
A nonvectorial SOTA

Susana Vegas-Azcárate
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Pŕıncipe Felipe Research Center
46013 Valencia, Spain
jdopazo@ochoa.fib.es

Jorge Muruzábal
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Abstract - It may be the case that regular grids are not best suited for certain kinds of
biological analysis. Specifically, sometimes a tree structure can provide the best means to or-
ganize and interpret the output neurons [Wen et al. (1992); Inoue and Narihisa (2003)]. In
the case of biological data, the Self-Organizing Tree Algorithm (SOTA) [Dopazo and Carazo
(1997a)] has shown promising results applied to phylogenetic analysis. Self-organizing neural
networks have already been used for protein classification using sequence data [Ferrán et al.
(1994); Ferrán and Pflugfelder (1993); Ferrán and Ferrara (1991, 1992); Andrade et al.
(1996)]. The SOTA approach introduces a new type of self-organizing tree structure, namely,
a structure which grows according to the pattern of speciation in the set of sequences analyzed
[Dopazo and Carazo (1997a)]. Moreover, since sequences are coded residue by residue, all the
information contained in the homologous positions of the alignment is available to SOTA,
whereas standard SOM approaches encode the sequences as frequencies of residues or dipep-
tides, thus loosing potentially important sequence information. In this paper we approach a
cross-fertilization of the above ideas. In particular, we study a variant of SOTA suitable for
nonvectorial data. The core of the relevant algorithms is described first, then we look at a
specific example in detail.
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1 Introduction

The standard SOM is a nonlinear projection method that maps a high-dimensional me-
tric vector space onto a (usually) two-dimensional regular grid in an orderly fashion [Kohonen
(1982, 1995)]. The SOM algorithm follows an unsupervised learning process, implemented by
competitive learning through a topological neighborhood. Although the SOM algorithm has
been widely used with vectorial data, its principle is not restricted to metric vector spaces.
Indeed, it has been pointed out [Kohonen (1996)] that any set of items for which a similarity
or pseudo-distance measure is available could be mapped onto the SOM grid in an orderly
fashion. Recently, Kohonen and Somervuo [Kohonen and Somervuo (2002)] have shown how
to implement this principle in the case of fixed-size standard maps. Interestingly, they have
illustrated their method using protein sequences as basic items and FASTA scores [Pearson
and Lipman (1988); Pearson (1999)] as similarity values.

2 Symbol-SOM

It is shown in [Kohonen and Somervuo (2002)] how an extension of the SOM [Kohonen
(1996)] called Symbol-SOM can be used for the clustering, organization and visualization of
large databases of nonvectorial items such as protein sequences. The new method (originally
suggested in [Kohonen (1996)]) allows the construction of the SOM when only a similarity
measure is defined for pairs of items. Hence, a vectorial representation is not really needed ;
this is very good news, as many vectorial representations of biological data present important
drawbacks and limitations. As remarked in [Kohonen and Somervuo (2002)], in order to define
an ordered projection, it will be sufficient to compare the pairwise distances or similarities
among items.

Symbol-SOM is based on the batch-learning version of the SOM [Kohonen (1995)],
and it requires the computation of the generalized median of symbol strings [Kohonen (1985,
1995)]. Briefly, SOM-batch works as follows. Let x(j) be a vectorial training item and let mi

be the pointer associated with each grid neuron (just another vector of the same dimension).
First, find the best matching unit or winner mw(j) for each x(j) according to the usual
requirement, namely

w(j) = arg min
i
{d[x(j),mi]} (1)

where d(·, ·) is the underlying distance measure (typically the standard Euclidean distance).
Second, update every pointer as,

mi =

∑

j hw(j),ix(j)
∑

j hw(j),i
(2)

where h·· ≡ h··(t) is the underlying time-varying neighborhood function for map units [Mulier
and Cherkassky (1995)].

The generalized median is defined as follows [Kohonen (1985, 1995)]. Let Υ = {x(i)}
be a set of items, and let d[x(i), x(j)] be some distance (or pseudo-distance) measure between
x(i) and x(j) ∈ Υ. Note that we denote general input items as x and m, whereas we write
x and m for ordinary vectors. The generalized median m over Υ is defined as the item that
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minimizes the sum of distances to all other items in Υ,

m = arg min
x(i)∈Υ

∑

x(j)∈Υ:j 6=i

d[x(i), x(j)] (3)

Hence, if the input samples had been real scalars and the distance measure were the absolute
value of their difference, the generalized median would coincide with the usual (arithmetic)
median.

