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Abstract - The neighbourhood function is crucial for preserving a good topological ordering in
the map. Hence, violations on the topographic ordering may result even in the one-dimensional
case if the neighbourhood function range is decreased until it vanishes. Furthermore, the rate
at which the neighbourhood function range is decreased over the training cycles controls almost
completely the success of the lattice disentangling phase. This parameter controls in effect the
degree of smoothness or topological order— it determines the amount of quantization error
minimization performed. Although it is commonly suggested that the neighbourhood range
should drop to small values by the end of the run, so that the map is able to fit the data,
this is not appropriate in many cases. This paper develops a novel method to obtain topology-
preserved maps from all topographic map formation algorithms.
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1 Introduction

In the last phases of the SOM training process the zero-order topology case arises, where
no neighbourhood function remains and hence no lateral control of plasticity between neurons
exist [Kohonen (2001)]. As a result of it, the self-organizing process does no longer maintain
the order of the weight vectors, disturbing the quality of the topographic ordering. Indeed,
for any topographic map formation algorithm based on fixed-topology lattices, topological
defects may occur during the final stages of training.

The decreasing range of the neighbourhood function in SOM algorithm results on at
least two types of phase transitions. One of them occurs when there is a topological mis-
match between lattice and data manifold [Der and Herrmann (1993)]. The other happens
in maps with short neighbourhood range [Der and Herrmann (1994)]. Topology-preservation
will be favoured if the neighbourhood range is large enough to permit lattice elasticity. On
the contrary, if neighbourhood range is not large enough, quantization error minimization will
dominate, deteriorating the quality of the topographic map. In other words, when the neigh-
bourhood has vanished, distortion minimization is pursued instead of topology-preservation,
and the optimal distortion tessellation does not necessarily correspond to a regular topogra-
phic ordering [Der and Herrmann (1994); Van Hulle (2000)]. Haese and Goodhill (2001) have
pointed out that a phase transition can also be seen as follows, “the algorithm turns at the
phase transition from a principal curve mapping to a mapping overfitting the input data”.

To avoid these phase transitions, the neighbourhood range σΛ must be large enough, de-
veloping a smoothness weight distribution [Mulier and Cherkassky (1995)]. That is, σΛ must
create a tradeoff between the approximation accuracy of weight vector distribution p(w) and
the stability ordering. The open questions are : what does ‘large enough’ mean in a particular
data set ? How can we select the appropriate rate with which the neighbourhood function
range is decreased over the training cycles ? For the Gaussian-shaped neighbourhood func-
tions, it has been suggested to maintain certain degree of overlapping— the neighbourhood
range should not fall below half the distance between neighbouring nodes. Apart from a few
rules of thumb, it would be desirable to have iterative methods for making these choices.

2 UDL monitoring scheme. A novel proposal

The usual topology-preservation metrics are not very sensitive to small topological
defects. Furthermore, they require a lot of computational effort as a monitoring tool. In this
paper we present a novel scheme that help us to find the appropriate neighbourhood range
value to end with, and a monitoring process to derive ‘long enough’ training without human
intervention. First, some functions are introduced.

The predictive log-likelihood is based on test data extracted from the same source but
not used for training— a kind of cross-likelihood. This function is called here LKtest, that
is,

LKtest(t) = logL(t) (1)

where L(t) is the value of the likelihood on a test set in training cycle t. LKtest function
presents some difficulties when used as a monitoring tool during the learning process. First, a
representative test set is not always easy to find in real-world examples. Second, the estimated
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Fig. 1 – (a) Data load distribution in the equiprobabilistic case : 1, 500 training items pro-
jected at random onto a 10× 10 map. (b,c,d) Three examples of 10× 10 DL-matrices coming
from a truly equiprobabilistic map.

density function at each test vector has to be computed at every cycle of training, leading to
a computationally expensive monitoring process.

The dataload is the number of data vectors projecting onto each trained unit. Dataloads
are the natural estimate of the probability of activation given new data generated by the
sampling distribution [Bodt et al. (1997)], that is,

dli =

∫

Vi

p(v)d(v), (2)

where Vi collects all input vectors which are closest to weight vector wi.

In the truly equiprobabilistic case the dataload vector should be distributed as a multi-
nomial with equal component probabilities, since the pointer density in the trained equipro-
babilistic map serves as an estimate of the density underlying the data— each neuron would
cover about the same proportion of the data. In fact, it would follow asymptotically a joint
multivariate Gaussian distribution with correlations getting weaker with increasing sample
size N . For moderate N , the equiprobabilistic dataload histogram should thus correspond to

a common limiting univariate Gaussian. Hence, the mean is N
M

, whereas
√

N
M

(1 − 1
M

) is the

standard deviation— it may be a bit smaller in practice due to the finite-sample correction.
Note that these statistics depend only on lattice size and training sample size, they are other-
wise universal over data sets. To easily visualize the dataload distribution over the map, a
gray image is computed, namely, the DL-matix, where darker means higher.

