On the use of the GTM algorithm for mode detection
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Abstract. The problem of detecting the modes of the multivariate con-
tinuous distribution generating the data is of central interest in various
areas of modern statistical analysis. The popular self-organizing map
(SOM) structure provides a rough estimate of that underlying density
and can therefore be brought to bear with this problem. In this paper
we consider the recently proposed, mixture-based generative topographic
mapping (GTM) algorithm for SOM training. Our long-term goal is to
develop, from a map appropriately trained via GTM, a fast, integrated
and reliable strategy involving just a few key statistics. Preliminary sim-
ulations with Gaussian data highlight various interesting aspects of our
working strategy.
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1 Introduction

Searching the structure of an unknown data-generating distribution is one of the
main problems in statistics. Since modes are among the most informative features
of the density surface, identifying the number and location of the underlying
modal groups is of crucial importance in many areas (such as, e.g., the Bayesian
MCMC approach).

A previously proposed idea is to transform mode detection into a mixture
problem following either a parametric [9] or a non-parametric [15] approach.
Studies based on kernel estimation [7,16, 18] have also provided useful results.
While some methods for testing the veracity of modes in 1D [8,15] and 2D [16]
data are available, tools for making exploration possible in higher dimensions
are much needed.

Here we inquire about the potential of self-organizing maps (SOM) [11] as
an approach to multivariate mode detection. The SOM structure derived from
the standard fitting algorithm is often found useful for clustering, visualization
and other purposes. However, it lacks a statistical model for the data. Recent
approaches to SOM training usually incorporate some statistical notions yielding
richer models and more principled fitting algorithms.

Specifically, the generative topographic mapping (GTM) [1] is a non-linear
latent variable model (based on a constrained mixture of Gaussians) in which
its parameters can be determined by maximum likelihood via the expectation-
mazimization (EM) algorithm [6]. GTM attempts to combine the topology-
preserving trait of SOM structures with a well-defined probabilistic foundation.



The GTM approach provides a number of appealing theoretical properties and
is deemed indeed a major candidate to support our mode detection task.

The remainder of the paper is organized as follows. In section 2 we explore
basic properties of the GTM model and discuss the reasons for preferring GTM
over the original SOM fitting algorithm to deal with multivariate mode detection.
Section 3 first presents the basic tools or key statistics extracted from the trained
GTM, then sketches our working strategy for mode detection. A basic test of
this tentative strategy is provided in section 4, where 2D, 3D and 10D synthetic
data following various Gaussian distributions are used to illustrate the prospect
of the approach. Finally, section 5 summarizes some conclusions and suggests
future research stemming from the work discussed in the paper.

2 The GTM model

The GTM [1] defines a non-linear, parametric mapping y(x, W) from an L-
dimensional latent space (x € L) to a D-dimensional data space (y € RP)
where L < D. The transformation y(x, W) maps the latent-variable space into
an L-dimensional manifold S embedded within the data space. By suitably con-
straining the model to a grid in latent space, a posterior distribution over the
latent grid is readily obtained for each data point using Bayes’ theorem.

As often acknowledged [11], the standard SOM training algorithm suffers
from some shortcomings: the absence of a cost function, the lack of a theoret-
ical basis to ensure topographic ordering, the absence of any general proofs of
convergence, and the fact that the model does not define a probability density.
GTM proceeds by optimizing an objective function via the EM algorithm [6].
Since the cost function is of log-likelihood type, a measure is provided on which
a GTM model can be compared to other generative models.

But our main interest in working with GTM algorithm instead of the original
SOM fitting algorithm to deal with multivariate mode detection is related to the
‘self-organization’ and ‘smoothness’ concepts. While the conditions under which
the self-organization of the SOM occurs have not been quantified and empir-
ical confirmation is needed in each case, the neighbourhood-preserving nature
of the GTM mapping is an automatic consequence of the choice of a contin-
uous function y(x, W) [2]. In the same way, the smoothness properties of the
original SOM are difficult to control since they are determined indirectly by the
neighbourhood function, while basis functions parameters of the GTM algorithm
explicitly govern the smoothness of the manifold, see below.

Hence, the GTM algorithm seeks to combine the topology preserving proper-
ties of the SOM structure with a well defined probabilistic framework. Moreover,
since the evaluation of the Euclidean distances from every data point to every
Gaussian centre is the dominant computational cost of GTM and the same cal-
culations must be done for Kohonen’s SOM, each iteration of either algorithm
takes about the same time.