We can now review the main features in symbol-SOM. To initialize the algorithm, auxi-
liary vectorial pointers are introduced, for the convergence of this algorithm is significantly
faster and safer if the initial pointers are already two-dimensionally ordered [Kohonen and
Somervuo (2002)]. In the case of proteins, these vectorial pointers can be selected as the
usual 400-dimensional dipeptide histogram vectors [Ferrán and Ferrara (1991)]. Thus, each
map node is provided with a 400-dimensional vector, each component of which is initialized
with a random value between zero and unity (the whole vector is finally normalized to unit
length). The standard SOM-batch algorithm is then trained with the dipeptide vectors, and
the final pointers obtained are recoded to get symbol-SOM initialized. Specifically, for each
vectorial pointer the usual subset of input items (including all items having that pointer as
winner in the vectorial sense) is associated to it, and the corresponding nonvectorial pointer
is chosen as the generalized median of that subset. With this labelling, a two-dimensionally
set of relatively ordered input sequences is achieved, so that the non-vectorial symbol-SOM
can proceed. From this point on, all vectorial representations are dropped.

For each pointer mi, we now define two sets. First, we would recollect in Wi the input
items associated to it, i.e., the input items that have mi as its best-matching unit. Winning
neurons could be determined as usual according to the FASTA method [Pearson and Lipman
(1988); Pearson (1999)], but note that an input item could then have exactly the same
distance to two or more pointers. Therefore, in order to make the winner unique in this case,
we ask the winner to minimize the sum of distances from the input to all pointers in a small
neighborhood around the winner candidate i, say Ni. This neighborhood includes all pointers
within a certain radius from node i on the grid ; like in the traditional SOM, this radius can
shrink monotonically with time. Mathematically, x(j) ∈ Wi if and only if

mi = arg min
l

∑

k∈Nl

d(x(j),mk).

Recollect now in Ωi the input items associated to each pointer in Ni in the previous
sense, that is, Ωi =

⋃

k∈Ni
Wk, and update each mi as the generalized median of Ωi. This is

called the adaptation process. For each new pointer mi, recollect in Wi the new input items
associated to it as before. If the old Wi, say W old

i , coincide with the new Wi for all i, then
the process has converged. If not, continue with the adaptation process. When convergence
is reached, pointers approximate the input items in an orderly fashion, since each pointer
coincides with the generalized median of the input items mapped onto its neighborhood. See
algorithm 1 for a flow-chart of symbol-SOM and algorithm 2 for details on the initialization
method.
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Algorithm 1
The nonvectorial version of SOM algorithm (symbol-SOM).

Initialize the map (see below).
repeat for each iteration, t,

for each input sequence,x(n), do
Find the best matching unit for x(n), see Equation 1.

end for.
Recollect in Wi the input items associated to pointer mi.
Store in Ωi the items associated to each pointer in its neighbourhood Ni.
Update each zi as the generalized median (see Equation 3) of Ωi.

until W t
i = W t−1

i , ∀i.

Algorithm 2
Initialization method for symbol-SOM in the case of proteins.

Convert input sequences into 400-dimensional dipeptide histogram vectors.
Provide each map neuron with a 400-dimensional vector.
repeat,

Train a SOM-batch cycle,
until neurons are 2D ordered.
Label neurons by those proteins that represent the generalized medians of
the sequences associated to them.

3 SOTA

The Self-Organizing Tree Algorithm [Dopazo and Carazo (1997a)] is based on both
the Kohonen self-organizing map [Kohonen (1990)] and the growing cell structures algorithm
due to Fritzke [Fritzke (1994)]. The input space is defined by the experimental input data,
whereas the output space is arranged following a binary tree topology. The ‘growing’ of the
output nodes can be stopped at the desired taxonomic level. Since SOTA accurately finds
the phylogenetic tree that best relates the data [Dopazo and Carazo (1997a)], it becomes an
appropriate tool for phylogenetic analysis of a large number of biological sequences such as
proteins or DNA. Moreover, SOTA algorithm can also be used to classify other molecular data
than proteins or nucleotide sequences, such as binary-coded restriction-site-map data [Dopazo
and Carazo (1997a)]. Furthermore, other molecular fingerprinting data such as restriction
enzyme fragment patterns [Nei and Li (1979)] or RAPD patterns [Clark and Lanigan (1993)]
can also be analyzed [Dopazo and Carazo (1997a)] if the appropriate distance function is
used.

