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1. Introduction

Economic and financial time series often have stochastic trends. In this case, it is common

to take differences in order to obtain a stationary transformation. Then, an ARMA model

is fitted to this transformation to represent the transitory dependence. Alternatively, the

dynamic properties of series with stochastic trends me be represented by unobserved com-

ponent models. It is well known that both models are equivalent when the disturbances

are i.i.d. and Gaussian given that, in this case, the reduced form of an unobserved com-

ponent model is an ARIMA model with restrictions in the parameters; see, for example,

Harvey (1989). The main difference between both specifications is that while the ARIMA

model includes only one disturbance, the corresponding unobserved component model in-

corporates several disturbances. Consequently, working with the ARIMA specification is

usually simpler. However, using the unobserved components model may lead to discover

features of the series that are not apparent in the reduced form model. In this paper, we

consider one of these features. In particular, we analyze the effects of working with the

reduced form ARIMA model on prediction intervals for future values of the series when

the underlying components are heteroscedastic.

From an empirical point of view, the presence of conditional heteroscedasticity in

both ARIMA and unobserved component models, have previously interested many au-

thors. There is a large literature that considers ARIMA models with GARCH distur-

bances; see Bollerslev et al. (1992), Bollerslev et al. (1994), Diebold and Lopez (1995),

and Diebold (2004) for detailed surveys. On the other hand, unobserved component mod-

els with GARCH disturbances have been receiving a lot of attention as they allow to

distinguish which components are heteroscedastic. One of the earliest implementations of

these models is Harvey et al. (1992), which consider latent factor models; see also King
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et al. (1994), Sentana and Fiorentini (2001), Chang and Kim (2004) and Sentana (2004)

for other applications related with latent factor models. Chadha and Sarno (2002) and

Moore and Schaller (2002) fit unobserved component models with GARCH disturbances to

price volatility and term structure of interest rates, respectively. With respect to inflation

rates, the presence of heteroscedasticity in the transitory and/or permanent components

is a broadly debated issue in the recent literature; see Broto and Ruiz (2009) for a detailed

survey. For example, Stock and Watson (2007) find that a simple unobserved compo-

nent model with conditionally heteroscedastic noises describe well the dynamics of the US

inflation.

To simplify the presentation, consider that the series of interest, yt, is composed by a

transitory component, εt, and a stochastic trend, µt, with a stochastic slope βt. Conse-

quently, the stochastic trend model is given by

yt = µt + εt, (1a)

µt = µt−1 + βt−1 + ηt, (1b)

βt = βt−1 + ξt, (1c)

where εt, ηt and ξt are mutually independent and serially uncorrelated processes, with zero

means and variances σ2
ε , σ2

η and σ2
ξ , respectively. In this paper, we focus on two particular

cases of model (1), which are of interest from an empirical point of view. The first one is

obtained when σ2
ξ = 0. Under this set up, the slope is fixed and the trend reduces to a

random walk with a drift given by β0. In this case, taking first differences in (1) results

in a stationary series given by

∆yt = β0 + ηt + ∆εt. (2)

Without loss of generality, we will also assume that β0 = 0, so that yt follows a local

level model; see, for example, Durbin and Koopman (2001) for a detailed description and
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applications of this model. With this assumption, it is well known that model (2) can be

represented by the following IMA(1,1) model

∆yt = at + θat−1, (3)

where, if ∆yt is invertible, then θ =
[
(q2

η + 4qη)1/2 − 2− qη

]
/2, with qη = σ2

η/σ2
ε being

the signal-to-noise ratio. Note that the parameter θ is restricted to be negative, i.e.

−1 < θ < 0. Finally, the reduced form disturbance at is an uncorrelated process with zero

mean and positive variance equal to σ2
a = −σ2

ε

θ
.

On the other hand, when σ2
ξ > 0 but σ2

η = 0, the smooth trend model is obtained; see

Harvey and Jaeger (1993) and Nyblom and Harvey (2001) for description and applications.