More specifically, GTM training is based on an optimization procedure aimed
at the standard Gaussian mixture log-likelihood [2]
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where a generalized linear regression model is chosen for the embedding map,
namely
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y(x, W) = Wo(x), with ¢, (x) = exp{—%}, m=1,.., M.

Here t,, is one of N training points in the D-dimensional data space, x; is one
of K nodes in the regular grid of a L-dimensional latent space, § is the inverse
noise variance of the mixture Gaussian components, W is the DxM matrix of
parameters (weights) that actually govern the mapping and ¢(x) is a set of M
fixed (spherical) Gaussian basis functions with common width o. Some guidelines
to deal with GTM training parameters are laid out in [1-3,17].

3 Basic tools

Once we have trained a GTM model, suitable summaries of its structure will be
extracted and analyzed to ascertain the modes’ location. In particular, we con-
sider median interneuron distances, dataloads, magnification factors and Sam-
mon’s projections. The first three quantities are introduced in detail in the next
sections.

To visualize high-dimensional SOM structures, use of Sammon’s projection
[14] is customary. Sammon’s map provides a useful global image while estimat-
ing all pairwise Euclidean distances among SOM pointers and projecting them
directly onto 2D space. Thus, since pointer concentrations in data space will
tend to be maintained in the projected image, we can proceed to identify high-
density regions directly on the projected SOM. Furthermore, by displaying the
set of projections together with the connections between immediate neighbours,
the degree of self-organization in the underlying SOM structure can be expressed
intuitively in terms of the amount of overcrossing connections. This aspect of
the analysis is rather important as the main problem with the SOM structure,
namely poor organization, needs to be controlled somehow. As usual, it is crucial
to avoid poorly-organized structures (whereby immediate neighbours tend to be
relatively distant from each other) but this goal is not so easy when working with
high-dimensional data [10, 11]. On this matter, Kiviluoto and Oja [10] suggested
the use of PCA-initialization instead of random-initialization to obtain suitably
organized GTM structures; they also proposed the S-MAP method combining
GTM and SOM. In addition, since it is not clear how much organization is possi-
ble for a given data set, the amount of connection overcrossing lacks an absolute
scale for assessment. On the other hand, if overcrossing in Sammon’s projection
plot is (closely) null, we can proceed with some confidence.



3.1 Median Interneuron Distances

Since we are interested in regions with higher pointer (or gaussian centre) den-
sity, the relative distance from each pointer to its immediate neighbours on
the network will provide a useful bit of information. The inspection of pointer
interdistances was pioneered by Ultsch [19], who defined the unified-matriz (U-
matrix) to visualize Euclidean distances between reference vectors in Kohonen’s
SOM. Emphasis in the U-matrix is on cluster analysis.

Although modes may be associated with clusters [7], a problem exists with
high-dimensional data: “while one cluster might be well-represented by a single
multivariate Gaussian, another cluster may required dozens of Gaussian compo-
nents to capture skewness and yet still be unimodal” [16]. So the relationship
between the number of modes and the number of mixture components is not
straightforward. In particular, when dealing with multivariate data the mixture
may have more modes than mixture components [16].

In this paper, we will work with the alternative median interneuron matriz
(MID-matrix) proposed in [12]. This is a v/Kxv K matrix whose (i, ) entry, is
the median of the Euclidean distances between the gaussian centre and all point-
ers belonging to a star-shaped, fixed-radius neighbourhood containing typically
eight units. To facilitate the visualization of higher pointer concentrations, a
linear transformation onto a 256-tone gray scale is standard (here the lower the
value, the darker the cell). Figure 1 compares the MID-matrix to two variants
of the U-matrix. It appears that the latter images provide a more blurry picture
regarding pointer concentration.
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Fig. 1. Data comes from a 2D Gaussian density; (a) MID-matrix showing a higher
pointer concentration around the true mode; (b) U-matrix with rectangular topology;
(¢) U-matrix with hexagonal topology.

3.2 Dataloads

The number of data vectors projecting onto each unit, namely the pointer dat-
aload 7(i,j), is the natural estimate of the weight 7 (¢, j) obtained from the true
underlying distribution f [4],

(i, ) = /V L, 1600,



where V (i, j) collects all input vectors which are closest to unit (4, 7). Again, to
easily visualize the dataload distribution over the map, a similar gray image is
computed, namely, the DL-matrix. Note that, in this case, darker means higher.