A first implication of this limiting normality is that, due to the linear nature of the
transformation into the gray scale, the ideal DL-matrix from Figure 1a has many more in-
termediate gray levels than either pure white or black cells, i.e., the distribution is not really
uniform in the gray scale. Some examples are shown in Figure 1(b,c,d) : no patterns can
be discerned, and just a few very light or very dark cells stand out. Of course, there are
also formal tests of normality that can be applied to the DL vector directly. Yet, we believe
graphical diagnostics incorporating lattice information, such as the DL-matrix, may be more
suggestive for interactive analysis.

The dataload standard deviation at each iteration, namely SD function, will be the
required function for our monitoring process. Unlike the LKtest function, SD is cheap and
easy to obtain.
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Fig. 2 – kMER on 3M-10D data set with a long training of 10,000 epochs. (a) 10×10 map
showing LKtest (thick solid line on the top plot), LKtrain (thin solid line on the top plot) and
SD (bottom plot) functions ; (b) 10×10 Sammon’s projected map on the iterations number
500, 1250 (the highest LKtest value), 2000 and 4000.

2.1 A stopping policy

When training the map, there is a moment in which neurons begin to learn more about
the concrete train set, adding noise to the final estimated distribution. Thus, overtraining
problems have to be avoided. Therefore, the aim of the stopping process is to find the map
with maximum predictive likelihood in which overtraining has not appeared yet and the
resulting neurons’ distribution provides the map with the highest likelihood. This map will
be the one that explains in the best way the real population.

At this moment of maximum predictive likelihood, topographic order is maintained.
Furthermore, the worse the topographic order the lower the predictive likelihood. In Figure
2 overtraining problems in kMER learning rule are illustrated. The data set considered here
consists of three Gaussians living in a 10 dimensional space— a data set referred to as 3M-
10D. In this data set 10,000 cycles of training are supposed to be long enough.

Figure 2a top plot highlights how, while log-likelihood over the train set LK (thin
solid line) is a monotonically increasing function, the log-likelihood over a test set LKtest

(thick solid line) has a completely different behaviour. LKtest is an increasing function in its
initial stages, reaches a maximum, and begin to decrease until the end of training. Sammon
projected maps at different moments of training are shown in Figure 2b. At cycle t = 500 the
map is well organized but it does not reflect properly the underlying distribution (note that
at t = 500, LK-like functions have lower values). At cycle t = 1250, which corresponds to the
maximum predictive likelihood, the map is completely disentangled. From this moment on,
overtraining problems arise, since the learning process stresses local regions instead of global
relationships, and this is reflected on both the loss of organization and a lower predictive
likelihood value.

Hence, Figure 2 shows the link between maximum LKtest and topology preservation.
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Fig. 3 – Learning trajectories of GTM on 1M-50D data set. (a) SD ; (b) MQE.
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Fig. 4 – GTM on 2M-10D data set. (a) Log-likelihood using training data (dotted line) and
test data (solid line) ; (b) MQE.

Consequently, the neighbourhood value at where the maximum of LKtest function is reached
is the one desired to end the training process with. This value, called here σlkt

Λ , is the optimal
one, provided that an infinitely slow training (that begins with an unfolded map) is developed.
Algorithm 1 shows this stopping policy.

As pointed before, evaluating logL at each cycle of training is enormously time consu-
ming, doing it a hard task with low dimensional data and impossible in higher dimensions—
as real cases use to be. At this point, a heuristic is needed.

3 UDL stopping policy

Here we propose a novel monitoring criterion based on the uniformity of the dataload
vector, a criterion called UDL— Uniform DataLoad vector [Vegas-Azcárate and Muruzábal
(2005); Muruzábal and Vegas-Azcárate (2005)]. Specifically, our UDL criterion looks for the
moment at which the speed of decrease of the dataload standard deviation function is nearly
zero.

As highlighted before, pointer density in the trained equiprobabilistic map serves as an
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Algorithm 1

Ideal stopping policy.

Obtain a disentangled lattice to be used to initialize neurons’ map— train
a random set of neurons over a finite number of cycles with a fixed range.
repeat for each iteration, t,

Train the map.
Evaluate logL and store its value in LKtest(t).

until t is long enough.
Determine the number of epochs, tlkt, and the corresponding range, σlkt

Λ ,
for which LKtest(t) reaches its maximum.
Select the map obtained at tlkt.

Algorithm 2

The new proposed UDL stopping policy.