In this case, the trend is an integrated random walk and therefore two differences are

necessary to obtain the stationary transformation, that is

∆2yt = ξt−1 + ∆2εt. (4)

The corresponding reduced form is a restricted IMA(2,2) given by

∆2yt = at + θ1 at−1 + θ2 at−2, (5)

where the parameters θ1, θ2 and σ2
a are the solutions of the following system

σ2
a(1 + θ2

1 + θ2
2) = σ2

ε(6 + qξ), (6a)

θ1(1 + θ2)
1 + θ2

1 + θ2
2

= − 4
6 + qξ

, (6b)

θ2

1 + θ2
1 + θ2

2

=
1

6 + qξ
, (6c)

with qξ = σ2
ξ/σ2

ε . There are four solutions of system (6) but only one of them contains a

pair of real values for θ1 and θ2 that falls inside the invertibility region.

Given that we are interested in analyzing the reduced form model in the presence

of GARCH unobserved noises and that GARCH processes are characterized by having
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excess kurtosis and positive autocorrelations of squares, in this paper, we work out these

moments for the stationary transformation of the local level and the smooth trend models

when the underlying disturbances are GARCH(1,1) processes. For the local level model,

we consider the case in which either or both disturbances, εt and ηt, are conditionally

Normal GARCH processes, while for the smooth trend model we consider the case where

only the transitory component, εt, is heteroscedastic. Then, we derive the properties of

the reduced form ARIMA disturbance, at, in terms of the unobserved disturbances, εt, ηt

and ξt. We will show that there is no a simple GARCH model for at with exactly the same

kurtosis and autocorrelations of squares as those generated in the reduced form noise when

the unobserved components are GARCH. In any case, fitting ARIMA-GARCH models is

a popular methodology, and, consequently, we also find by simulation, the parameters of

an ARIMA-GARCH with similar theoretical kurtosis and autocorrelations of squares to

those of conditionally heteroscedastic unobserved component models.

As a general conclusion, we show that if εt and ηt are assumed to be GARCH processes,

the conditional heteroscedasticity of the ARIMA noise at is weaker than the one present

in the unobserved disturbances. In some cases, at could even be seen as homoscedastic.

Therefore, the heteroscedasticity is more evident in the unobserved component model

and can be overlooked when working with the reduced form ARIMA model. This result

could be expected as the heteroscedasticity weakens under contemporaneous aggregation

of GARCH processes; see, for example, Zaffaroni (2007).

More interestingly, we also analyze the performance of prediction intervals obtained

when both, the unobserved component and the ARIMA model are fitted. In both cases, if

the series is heteroscedastic, the amplitudes of the intervals change depending on whether

the conditional variance at the moment of making the prediction is larger or smaller than

the marginal variance. Denoting by excess volatility, the difference between the conditional
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and the marginal variances at the moment when the prediction is made, we show that,

if only the transitory component is heteroscedastic, then the excess volatility disappears

as the prediction horizon increases when the intervals are obtained using the unobserved

component model. That is, the prediction intervals obtained with the unobserved com-

ponent model converge to the intervals of the corresponding homoscedastic model as the

prediction horizon increases. However, given that the prediction intervals obtained using

the reduced form ARIMA model always contain at least one unit root, they depend on

the size and sign of the shock at the time the prediction is made, for any prediction hori-

zon. In this case, depending on whether the excess volatility is positive or negative, the

multi-step prediction intervals based on the ARIMA model can be too wide or too narrow

respectively, when compared with the intervals based on the corresponding unobserved

component model.

The rest of this paper is structured as follows. In Section 2, we derive the kurtosis

and autocorrelations of squares of the stationary transformation of the local level and

smooth trend models when the disturbances are serially uncorrelated with symmetric

distributions and finite fourth order moments. Then, we particularize these results for

conditionally Normal GARCH(1,1) disturbances. In Section 3, we derive the statistical

properties of the reduced form ARIMA noise, at in the two models considered. We also

derive the parameters of the ARIMA-GARCH model that give comparable kurtosis and

autocorrelations of squares with those of the unobserved component model with GARCH

disturbances. The results in this section are illustrated with Monte Carlo experiments.

Section 4 derives prediction intervals for both models. Section 5 contains an empirical

application. Finally, Section 6 concludes the paper.
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2. Properties of the local level and smooth trend models

In this section we derive the statistical properties of the stationary transformation of yt

in the local level and smooth trend models when the disturbances are assumed to be

uncorrelated processes with symmetric densities and finite fourth order moments. As

the interest in this paper is to analyze the properties of conditionally heteroscedastic

unobserved component models, we focus on the excess kurtosis and the autocorrelation

function (acf) of squared observations. We then particularize these results for the case in

which the disturbances are GARCH(1,1) processes.