It is important to realize that the “density” of pointers in the trained GTM
should serve as an estimate of the density underlying the data. In this ideal case,
each neuron would cover about the same proportion of data, that is, a uniform
DL-matrix should be obtained. Another interesting way to deal with mode detec-
tion and density estimation is to obtain uniformly distributed pointers (over the
observed range). Now neurons will present markedly different dataloads, higher
densities relating intuitively to larger dataloads. Throughout this paper we fo-
cus on the first approach, in which mode detection is based on different pointer
concentrations. However, the second idea also seems feasible and is under study.

3.3 Magnification Factors

Since the usual Kohonen algorithm tends to underestimate high probability re-
gions and overestimate low probability areas [3], a concept to express the magni-
fication between data and pointer density was needed. A basic theorem related to
1D data was presented by Ritter and Schulten [13]. These authors demonstrated
that the limiting pointer density is proportional to the data density raised to
a magnification factor kK = % This theorem was later complemented by Bodyt,
Verleysen and Cottrell [4], who recalled a result from vector quantization (VQ)
theory, but we shall not be concerned with this problem in the present paper.

Thanks to the topology preserving properties of the GTM, nearby points in
latent space will map to nearby points in data space. The concept of magni-
fication factors came to represent how the topological map was being locally
stretched and compressed when embedded in data space [3]. In the context of
the original version of the SOM the topological map is represented in terms of
a discrete set of reference vectors, so that a non-continuous expression of mag-
nification factors can also be obtained.

We have focused our study on the GTM model, where local magnification
factors can be evaluated as continuous functions of the latent space coordinates in
terms of the mapping y(x, W) [3]. This constitutes one of our main motivations
for working with GTM. We obtain the magnification factors as
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where V, is the volume of an infinitesimal L-dimensional (L=2) hypercuboid in
the latent space and V), is the volume of its image in the data space. Here J is
the Jacobian of the mapping y(x, W) and % are the partial derivatives of the
mapping y(x, W) with respect to the latent variable 2! = (!, 2}).

Using techniques of differential geometry it can be shown that the directions
and magnitudes of stretch in latent space are determined by the eigenvectors and
eigenvalues of JJ T [3]. Only magnitudes of stretch are considered in this paper.
Again, a linear transformation on a gray-scale matrix is presented to visualize




the magnitude of that compression, namely the MF-matrix (as in MID-matrix
case, darker means lower). Mode detection analysis based on stretch orientations
is postponed for future work.

3.4 A strategy for mode detection

The above summaries of the GTM’s self-organizing structure constitute the basis
of the following scheme for exploring mode estimation.

1. Train a GTM model [17] until the Sammom’s projected pointers show a good
level of organization and a (nearly) uniform DL-matrix is obtained. Check
also the stability of log-likelihood values.

2. Compute the MID and MF matrices. If the existence of more than one mode
is suggested, build subsets of data and return to STEP1 to fit individual
GTMs at each unimodal subset.

3. Combining MID-matrix’s darkest region, pointer concentration on Sammon’s
projection and stretch location displayed in the MF-matrix, an approxima-
tion to the single mode’s location can be performed.

This completes our theoretical presentation. We are now ready to examine
some empirical evidence.
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Fig. 2. Data comes from a N2(0,0.1I>) density; training parameters are specified in
the text; (a) DPO-matrix, showing a map well centered around the mode; (b) DL-
matrix, note a tendency towards darker corners; (c) trained map, denser strips are
clearly visible; (d) MID-matrix, slightly biased with respect to a); (e) MF-matrix,
much coincident with d).