Obtain a disentangled lattice to be used to initialize neurons’ map.
repeat for each iteration, t,

Train the map.
Obtain the dataloads and store its standard deviation in SD(t).

until t is long enough.
Determine the number of epochs, tudl, and the corresponding range, σudl

Λ ,
for which SD(t) reaches its stability.
Select the map obtained at tudl.

estimate of the density underlying the data. Thus, each neuron would cover about the same
proportion of the data, leading to a uniform dataload vector. It appears that the stochastic
Gaussian behaviour in the equiprobabilistic case can be approximately detected when it is
first reached [Vegas-Azcárate and Muruzábal (2005); Muruzábal and Vegas-Azcárate (2005)].
Hence, the associated UDL stopping rule could be stated as follows : quit as soon as the
trained map shows the first signs of having reached the reference Gaussian DL distribution—
a moment referred to as the UDL stage. In other words, quite as soon as SD function reaches
its stability.

Furthermore, minor gains in quantization error brought by training beyond the UDL
stage seem to enforce the loss of useful organization, implying fuzzier displays for analysis.
Indeed, the UDL stage also signals approximately the beginning of the fine-tuning phase in
quantization error [Vegas-Azcárate and Muruzábal (2005); Muruzábal and Vegas-Azcárate
(2005)]. An example is given in Figure 4, where the test log-likelihood function reaches its
optimum at a very early stage of training. Notice that the MQE trajectory in Figure 4b is
closely related to the training log-likelihood trajectory. In particular, it can be appreciated
how most progress in quantization error has been done at a relatively early stage of training.
GTM learning trajectories on 1M-50D (see Figure 3) show that SD and MQE functions
settle around the same reference value.
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Algorithm 3

UDL monitoring scheme.

Train the map with a constant neighbourhood range.
Store the obtained disentangled lattice, Q0.
Starting from Q0, perform one complete training with γ1 = 1.
Determine the number of epochs, t1udl, and the corresponding range, σ1

Λ,udl,

for which the speed of decrease of SD1 function is nearly zero.
repeat, for each monitoring run, j > 1,

Perform a new training, starting from Q0, with T j = 2 · tj−1
udl

and

γj = −
ln

0.9·σj−1
Λ,udl

σΛ(0)

2 · σΛ(0)
(3)

to cool at a slower rate, but only run the simulation as long as necessary.
Determine the epoch, t

j
udl

, and the range, σ
j
Λ,udl

, for which the speed of

decrease of SDj function is nearly zero.
until σ

j
Λ,udl ≃ σ

j−1
Λ,udl.

Do a complete run with Tudl = t
j
udl

and γudl = γj .

Simulation experiments of Figures 5 and 6 reflect the concordance between σlkt
Λ and

the neighbourhood range value at which SD reflects some kind of stability, called σudl
Λ . Then,

the cycle at which the speed of decreasing of SD function goes to zero, tudl, seems to be a
good, easy and cheap heuristic estimate of tlkt, and so σudl

Λ can be treated as a heuristic of
σlkt

Λ . Algorithm 2 illustrates our UDL stopping policy.
Note that during the learning process, the best matching unit of each datum is calcu-

lated, so the overhead in obtaining the dataloads and its standard deviation is minimal. The
problem now is to obtain tudl or σudl

Λ , since a complete long enough training has to be done.
Indeed, this is not possible with real-world data where ‘long enough’ is not known.

3.1 UDL monitoring scheme

To solve the ‘long enough’ problem, a scheme similar to the one presented in [Van Hulle
(2000)] is developed here. In it, the rate at which the neighbourhood function range decreases
is adjusted during training, ensuring that the final range value is the one desired, σudl

Λ . Hence,
in a finite and affordable number of cycles the same optimal map as the one achieved in an
infinitely slow training is obtained. The neighbourhood cooling scheme is developed following,

σΛ(t) = σΛ(0) · exp

(

−2 · σΛ(0) · t

Tudl

· γudl

)

, (4)

where γudl and Tudl provide the map that has a range value of σudl
Λ . Algorithm 3 reflects the

proposed UDL monitoring scheme.
The monitoring processes converge, since in a slow enough training the neighbourhood

range value at which SD function reaches its stability does exist [Vegas-Azcárate and Mu-
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ruzábal (2005); Muruzábal and Vegas-Azcárate (2005)]. Hence, if the training algorithm em-
ploys a neighbourhood function to ensure topographic ordering, as in the case of SOM-like
and kMER algorithms, it is possible to use the new UDL monitoring scheme presented in
this paper.