We now review the main features of SOTA [Dopazo and Carazo (1997a)]. First, all input
sequences must be aligned to the same length (say L) and then encoded as vectors [Casari
et al. (1995)], see below. The initial structure consists of two external cells stemming from
an internal cell (the root node). Each cell is a vector of length L randomly initialized with
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Algorithm 3
The Self-Organizing Tree Algorithm (SOTA).

Align the input sequence.
Code the proteins into vectors.
Initialize the root node, Croot, and its descendants, Cleft and Cright, with L

random numbers ranging from 0 to 1,
repeat

Change the state of the new mother from cell to node and initialize its
children to be identical to it, (not in the first cycle).
Generate two descendants from the cell having the highest Ri, see
Equation 6, (not in the first cycle).
repeat

for each input sequence,
Find the best matching cell.
Store the obtained minimum distance.
Update the winning cell and its neighbourhood via Equation 5.

end for, (an epoch finishes).
Store in Ri the local resource value.
Store in E (see Equation 7) the actual network error.

until ǫ =
∣

∣

∣

E−Eold

Eold

∣

∣

∣
, (a cycle finishes).

until maxi Ri < R0.

real numbers between 0 to 1. Second, if A is the number of characters used in the alphabet,
the distance between cell Ci and sequence Sj can be defined as

d(Sj , Ci) =

∑L
l=1

(

1 −
∑A

a=1 Sj(a, l) · Ci(a, l)
)

L
(4)

It is easy to see that this function increases monotonically as the compared vectors become
further and further apart. Notice that vector Sj encoding a protein sequence L amino-acids
long is a 20×L matrix (or 21×L, if gaps in the alignment are taken into account). Since the
value stored in Ci(a, l) is related to the probability of finding residue a in position l [Dopazo
and Carazo (1997a); Casari et al. (1995)], sequences are encoded as vectors Sj(a, l) with ones
placed at the entries corresponding to the observed residues (and the rest set to 0) [Casari
et al. (1995)].

As the initial structure grows, cells subdivide into two new (sister) external cells. Each
subdivided cell is no longer external. To find the best matching cell for each input sequence,
we stress that only external cells (not internal cells) will be compared to the sequence vectors
(thus departing from Fritzke’s original approach ; this is not surprising as Fritzke’s structures
are not trees in general). From now on, we drop the ‘external’ label for external cells and we
rename all internal cells as nodes.

Next, the topological neighborhood of a winning cell depends on whether its sister
neuron is a cell or not. If so, this neighborhood consists of the winning cell together with
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its mother node and sister cell. If not, that is, if its sister neuron has descendants, then
the neighborhood includes only the winning cell itself. More sophisticated variations can be
considered. In any case, neighborhood adaptation follows the standard Kohonen learning rule
[Kohonen (1990)],

Ci(t + 1) = Ci(t) + αi · ηt · (Sj − Ci(t)) ∀i ∈ Nj (5)

where Nj equals one of the two previous neighborhoods, the various αi control the magnitude
of the updating (αwinner > αmother > αsister) and ηt is a factor that accounts for the number
of presentations. Notice that SOTA is updated by means of the sequential Kohonen algorithm,
whereas symbol-SOM is based on the batch-learning version.

To continue with the description of the algorithm, two new concepts must be introduced.
The process of (i) finding the best matching cell, Eq. (1), Cw, for each input sequence Sj , (ii)
storing the minimum distances d(Sj , Cw), and (iii) finally updating each winning cell and its
neighborhood is called an epoch [Dopazo and Carazo (1997a)]. The series of epochs performed
by the algorithm until the tree network converges is called a cycle (see below).

Once all input sequences have been presented to the tree, two measures are stored.
First, the mean value of the distances between a cell and each of the sequences associated to
it, namely the local resource variable [Dopazo and Carazo (1997a)], will be used to control
the variability under each cell,

Ri =

∑Ki

k=1 d(Sk, Ci)

Ki

(6)

with Ki being the number of sequences associated to cell i. The second measure stored is the
actual error of the network [Dopazo and Carazo (1997a)],

E =

I
∑

i=1

Ki · Ri (7)

where I the number of cells in the current tree network. Note that the first epoch is only
used to compute the critical resource and error variables.