2.1 The local level model

Consider the local level model given by

yt = µt + εt (7a)

µt = µt−1 + ηt. (7b)

It is easy to show that the variance of the stationary transformation, ∆yt, in (2) is given

by

V ar[∆yt] = σ2
ε(qη + 2). (8)

Additionally, the excess kurtosis is given by

κ̄∆y =
q2
ηκ̄η + 2κ̄ε + 6(κ̄ε + 2)ρε2

1

(qη + 2)2
, (9)

where κ̄ε and κ̄η are the excess kurtosis of εt and ηt, respectively, and ρε2

1 is the lag-one

autocorrelation of ε2
t . Note that the signal-to-noise ratio, qη, plays an important role

in determining the relative influence of each noise on κ̄∆y. In the limiting cases, when

qη →∞, ∆yt = ηt (i.e. yt is a pure random walk process) so that κ̄∆y = κ̄η. On the other

hand, as qη → 0, ∆yt = ∆εt (i.e. yt is a white noise process), and consequently ∆yt is a
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non-invertible MA(1) process whose excess kurtosis may be different from κ̄ε depending

on the value of ρε2

1 .

Finally, after some tedious although straightforward algebra, it is possible to show that

the acf of (∆yt)2 is given by

ρ(∆y)2

τ =
q2
η(κ̄η + 2)ρη2

τ + (κ̄ε + 2)(ρε2

τ−1 + 2ρε2

τ + ρε2

τ+1)
(κ̄∆y + 2)(qη + 2)2

, τ ≥ 1. (10)

Note that for Gaussian homoscedastic noises, ρ
(∆y)2

1 = (qη + 2)−2, which turns out to be

the squared lag-one autocorrelation of ∆yt; see Maravall (1983). However, when assuming

that εt and ηt are homoscedastic but not necessarily Gaussian, it is possible to see from

(10) that ρ
(∆y)2

1 may differ from (ρ∆y
1 )2, depending on the values of the excess kurtosis of

each noise. In the general case, the numerator of (10) is defined as a weighted sum of two

factors that depend on τ . The first one, ρη2

τ , has a weight that is a function of qη and κ̄η,

while the second, ρε2

τ−1 + 2ρε2

τ + ρε2

τ+1, has a weight depending only on κ̄ε. As long as the

acf of squares of both disturbances converges to zero, each of these factors disappears as

τ increases, and therefore the acf of (∆yt)2 also converges to zero.

Next, we derive the excess kurtosis of ∆yt and acf of (∆yt)2 when εt and ηt are

conditionally Normal GARCH(1,1) processes1. In this case, the noises in model (7) are

given by εt = ε†th
1/2
t and ηt = η†t q

1/2
t , where ε†t and η†t are mutually and serially independent

Normal processes with zero mean and unit variance, and

ht = α0 + α1ε
2
t−1 + α2ht−1, (11)

qt = γ0 + γ1η
2
t−1 + γ2qt−1, (12)

where the parameters α0, α1, α2, γ0, γ1 and γ2 are assumed to satisfy the usual positivity

and stationarity conditions. Substituting κ̄ε, κ̄η and ρε2

1 in expression (9) by their expres-

1The general expression for the kurtosis and acf of (∆yt)
2 can be utilized in other specifications of the

noises. For instance, Broto and Ruiz (2006) derive these quantities for the particular case of a local level
model with GQARCH disturbances to account for asymmetries in volatility.
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sions for GARCH(1,1) processes given by κ̄ε = 2α2
1

1−3α2
1−2α1α2−α2

2
, κ̄η = 2γ2

1

1−3γ2
1−2γ1γ2−γ2

2
and

ρε2

1 = α1(1−γ1γ2−γ2
2)

1−2γ1γ2−γ2
2

, respectively, κ̄∆y is given by

κ̄∆y =
3

(qη + 2)2

[
q2
η

2γ2
1

1− 3γ2
1 − 2γ1γ2 − γ2

2

+ 4
α1(1 + α1 − α1α2 − α2

2)
1− 3α2

1 − 2α1α2 − α2
2

]
. (13)

As an illustration, Figure 1 plots for different values of the signal-to-noise ratio, the

relationship between the kurtosis of ∆yt and the persistence of the volatility of both

noises, measured by α1 + α2 and γ1 + γ2. We set α2 = γ2 = 0.85 in order to illustrate

the situations with high persistence and small values of α1 and γ1, as commonly seen in

empirical applications. Note that the slope with respect to the persistence of ηt is steeper

as qη increases, and also that varying qη significantly affects κ∆y.