4 Simulation study

As an illustration of the strategy for mode detection presented above, synthetic
data samples from several Gaussian distributions with spherical covariance ma-
trices (and often centered at the origin) are considered. Each training set is of
size 2500 unless otherwise noted. Since 2-dimensional data allow to examine the
GTM directly, a straightforward single Gaussian is tried out first to verify that
pointer concentration occurs and can be detected by our summary matrices and



statistics, see Figure 2. For the sake of references, we have also compared, in our
2D cases, the final distribution obtained via the GTM,

1 K * *
o 2 0= 13 W) 1),

where §* and y*(x;, W) are the inverse of the variance and the location of the
Gaussian centres after training, with the true one, see Figure 3. Whenever syn-
thetic data exhibit a single mode at the origin, a gray-scaled matrix containing
the norm of each pointer is also used to test the goodness of our strategy, namely
the DPO-matrix, i.e. the Distance from each Pointer to the Origin, see Figure 2.
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Fig. 3. Data comes from a N2(0,0.1I,) density; training parameters are specified in the
text; (a) theoretical distribution in 3D; (b) 2D isolines generated from a); (c) mixture
distribution obtained after training the GTM; (d) 2D isolines generated from c).
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Fig.4. (a) N2(0,0.5I2) + N2(2,0.5I2) data set, training parameters: K=625, M=16,
o =04 and 7 = 2; (b) DL-matrix; (c) trained map; (d) MID-matrix; (¢) MF-matrix.
Note: a) and c) show the data space orientation while b) d) and e) have the latent
space one.

To obtain a good level of detail in the study, the number of latent points is
fixed to 25x25 unless otherwise noted. Note that having a large number of sample
points causes no difficulty beyond increased computational cost [1], so smaller
maps, say 15x15 or even 10x10, often provide equally useful information. For
these many units, the best values for the number of basis functions M and their
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Fig. 5. N2(0,0.5I2)+ N2(2,0.5I2) density, training parameters: K=625, M=16, o = 0.4
and 7 = 2; (a) theoretical distribution in 3D; (b) 2D isolines generated from a); (c)
mixture distribution obtained after training the GTM; (d) 2D isolines generated from

c).

common width o seem to be 16 and 0.5 respectively (they tend to provide a well-
organized map and a rather uniform DL-matrix). When selecting the number
of training cycles, the evaluation of the log-likelihood can be used to monitor
convergence. Hence, we have developed Matlab code to train the GTM model
until the difference between the log-likelihood values at two consecutive steps is
less than a threshold, namely 7. A 7-value smaller than 1.5 is not required for
this particular data set, where the training algorithm only needs 20-25 cycles to
achieve a good level of convergence.

Special care must be taken with a well-known problem related to the SOM
trained structure, namely the border effect. By this is meant that units on edges
of the network do not stretch out as much as they should [11], which leads to
confusing gray-scaled matrices on these map regions, see Figure 2d. Fortunately,
these spurious concentrations rarely spread towards the interior of the network,
although their traditional presence is somewhat annoying.
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Fig. 6. (a) Carreira data set, N=8000, training parameters: K=625, M=81, ¢ = 1.0
and 7 = 2; (b) DL-matrix; (c) trained map; (d) MID-matrix; (e¢) MF-matrix.

To illustrate the strategy in a simple multimodal case, Figure 4 shows an
equally weighted mixture of two 2D Gaussians. While all the statistics success-
fully reveal the existence of two modes, the map does not reflect the support
of the true generating distribution. Note also that, somewhat surprisingly, both



horizontal and vertical strips are visible in Figure 4e. As a result note the bulky
ridge connecting the two modes in Figure 5c.

We now present a more complex multimodal case, first considered by Car-
reira [5], involving an equally weighted mixture of eight 2D Gaussians with three
modes in total, see Figure 7b. The trained map in Figure 6 shows quite infor-
mative lines of concentration and stretch in (d) and (e), revealing plausible hori-
zontal and vertical split-regions to separate out the three modes (unfortunately,
a strong border effect is also visible in (d)). The fitted density in Figure 7c-d
does capture the three modes approximate location (although it tends again to
inflate the main gap between modes).
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Fig. 7. Carreira data set, training parameters: K=625, M=81, 0 = 1.0 and 7 = 2; (a)
theoretical distribution in 3D; (b) 2D isolines generated from a), component modes
are marked with “e”  mixture modes with “4”; (c) mixture distribution obtained after
training the GTM; (d) 2D isolines generated from c).

The GTM model in Figure 8 deals with 3D Gaussian data. It reflects how the
relationship between adequate organization and uniformly distributed dataloads
is already more difficult to obtain. Note that the MID-matrix and MF-matrix
show a definite map compression around the center of the map, yet the current
pattern is quite different in nature to that found in Figure 2. In these and other
higher-dimensional cases, the fitted mixture densities and isolines plots can not
be visualized. The main motivation for using SOM structures as an exploratory
tool stems from the complexity of the analysis based on a multidimensional fitted
density.