At this point, check the relative decrease of the error, i.e.,

ǫ =

∣

∣

∣

∣

E − Eold

Eold

∣

∣

∣

∣

(8)

where Eold is the network error in the previous epoch (Eold is given a fixed value at the
very beginning). If ǫ is bigger than a given threshold, ǫ0, another epoch is performed, another
local resource variable is associated to each cell and another network error value is calculated.
When ǫ < ǫ0 the previous cycle concludes.

Once a cycle has finished, two new descendants are generated for the cell having the
highest resource value Ri, i.e., the most heterogeneous collection of associated inputs. This
cell changes its status from cell to node, its descendants are initialized as identical copies and
a new cycle begins. When thus splitting a cell, the sequences associated to it are assigned to
its range of influence, i.e., in the next cycle these sequences will only be compared to the two
new children cells [Dopazo and Carazo (1997b)]. In case the highest resource value reaches
below a given threshold, say R0, the desired taxonomic level is achieved and the algorithm
finishes. See algorithm 3 for a flow-chart of SOTA.
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Algorithm 4
The nonvectorial SOTA (nv-SOTA).

Initialize the root node and its descendants, see Equations 9, 10 and 11.
repeat

Change the state of the new mother form cell to node and initialize its
children (not in the first cycle),
Generate two descendants from cell having the highest Ri, see Equation 6,
(not in the first cycle).
repeat

for each input sequence,
Find the best matching cell for actual input sequence.
Store the obtained minimum distance.

end for.
Update the winning cell and its neighbourhood, by the generalized
median of the set composed by Γi and itself.
Store in Ri (see Equation 6) the local resource value.
Store in E (see Equation 7) the actual network error.

until ǫ =
∣

∣

∣

E−Eold

Eold

∣

∣

∣
.

until maxi Ri < R0.

4 A nonvectorial SOTA

We now introduce a new SOTA approach for nonvectorial data combining ideas from
symbol-SOM and the original SOTA. We denote the new algorithm as nv-SOTA ; it can be
described as follows. We focus on the case of proteins for clarity, although any other symbolic
structures could be used. First, like symbol-SOM, nv-SOTA always takes training sequences
to characterize cells (and nodes). The FASTA method [Pearson and Lipman (1988); Pearson
(1999)] can be used for the computation of similarities between protein sequences as before,
since, as [Kohonen and Somervuo (1998)] pointed out, if x and y are any entities, a sufficient
condition for them to be mapped into a SOM diagram is that some kind of symmetric
distance function d(x, y) is definable for all pairs (x, y). As in SOTA, the initial tree includes
two (external) cells connected by an (internal) node. The root node is initialized to be the
generalized median, Eq. (3), of all input sequences but, since sequence similarities (instead
of distances) are actually used, the generalized medians are defined via the largest (instead
of the smallest) sums of similarity values [Kohonen and Somervuo (2002)], i.e.,

mroot = arg max
Si∈Υ

∑

Sj∈Υ:j 6=i

d(Si, Sj) (9)

where Υ is the input sequence data set and d(Si, Sj) is extracted from the initial similarity
matrix.

The left descendant is initialized to be the generalized median of all input sequences
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except the previous root sequence. That is, if we define Υ \ Sroot = Υr, then

mleft = arg max
Si∈Υr

∑

Sj∈Υ:j 6=i,root

d(Si, Sj) (10)

The right descendant is initialized similarly as the generalized median of all input sequences
excluding the previous root sequence Sroot and left-descendant sequence Sleft, that is

mright = arg max
Si∈Υr,l

∑

Sj∈Υ:j 6=i,root,left

d(Si, Sj) (11)

where Υ \{Sroot, Sleft} = Υr,l. These roles could obviously be exchanged. It will be seen that
all proteins mi stored at the tree nodes and cells are different.