The autocorrelations of squares when εt and ηt are GARCH(1,1) processes given in

(10), become

ρ(∆y)2

τ =


q2
ηρ

η2

1 (κ̄η + 2) + (κ̄ε + 2)(1 + ρε2

1 (2 + α1 + α2))
(qη + 2)2(κ̄∆y + 2)

, τ = 1

(α1 + α2)ρ
(∆y)2

τ−1 +
(γ1 + γ2 − α1 − α2)q2

η(γ1 + γ2)τ−2ρη2

1 (κ̄η + 2)
(qη + 2)2(κ̄∆y + 2)

, τ ≥ 2,

(14)

where ρη2

1 = γ1(1−γ1γ2−γ2
2)

1−2γ1γ2−γ2
2

.

From (14) we can see that when the persistence of both noises is the same, i.e. γ1+γ2 =

α1 + α2, the acf of squares has an exponential decay, as in a GARCH(p,q) process. We

can also observe an exponential decay when only one noise is heteroscedastic. However,

in general, the decay of the autocorrelations in (14) is not exponential. Consequently, the

behavior of ∆yt is not GARCH. The shape of the acf of (∆yt)2 is illustrated in Figure

2 that plots the acf of squares for different specifications of the disturbances and the

corresponding rates of decay from the second lag. The first row shows a model in which

both disturbances follow the same GARCH process, while in the second model both noises

follow GARCH processes with a different persistence. The last two rows consider models
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in which only one noise is heteroscedastic. Note first that the cases in the first and the last

two rows illustrate the situations mentioned above where we obtain an exponential decay

in the acf of (∆yt)2. Moreover, in the case where γ1 + γ2 6= α1 + α2, although the rate

is slightly increasing, it can be approximated by a constant2. Consequently, exponential

structures such as the ones implied by GARCH processes can be a good approximation

for the acf of squares3.

2.2 The smooth trend model

The smooth trend model is given by

yt = µt + εt (15a)

µt = µt−1 + βt−1 (15b)

βt = βt−1 + ξt. (15c)

In this case, the variance and excess kurtosis of the stationary transformation in (4) are

given by

V ar[∆2yt] = σ2
ε(qξ + 6), (16)

κ̄∆2y =
q2
ξ κ̄ξ + 18κ̄ε + 6(κ̄ε + 2)(8ρε2

1 + ρε2

2 )
(qξ + 6)2

, (17)

respectively.

Furthermore, the acf of (∆2y)2 is given by

ρ(∆2y)2

τ =


q2
ξ (κ̄ξ + 2)ρξ2

1 + (κ̄ε + 2)(8 + 35ρε2

1 + 8ρε2

2 + ρε2

3 )
(κ̄∆2y + 2)(qξ + 6)2

, τ = 1,

q2
ξ (κ̄ξ + 2)ρξ2

τ + (κ̄ε + 2)(ρε2

τ−2 + 8ρε2

τ−1 + 18ρε2

τ + 8ρε2

τ+1 + ρε2

τ+2)
(κ̄∆2y + 2)(qξ + 6)2

, τ ≥ 2.

(18)

2It can be proved that the rate of decay of ρ
(∆y)2

τ implicit in (14) converges to the max(α1 +α2; γ1 +γ2)
as τ increases. Therefore, in the cases where the persistence of the GARCH processes are close to each

other, the rate of decay of ρ
(∆y)2

τ will be approximately constant for almost all values of τ .
3It can be shown that this rate of decay is similar to that of some stochastic volatility models, so that

current research is devoted to study this possibility.
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The smooth trend model assumes that the slope of the trend evolves smoothly. There-

fore, it seems sensible to assume that its noise is homoscedastic. Consequently, we only

consider the possibility of the transitory noise being a GARCH(1,1) process as defined in