4 A new way to select the point of SD stability

At each monitoring run, say j, we need to estimate t
j
udl

and σ
j
Λ,udl

values, for which

the speed of decrease of SDj function is nearly zero. Note that Tudl and the corresponding
σudl

Λ values can be selected just looking to SD function plot. An accepted value for Tudl

is the one for which SD(Tudl) ≃ SD(Tudl−1), or another criterion of stability. However, no
human guidance is sometimes preferred, so as in the previous case in which several runs
are performed. Any procedure to detect function stability can be used at this point. Here
is presented a novel methodology that estimates t

j
udl

value during the monitoring run j

automatically, providing satisfactory results [Vegas-Azcárate and Muruzábal (2003, 2005);
Muruzábal and Vegas-Azcárate (2005)]. Note that knowing t

j
udl value, σ

j
Λ,udl value is obtained

following Equation 4.

First, plot SD function in a ‘normalized’ way— that its shape does not depend on
nothing but general values, such as N or M . For example, with X-axis from 0 to T and Y-
axis from 0 to the maximum possible value of any SD function. This value can be calculated as
follows. Chose a large and fixed value for the neighbourhood range ; hence, during the training
all neurons will be updated in the same way, collapsing in one concrete weight vector— let
w1 be that one.

The dataload vector at convergence will be a M × 1 vector, DL = (dl1, ..., dlM )t, with
dl1 = N and the rest of the M − 1 elements set to zero. The mean of the dataload vector is

DL =

∑M
i=1 dli

M
=

N

M
(5)

and its quasi-standard deviation

qsd(DL) =

√

∑M
i=1

(

dli − DL
)2

M − 1
=

√

(

N − N
M

)2
+ (M − 1)

(

N
M

)2

M − 1
≤ N

√
M

M
. (6)

Then, SD never reaches a value larger than N
√

M
M

. This way, Y-axis takes values from

0 to N
√

M
M

, and X-axis from 0 to T , as pointed before. The bisector line from the origin to

(T, N
√

M
M

) will be called UDL-line. Algorithm 4 summarizes the presented procedure.
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Fig. 5 – kMER on 3M-10D data set with a long training of 10,000 epochs. LKtest (top) and
SD (bottom) with UDL-line (dashed), SD-line (thick dotted) and X-axis (thin solid).
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Fig. 6 – kMER on 3M-10D data set with a long training of 10,000 epochs. (a) Zooms of the
biggest square area of Figure 5. (b) Zooms of the smallest square area of Figure 5, highlighting
the maximum of LKtest (asterisks).
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Algorithm 4

A new way to select the point of SD stability.

Calculate UDL-line, from (0, 0) to (T j, N
√

M
M

).
Find the training cycle at which UDL-line intersects SD function, say tprev.
Find the regression line of {(t, SD(t)) : t ∈ (1, ..., tprev)}, say SD-line.

The cycle of training where SD-line intersects X-axis is t
j
udl.

An example of how the monitoring process works is presented in Figures 5 and 6. Figure
5 top plot shows LKtest function (solid line) of kMER learning rule ; a vertical (thin dotted)
line identifies the number of epochs at which the speed of decrease of SD function is nearly
zero (bottom plot), and two squares (the biggest and the smallest) indicate the area that will
be highlighted on top plots of Figures 6a and 6b, respectively.

Figure 5 bottom plot displays SD function (thick solid line), UDL-line (that goes from
(0, 0) to (10000, 150), since N = 1500 and M = 100, in dashes), SD-line (thick dotted),
X-axis (thin solid line), the vertical (thin dotted) line identifies the intersection between the
SD-line and X-axis (a heuristic of the number of epochs at which the speed of decrease of
SD function is nearly zero) and the two squares indicate the areas that will be zoomed on
the bottom plots of Figures 6a and 6b, respectively.

An asterisk is placed on LKtest(tlkt), that is, on the epoch of the highest predictive
likelihood or maximum of LKtest function. Figure 6b shows that tlkt = 1239 and tudl = 1246,
hence tlkt and tudl are nearly the same value, with only 7 out of 10,000 epochs of difference.
This way, the concordance between σlkt

Λ and σudl
Λ is straightforward. Moreover, the map

recollected at cycle tudl provides an unfolded map with the highest predictive log-likelihood.
This way, an appropriate heuristic of the neighbourhood range value at where the predictive
log-likelihood reaches it maximum is obtained following our UDL monitoring scheme.

5 Discussion

This paper present a novel monitoring approach founded on the tenets that the opti-
mal map is the one obtained in an infinitely slow training— although good approximations
can be done with large cycles of training when working with synthetic data, in higher real
spaces this long training is not recommended, due to the enormous time consumed by the
algorithms and the impossibility to know when a long enough training is achieved. Moreover,
the neighbourhood function, specially the rate at which neighbourhood range is decreased
over the finite simulation time, is crucial in the formation of topology-preserving maps— if
the final value of this range is too large, neurons will not properly span within the input
data set, but if it is too small, violations in the topographic order will occur. To the best of
our knowledge, the new proposed UDL monitoring scheme is the first methodology that esti-
mates the decrementing schedules for the neighbourhood range function during the training
automatically.
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