For each cell Ci, recollect now in Li the input items associated to it, i.e., the input
sequences Sj that have Ci as their best-matching cell, Eq. (1). As in SOTA, only cells but no
nodes will be compared to the input sequence. Then, update each cell Ci by the generalized
median of the set composed by Li and itself, following the ideas developed in [Kohonen and
Somervuo (2002)]. Studies about ancestor node adaptation are in course, following SOTA
adaptation process ideas developed in [Dopazo and Carazo (1997a)]. Notice that, while in
SOM-batch a neuron is updated as the mean of its Voronoi region, Eq. (2), in symbol-SOM
and nv-SOTA each neuron is updated by means of the generalized median of its neighborhood.
As in SOTA, the set of all previous operations is called an epoch. Note that, unlike SOTA,
the adaptation is performed only after all input sequences have been presented to the tree.
This is necessary due to the type of adaptation carried out by this network, which involves
the generalized median of the cell neighborhood and not the sequential Kohonen learning
rule as in SOTA.

Once an epoch is finished, recollect the local resource variable, Eq. (6), and the actual
error of the network, Eq. (7). At this point, check the error’s, Eq. (7), relative decrease. If
this value is bigger than a given threshold, another epoch is performed (find the list of input
sequences associated to each cell and update them by the generalized median of their lists and
themselves), another local resource variable is associated to each cell and another network
error value is calculated. The serie of epoch performed until the network has converged (when
the relative decrease of the error falls below a given threshold) is again called a cycle.

Once a cycle has finished, two new descendants are generated from the cell having the
highest resource value. This cell changes its status from cell to node and a new cycle begins.
The left descendant is initialized as in Eq. (10) above, except Υr is now Lmother, the set of
sequences associated to the mother. The right descendant is similarly initialized as in Eq. (11),
except Υr,l is now Lmother \ Sleft. As before, all ancestor and sister nodes are excluded from
the summation indices. In case the highest resource value reaches below a given threshold, the
desired taxonomic level is achieved and the algorithm finishes. See algorithm 4 for a summary
of nv-SOTA.

5 Detailed example

We will see how nv-SOTA works in a simple, artificial scenario. Figure 1 shows the
31 items in our data set together with their topological organization. The data set can be
divided into 5 levels, the first one only contains element A, the second level has the closest
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Fig. 1 – Data set in which A is the mother of B1 and B2, B1 is the mother of C1 and C2,
B2 has C3 and C4 as its descendants, and so on. See text for further explanations.

descendants of A, B1 and B2 ; the third level includes the descendants of B1 and B2 and so
on. To define a suitable distance measure, we simply look at proximity within the tree. Since
we are reproducing a kind of phylogenetic tree, ‘sister’ cells at the fifth level must be less
distant than sisters at the fourth level, sisters at the fourth level less distant than sisters at
the third level, and so on. We assume that the distance between any pair of sisters at level
five is 1 (unit), and also that the distance between any pair of sisters at level four is 2 (units).
All the way up to level 1, where we assume that the distance between B1 and B2 is 4 (units).
We also assume that the distance between a mother and its direct descendants is always 1.
Figure 2 shows the resulting distance between any pair of elements in our set. For example,
the distance between element E2 and element C4 is d(E2, C4) = 1 + 1 + 1 + 4 + 1 = 8, since
we must traverse the path comprising the steps E2-D1 (add 1), D1-C1 (add 1), C1-B1 (add
1), B1-B2 (add 4) and finally B2-C4 (add 1).

Equipped with this distance information, nv-SOTA can start. First, the sum of the
distances between each element and each of the remaining input items is calculated ; the
last column of Figure 2 provides these values. The root sequence is the element showing
the minimum sum of distances, which in our case is 98 and corresponds to A. Second, the
smallest sum of distances to all other elements (excluding the root A) is calculated, and this
corresponds to B1 and B2, both with a minimum value of 128 units. Hence, the initial tree
has A as its root node and B1 and B2 as its left and right descendants, respectively.

Now the first epoch of the first cycle begins. We must first find the input elements that
have B1 and B2 as their best-matching cells, see the left table in Figure 3. Next we update
B1 as the generalized median of the set composed by the items associated to it and itself, see
the right upper table in Figure 3. The smallest sum of distances within this table corresponds
to B1 (34 units), so this cell does not change. Likewise for B2, the generalized median of the
set of input items associated to it and itself (see the right lower table in Figure 3) is again
B2 (34 units). Hence, the first epoch finishes with A as the root node and B1 and B2 as its
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Fig. 2 – Distance matrix

Fig. 3 – First epoch in nv-SOTA training. The left table shows the input items associated to
B1 (dark shadow) and to B2 (light shadow). The other tables show the adaptation at these
cells following this assignment.
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Fig. 4 – Initialization of B1’s children.

left and right descendants.