(11). In this case, the excess kurtosis and acf of (∆2yt)2 are given by

κ̄∆2y =
18κ̄ε + 6(κ̄ε + 2)(8ρε2

1 + ρε2

2 )
(6 + qξ)2

, (19)

ρ(∆2y)2

τ =



(κ̄ε + 2)(8 + 35ρε2

1 + 8ρε2

2 + ρε2

3 )
(κ̄∆2y + 2)(qξ + 6)2

, τ = 1

(κ̄ε + 2)(ρε2

τ−2 + 8ρε2

τ−1 + 18ρε2

τ + 8ρε2

τ+1 + ρε2

τ+2)
(κ̄∆2y + 2)(qξ + 6)2

, τ = 2, 3

(α1 + α2)ρ
(∆2y)2

τ−1 , τ ≥ 4.

(20)

Expression (20) implies that models like the GARCH(p,q), which produce exponential

structures in the acf squares, could be suitable for the stationary transformation of the

smooth trend model with a GARCH(1,1) transitory component. As an illustration, Figure

3 plots the acf of squares and its rate of decay for different GARCH parameters and

different qξ. Note that the rates are all constant from the third lag, as implied in (20).

3. Properties of the noise at in the ARIMA model

It is well known that εt, ηt and ξt being mutually and serially uncorrelated is sufficient to

prove that the reduced form of the local linear trend model in (1) is a restricted IMA model.

Consequently, the reduced form noise, at, is also serially uncorrelated. Furthermore, if the

three disturbances are fourth-moment stationary and have symmetric distributions, then

these properties are also shared by at. Taking this into account, the objective of this

section is to derive the moments of at as functions of the moments of the disturbances

of the unobserved component model. We will also derive the parameters expected to be

obtained if at is assumed to be a GARCH(1,1) model.
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3.1 The local level model

Consider the reduced form IMA(1,1) model given in (3). In this case, the excess kurtosis

of ∆yt, is given by

κ̄∆y =
κ̄a(1 + θ4) + 6θ2ρa2

1 (κ̄a + 2)
(1 + θ2)2

, (21)

where κ̄a and ρa2

1 are the excess kurtosis of at and the lag-one autocorrelation of a2
t ,

respectively. On the other hand, it is easy to show that the acf of ∆y2
t is given by

ρ(∆y)2

τ =
κ̄a + 2

(1 + θ2)2(κ̄∆y + 2)

[
(1 + θ4)ρa2

τ + θ2(ρa2

τ−1 + ρa2

τ+1)
]
, τ ≥ 1. (22)

In order to find expressions of κ̄a and ρa2

τ , as functions of the parameters of the unob-

served component model, we equal the excess kurtosis of ∆yt given by (9) and (21), and

the autocorrelations of order τ = 1, 2, . . . in (10) and (22). The following system is then

obtained4

(κ̄a + 2)
(
1 + θ4 + 6θ2ρa2

1

)
≡ (1 + θ)4(κ̄η + 2)− 8θ(1 + θ)2

+ 2θ2(κ̄ε + 2)
(
1 + 3ρε2

1

)
, (23a)

(κ̄a + 2)
[
(1 + θ4)ρa2

τ + θ2
(
ρa2

τ−1 + ρa2

τ+1

)]
≡ θ2(κ̄ε + 2)

(
ρε2

τ−1 + 2ρε2

τ + ρε2

τ+1

)
+ (1 + θ)4(κ̄η + 2)ρη2

τ , τ ≥ 1. (23b)

As previously stated, ρ
(∆y)2

1 may differ from (ρ∆y
1 )2 when εt and ηt are homoscedastic

but not necessarily normal. Given that yt follows an IMA(1,1) process, at must incor-

porate a nonlinear behavior that explains this difference. In other words, though still

uncorrelated, at is not independent; see Breidt and Davis (1992). To illustrate the behav-

ior of at in this particular set up, Table 1 shows the theoretical acf of squares for several

4To obtain (23), recall that θ can be defined in terms of qη, so that the following expressions result:

1 + θ2 = −θ(qη + 2),

1 + θ4 = θ2(q2
η + 4qη + 2).
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values of qη, κ̄ε and κ̄η, coming from the resolution of the system given by (23). Observe

that non-normality in either or both noises may generate non-zero autocorrelations of

squares (specially in the lag-one autocorrelation). However, these autocorrelations do not

follow any specific pattern and, consequently, they do not reflect the presence of GARCH

effects in the series. However, it is possible to obtain values for some usual conditional ho-

moscedasticity statistics, e.g. the McLeod-Li (1983) test, that may wrongly lead to reject

the null of conditionally homoscedasticity. Note also that the pattern in which only the

lag-one autocorrelation of squares is different from zero may be confused with the effect

of outliers; see Carnero et al. (2006).

