2D ordered.
Store the obtained disentangled lattice, say Q0.
Label pointers, zi, by those proteins that represent the generalized medians
of the sequences associated to them.
Initialize the radii, σt

i , with the distance between zt
i and the ρN

M
-th

nearest input item.

Algorithm 7

UDL monitoring scheme for nonvectorial kMER. First run.

Select Q0 as the initial neurons configuration.
repeat for each iteration, t,

for each input sequence, xn, do

Find the best matching unit for xn,
end for

Select the neighbourhood range function to be

σΛ(t) = σΛ(0) · exp

(

−2 · σΛ(0) ·
t

T 1
· γ1

)

, (8)

where γ1 = 1 and T 1 = #neurons.
Update the pointers, zt

i , with the generalized median of all input items
xn weighted by Equation 5.
Update the radii, σt

i , with the distance between zt
i and the ρN

M
-th

nearest input item.
Obtain the dataloads and store their standard deviation in SD1(t).

until t = T 1.
Determine the number of epochs, t1udl, and the corresponding range, σ1

Λ,udl,

for which the speed of decrease of SD1 function is nearly zero.



Technical Report 2005, Rey Juan Carlos University

Algorithm 8

UDL monitoring scheme for nonvectorial kMER. Monitoring runs.

repeat for each monitoring run, j > 1,
Select Q0 as the initial neurons configuration.
repeat for each iteration, t,

for each input sequence, xn, do

Find the best matching unit for xn,
end for.
Select the neighbourhood range function to be

σΛ(t) = σΛ(0) · exp

(

−2 · σΛ(0) ·
t

T j
· γj

)

, (9)

where T j = 2 · tj−1
udl and

γj = −
ln

0.9·σj−1
Λ,udl

σΛ(0)

2 · σΛ(0)
. (10)

Update the pointers, zt
i , with the generalized median of all input

items, xn, weighted by Equation 5.
Update the radii, σt

i , with the distance between zt
i and the ρN

M
-th

nearest input item.
Obtain the dataloads and store its standard deviation in SDj(t).

until t = T j

Determine the epochs, t
j
udl, and the range, σ

j
Λ,udl, for which the speed of

decrease of SDj function is nearly zero.
until σ

j
Λ,udl ≃ σ

j−1
Λ,udl.

The monitoring processes converge, since in a slow enough training the neighbourhood
range value at which SD function reaches its stability does exist [Vegas-Azcárate and Mu-
ruzábal (2005); Muruzábal and Vegas-Azcárate (2005)]. Hence, if the training algorithm em-
ploys a neighbourhood function to ensure topographic ordering, as in the case of SOM-like
and kMER algorithms, it is possible to use UDL monitoring scheme.

5 UDL monitoring scheme for nonvectorial kMER

This section shows how the novel UDL monitoring scheme can also be applied to non-
vectorial algorithms, such kMER-nv. The UDL-monitored algorithms presented in this section
have been successfully tested on the data sets considered in Vegas-Azcárate and Muruzábal
(2005); Muruzábal and Vegas-Azcárate (2005). A similar approach can be derived to control
the degree of topology preservation on nonvectorial kMER (see Algorithms 6, 7 and 8). This
way, the goodness derived from UDL monitorized nonvectorial SOM is added to the advan-
tages of training with kMER learning rule.



Technical Report 2005, Rey Juan Carlos University

6 Discussion

A variety of neural networks have been used to organize protein sequences into clusters
or families according to their sequence homologies. However, since the number and composi-
tion of the families are not known, the use of unsupervised learning algorithms, such as the
SOM type algorithms, seems indeed very appropriate. The corresponding topological maps so
obtained should be very useful in organizing large protein or DNA databases and for rapidly
classifying new sequences. In contrast to earlier works, the extension of the SOM batch al-
lows for the use of any similarity measure in sequences. The combination of the nonvectorial
topographic maps with the previously presented UDL monitoring ideas is expected to be a
helpful tool to deal with biological sequences.

Références

El Golli, A., Conan-Guez, B. and Rossi, F. (2004a). Self organizing map and symbolic data,
Journal of Symbolic Data Analysis, 2.

El Golli, A., Conan-Guez, B. and Rossi, F. (2004b). A self organizing map for dissimilarity
data, Classification, Clustering, and Data Mining Applications (Proceedings of IFCS 2004),
pp. 61–68.

Ferrán, E. A. and Ferrara, P. (1991). Topological maps of protein sequences, Biological Cy-
bernetics, 65 : 451–458.

Gautama, T. and Van Hulle, M. (2005). Bacth map extensions of the kernel-based maximum
entropy learning rule, To appear in IEEE Transactions on Neural Networks.

Kohonen, T. (1985). Median strings, Pattern Recognition Letters, 3 : 309–313.

Kohonen, T. (1995). Self-Organizing Maps, Berlin : Springer-Verlag.

Kohonen, T. (1996). Self-organizing maps of symbol strings, in Technical Report A42 , Labo-
ratory of Computer and Information Science, Helsinki University of Technology, Finland.

Kohonen, T. and Somervuo, P. (2002). How to make large self-organizing maps for nonvec-
torial data, Neural Networks, 15 : 945–952.

Muruzábal, J. and Vegas-Azcárate, S. (2005). On equiprobabilistic maps and plausible density
estimation, in 5th Workshop On Self-Organizing Maps, Paris.

Pearson, W. (1999). The FASTA program package, ftp ://ftp.virginia.edu/pub/fasta.

Pearson, W. and Lipman, D. (1988). Improved tools for biological sequence comparison, in
Proceedings of the National Academy of Sciences of the United States of America, vol. 85,
pp. 2444–2448.

Smith, T. and Waterman, M. (1981). Comparison of biosequences, Advances in Applied Ma-
thematics, 2 : 482–489.



Technical Report 2005, Rey Juan Carlos University

Somervuo, P. and Kohonen, T. (2000). Clustering and visualization of large sequence data-
bases by mean of an extension of the self-organizing map, in Proceedings of the Discovery
Science, edited by Arikawa, S. and Morishita, S., pp. 76–85, Berlin : Springer.

Van Hulle, M. M. (2000). Faithful representations and topographic maps : From distortion-
to information-based self-organization, New York : Wiley.

Vegas-Azcárate, S. and Muruzábal, J. (2005). On cluster analysis via neuron proximity in
monitored self-organizing maps, in Workshop on Biosignal Processing and Classification,
Barcelona, Spain.