Three values are stored at this point : i) the mean value of the distances between B1
and each of the sequences associated to it, namely, the local resource value of B1, RB1 =
1
14 · [d(B1, C1) + d(B1, C2) + d(B1,D1) + d(B1,D2) + d(B1,D3) + d(B1,D4) + d(B1, E1) +
d(B1, E2)+d(B1, E3)+d(B1, E4)+d(B1, E5)+d(B1, E6)+d(B1, E7)+d(B1, E8)] = 34

14 =
2.43 ; ii) the local resource value of B2, RB2 = 2.43 ; and iii) the actual error of the network,
E1 = 14·RB1+14·RB2 = 68. Then, letting the initial network error be, say Einitial = 100, 000,

we check the relative error decrease, ǫ =
∣

∣

∣

E1−Einitial

Einitial

∣

∣

∣
= 0.99. Since this value is bigger than

a given threshold, say ǫ0 = 0.00001, another epoch is performed.

We next find the input items associated to B1 and B2, respectively, which are of course
the same as in the previous epoch (see left table of Figure 3). Then the updating process goes
as before (see the right tables in Figure 3) and B1 and B2 are again the two cells of the tree.
The three values stored now are i) RB1 = 2.43, ii) RB2 = 2.43 and iii) E2 = 68. Since now
the relative decrease of the error ǫ = E2−E1

E1
equals 0, the first cycle ends.

Since all local resource values are bigger than a given threshold, say R0 = 0.01, i.e.,
min (RB1, RB2) = 2.43 > 0.01, two new descendants are generated from the cell having the
highest resource value, say B1. This changes its status from cell to node and will no longer
be compared with input items. The sum of distances among all items in the set of elements
associated to B1, see the last column in Figure 4, is calculated to initialize B1’s children, and
the minimum sum is found at C1 and C2. Hence, the first epoch of the second cycle starts
with A as the root node, B1 and B2 as its descendants and C1 and C2 as the descendants
of node B1.

Next, the input items associated to B2, C1 and C2 are collected, see the left table in
Figure 5. Each cell is updated as the generalized median of the set composed by the items
associated to it and itself, that is, i) B2 is updated as itself (see the right lower table in Figure
3), ii) C1 is updated as itself (see the right upper table in Figure 5) and iii) C2 is updated as
itself (see the right lower table in Figure 5). Hence, the first epoch of the second cycle finishes
with A as the root node, B1 and B2 as its descendants and C1 and C2 as the descendants
of node B1.

Once the epoch finishes, the local resource values together with the actual network
error are stored, i.e., i) RB1 = 2.43, ii) RC1 = 1.67, iii) RC2 = 1.67 and iv) E3 = 54. Since the

relative decrease of the error, ǫ =
∣

∣

∣

E3−E2

E2

∣

∣

∣
=

∣

∣

54−68
68

∣

∣ = 0.21 is bigger than the given threshold

ǫ0, another epoch is needed. Nevertheless, we will obtain a new network error of E4 = 54,
since no cell has been changed during the previous updating process. Hence, as before the
tree at the end of the second epoch will be exactly as that at the end of the first epoch, and
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Fig. 5 – Input items associated to B2 (darker shadow), C1 (lighter shadow) and C2 (medium
shadow) at the beginning of the first epoch of the second cycle.

Fig. 6 – Initialization of B2’s children.

the relative decrease of the error will be ǫ = 0.

Thus, the second cycle finishes. Since B2 has the highest resource value (and this value
is bigger than the threshold R0), it will change its status from cell to node and two descendants
will be generated from it. Figure 6 shows the initialization of B2’s descendants, that is, C3
and C4, since they have the smallest sum of distances (41) among all items of the elements
associated to B2. The first epoch of the third cycle will begin with C1, C2, C3 and C4 as
cells. Continuing this process, the tree of Figure 1 will be obtained as desired.