When either or both noises are heteroscedastic, the kurtosis and acf of squares of at

are not easily derived. However, we can redefine the system given by (23) to construct the

following set of equations:

[
(1 + θ4)− 6θ2Q(1)

]
ρa2

1 + θ2ρa2

2 = Q(1)(1 + θ4)− θ2, (24)

[
θ2 − 6θ2Q(2)

]
ρa2

1 + (1 + θ4)ρa2

2 + θ2ρa2

3 = Q(2)(1 + θ4), (25)

−6θ2Q(τ)ρa2

1 + θ2ρa2

τ−1 + (1 + θ4)ρa2

τ + θ2ρa2

τ+1 = Q(τ)(1 + θ4) , τ > 2 (26)

where Q(τ) depends on the moments of εt and ηt in the following way:

Q(τ) =
(1 + θ)4ρη2

τ (κ̄η + 2) + θ2(κ̄ε + 2)
(
ρε2

τ−1 + 2ρε2

τ + ρε2

τ+1

)
(1 + θ)4(κ̄η + 2)− 8θ(1 + θ)2 + 2θ2(κ̄ε + 2)

(
1 + 3ρε2

1

) .

When assuming that εt and ηt are stationary GARCH processes, Q(τ) converges to

zero as τ increases. In other words, there exists a value of τ , say τmax, large enough to

make Q(τ) ≈ 0 and thus also make ρa2

τ ≈ 0 for τ > τmax. Taking this into account we can

find the kurtosis and acf of squares of at for a given set of parameters. Figure 4 plots the

acf of squares of at for the same models considered in Figure 2. In general, the magnitude

of the autocorrelations of a2
t is smaller than the corresponding ones of the disturbances
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of the local level model. This suggests that working with the reduced form of an un-

observed component model may hide part of the heteroscedasticity of each component,

by producing a reduced form disturbance, at, with less structure in its acf of squares.

For instance, it might be the casethat if the permanent component, µt, presents a sig-

nificant heteroscedastic structure but the transitory component, εt, is homoscedastic; the

stationary transformation, ∆yt, may not provide significant evidence of heteroscedasticity

at all.

It is worthy to note that, as found with the acf of (∆yt)2, the autocorrelations of

squares of at may not show an exponential decay. Therefore, at may not follow a GARCH

process as well.

3.2 The smooth trend model

The reduced form of the smooth trend is an IMA(2,2) as given in (4) with the MA param-

eters being close to the non-invertibility frontier. The excess kurtosis and autocovariances

of squares of the ∆2yt are given by

κ̄∆2y =
κ̄a (1 + θ4

1 + θ4
2) + 6(κ̄a + 2)

[
θ2
1 (1 + θ2

2) ρa2

1 + θ2
2 ρa2

2

]
σ4

a (1 + θ2
1 + θ2

2)2
(27)

ρ(∆2y)2

τ =



κ̄a + 2
(1 + θ2

1 + θ2
2)2(κ̄∆2y + 2)

[
θ2
1 (1 + θ2

2) + (1 + θ4
1 + θ4

2 + θ2
2 + 4θ2

1 θ2) ρa2

1 +

θ2
1 (1 + θ2

2) ρa2

2 + θ2
2ρ

a2

3 + 4θ2
1 θ2

κ̄a+2

]
, τ = 1

κ̄a + 2
(1 + θ2

1 + θ2
2)2(κ̄∆2y + 2)