When jumping to high dimensional Gaussian data we first note that the prob-
ability assigned to the unit radius sphere by the spherical Gaussian distribution
goes to zero as the dimension increases. To the extent that lighter concentra-
tion should then be expected near the mode, modes in this case may turn out
particularly hard to locate [15]. Further, it has been mentioned already that
self-organization can be awkward in higher dimensions. Finally, as evidenced in
Figure 9, the map may no longer be as centered around the mode as before.
Overall, this map is only partially organized, but the patterns in plots (d) and
(e) here can be seen as diffuse versions of the inner rings found in the corre-
sponding plots in Figure 8. We stress that the shift in mode location has been
consistently observed in many runs with this data set.
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Fig. 8. Data come from a N3(0,I3) distribution, training parameters: K=625, M=25,
o = 0.5 and 7 = 2; (a) DPO-matrix; (b) DL-matrix; (¢) Sammon’s projected map; (d)

MID-matrix; (e) MF-matrix.
d e

Fig.9. Data comes from a Nio(0,I10) density, training parameters: K=49, M=144,
o = 1.1, 7 = 2 and 200 Sammon steps; (a) DPO-matrix, showing how the mode
is shifted a bit with respect to the 2D Gaussian case; (b) DL-matrix, (¢) Sammon’s
projected map; (d) MID-matrix following the pattern in a); (e) MF-matrix.

5 Summary and discussion

This paper explores the role of the SOM structure to deal with the problem
of multivariate mode detection. Mode detection differs from cluster detection in
that a precise estimation task is faced when tackling unimodal data. The present
approach is founded on the tenets that (i) SOM pointers near the modes should
lie closer together due to a higher concentration of data in those regions; and
(ii), these areas can be highlighted by exploring the structure of pointer inter-
distances and other summaries whenever sufficient self-organization is achieved.
As the GTM training algorithm explicitly controls the smoothness of the map
and also leads to a rich, continuous treatment of local magnification factors, it
can be seen to provide a potential advantage over the original SOM fitting algo-
rithm. Hence, we have formulated and investigated a strategy for detecting the
modes of a multivariate continuous data-generating distribution based on suit-
able statistics taken from a trained GTM, namely, median interneuron distances,
dataloads, magnification factors together with Sammon’s projection.

The strategy works as expected with 2D and 3D Gaussian data. While the
maps produced by GTM are quite similar to those found by the standard fitting
algorithm in some cases (see Figure 2), they differ markedly in others (Figure 4),
which suggests that any detection strategy of the present sort must distinguish
the origin of the SOM structure. In a sense, this is the price to be paid for
exploiting GTM’s richer framework.
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The paper also highlights the current risks found when fitting SOMs to high-
dimensional data, where larger maps are needed to provide enough detail for
the strategy to succeed but turn out to be harder to organize. Some unexpected
phenomena have been isolated; for example, in the 10D case modes are typically
anchored at noncentral neurons. Additional research is needed to clarify the
setting of GTM parameters with an eye put on better self-organization levels.

Future investigations can proceed in various fronts. New diagnostic values
can be based on a suitable combination of MID and MF values intended to
stress pointer concentration. Directions of stretch deserve also a close look. On
the other hand, an additional smoothing construct can be used in GTM, namely,
a Gaussian process prior distribution penalizing larger W entries. Other prior
distributions may also be considered, see e.g. [20].

Finally, note that the present strategy for mode detection is based on the
assumption that the density of the reference vectors will be similar in some
sense to the density of the training data. As mentioned above, an alternative
strategy can proceed on the basis of uniformly spaced pointers with widely dif-
ferent dataloads. To this end, some adjustments to the standard algorithm have
been proposed to yield a trained map in line with the desired level of pointer
concentration [21]. It remains to be seen whether these adjustments have their
counterpart in GTM or else can improve detection accuracy. As a first example
of the power of the suggestions made in [21], we finally present the alternative
maps obtained in a previously discussed example.
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Fig. 10. (a) Map trained via GTM (discussed earlier); (b) the map trained with the
convex adjustment reflects more faithfully the sampling density; (c) the map trained
with the concave adjustment provides a more uniform distribution of pointers.
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