6 Real proteins

Now we will analyze nvSOTA using real protein sets. Kohonen and Somervuo [Kohonen
and Somervuo (2002)] have processed a very large database of 77,977 protein sequences, ob-
tained from the SWISS-PROT database, release 37 [Bairoch and Apweiler (1999); Somervuo
and Kohonen (2000)], publicly available at http ://www.expasy.ch/sprot. The computa-
tion of similarities between protein sequences was determined using version 3.0 of the FASTA
program package [Pearson (1999)], with the ktup parameter set to 2 and the amino acid sub-
stitution scores taken from the BLOSUM50 matrix. A 30-by-20-unit hexagonal symbol-SOM
was trained for 20 batch cycles, with a neighborhood radius of 1. Due to the high computing
cost incurred if all protein sequences are used as inputs at each batch cycle, Kohonen and
Somervuo picked up a random sample of size 6,000 for each batch cycle. One final training
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cycle was carried out with all data. Hence, the computing load is reduced to less than 10% and
the statistical accuracy of the algorithm is not deteriorated [Kohonen and Somervuo (2002)].
The final map was labelled using the SWISS-PROT identifiers. To characterize the quality
of the obtained map, Kohonen and Somervuo showed the clustering of some known protein
families together with the projections of the most frequent classes [Kohonen and Somervuo
(2002)].

We have processed another data set for analysis. This consists of the 1,758 human
protein sequences stored in the SWISS-PROT database, release 19.0. This data set was first
used by [Ferrán et al. (1994)] to test the method they proposed in [Ferrán and Ferrara (1991)],
namely, a method based on the Kohonen’s unsupervised learning algorithm trained with the
dipeptide composition of the proteins. We have extracted the Similarity Matrix of this data
set using version 3.0 of FASTA [Pearson (1999)], with a ktup of 2 and a BLOSUM50 matrix
for the amino acid substitution.

7 Relationship with other self-generating neural tree methods

We now discuss the differences between the previous nv-SOTA and other related me-
thods. First, we emphasize that, to the best of our knowledge, nv-SOTA is the first growing
architecture capable of processing nonvectorial information. We also note the advantages of
our approach when compared to the Self-Generating Neural Tree (SGNT) proposed by [Wen
et al. (1992)]. This is a method to learn neural trees where not only the weights but also
the structure of the network, including the number of neurons and the connections between
them are all learned from the training set. The main disadvantages of the SGNT algorithm,
compared to nv-SOTA, are the following : i) both cells and nodes are compared to the input
sequences, so more computing time is required ; ii) once the algorithm converges, a pruning
phase is necessary to obtain an optimal tree ; and, iii) besides pruning, the size of the genera-
ted tree must be artificially reduced to have practical use, since the generated network may
still have an unacceptable big size. The optimization and pruning phase is developed follo-
wing McKusick and Langley’s method [McKusick and Langley (1991)]. Here, the concepts
of Horizontally Well Placed (a neuron n is HWP if d(n, np) ≤ d(n, ns), ∀ns ∈ {chil neu-
ron set of np}, where np is the parent of n), Vertically Well Placed (a neuron n is VWP if
d(n, np) ≤ d(n, ng), where ng is the parent of np) and Well Organized (a neural tree is WO
if all of its neurons are both HWP and VWP) are used to optimize the tree and turn it into
a better shape for clustering and classification tasks [Wen et al. (1992)].

The artificial reduction is achieved using Quinlan’s method [Quinlan (1987)]. Here, the
SGNT is tested against the full training set, and the number of errors incurred in this test
is accumulated and recorded at each neuron. For each neuron mi, the following quantity is
stored, ε + 1

1+β
≤ (ε′ + β

1+β
) · σ(ε′ + β

1+β
), where ε and ε′ are the number of errors occurred

at mi in the pruned and unpruned network, respectively, β is the number of children of mi

and σ(·) is the standard deviation function. Then, every subnetwork rooted by neuron mi

that satisfies the previous condition may be pruned away (but mi itself is still kept) and the
simplified network will have the same accuracy as it had prior to simplification [Wen et al.
(1992)].

The need for an optimization step to make the network in a better shape together with
the posterior simplification of the obtained tree may lead to computational problems when the
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training data set becomes large enough [Wen et al. (1992)]. Furthermore, the interpretation
of the resulting SGNT as a phylogenetic tree is not proved yet.

8 Summary and Conclusions

We have presented a new growing algorithm for clustering symbolic data based on
trees. The only information needed is a similarity matrix, no vectorial representation is used
whatsoever. The new algorithm has been shown to perform well in the case of real proteins.
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