[
θ2
2 ρa2

τ−2 + θ2
1 (1 + θ2

2) ρa2

τ−1+

(1 + θ4
1 + θ4

2) ρa2

τ + θ2
1 (1 + θ2

2) ρa2

τ+1 + θ2
2ρ

a2

τ+2

]
, τ ≥ 2,

(28)

respectively. If εt is assumed to be GARCH(1,1), then the conditional heteroscedasticity

should be also present in the resulting at. In this case, finding the implied acf of a2
t in terms

of qξ by equating the expressions of the kurtosis in (17) and (27), and the expressions of
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the autocorrelations of squares in (18) and (20), is very complicate. Consequently, Figure

5 shows the mean estimates of the sample acf of simulated series. Looking at the plots

of this Figure we find the same patterns as the ones derived analytically for the local

level model. The autocorrelation structure of the squared innovations is markedly weaker

than that of the transitory component. As expected, the difference between these two

autocorrelation functions is higher as qξ increases (σ2
ε decreases relative to σ2

ξ ). However,

it seems to be invariant for different GARCH specifications.

Overall, we find the same results as in the local level model. That is, the ARCH effects

in the resulting ARIMA disturbance are less evident than in the unobserved components.

3.3 The IMA-GARCH model and the reduced form of yt

In the previous subsection, we have seen that if the disturbances of an unobserved com-

ponent model are GARCH, the noise of the corresponding reduced form model does not

follow exactly a GARCH(1,1) model. However, the decay of the autocorrelations of squares

could be approximated by such a model. On the other hand, it is usual when analyzing

real time series to fit ARIMA-GARCH models. Consequently, in this subsection, we carry

out Monte Carlo experiments to know which values of the GARCH parameters would be

obtained if one fits a GARCH(1,1) model to the disturbance of the IMA(d,q) model for

yt. In particular, if at is assumed to be a conditionally Normal GARCH(1,1) model, then

at = a†tσt, where a†t is a white noise Gaussian process and

σ2
t = δ0 + δ1a

2
t−1 + δ2σ

2
t−1. (29)

For each of the two unobserved component models considered in this paper, 1000 series

are generated with four different sample sizes (T = 200, 500, 1000, and 5000)5. In the

local level model, we fix α1 = α2 = 0, γ1 = 0.15, γ2 = 0.8 and qη = 1, while in the smooth

5For reason of space we only show one exercise per model, but the results can be generalized to different
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trend model we set α1 = 0.1, α2 = 0.85 and qξ = 1. For each simulated series, we first fit an

homoscedastic MA model to the reduced form and test for conditional heteroscedasticity

in the residuals using the test proposed by Rodriguez and Ruiz (2005):

Q1(10) = T

9∑
k=1

[r̃(k) + r̃(k + 1)]2 ,

where r̃(k) =
√

(T + 2)/(T − k)r(k) is the standardized sample autocorrelation of order k.

Tables 2 and 3 report the mean and standard deviations through all Monte Carlo replicates

of the QML estimates of the MA parameters for each model respectively. We see that in the

local level case θ is estimated quite accurately with respect to the value implied by qη. In

the smooth trend model, however, some downward bias still remains even for large samples.

These Tables also report the percentage of times when the null of homoscedasticity is

rejected by the Q1(10) test. We can see that for relatively large samples (T = 5000)

the IMA residuals in all models capture the conditional heteroscedasticity coming from

the underlying unobserved components. However, for small or moderate samples, this

statistic shows a large proportion of cases where the homoscedasticity cannot be rejected.

For instance, for T = 200, the exercise with the smooth trend shows that 43% of the cases

the residuals do not present evidence of conditional heteroscedasticity, rising to 77% for

the local level model.

The next step in the exercise consists on fitting a GARCH(1,1) model to the resid-

uals of each series. The second block of Tables 2 and 3 reports the Monte Carlo means

and standard deviations of the QML estimates, as well as of the plug-in kurtosis and

autocorrelations of squares of at obtained by substituting the estimated parameters in

the analytical expressions of these moments. With respect to the estimates of the ARCH

parameter, δ1, their values are consistent with the results found above, since they imply a

parameter specifications.
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significant reduction in the ARCH effects. For example, in the local level model γ1 = 0.15

and the average estimate of δ1 is around 0.05. With respect to the GARCH coefficient,

δ2, we see that the average estimates increase with the sample size, so that the estimated

sum δ1 + δ2 converges to the sum γ1 + γ2. In the smooth trend model we observe pretty

similar results. Finally, the last row of Tables 2 and 3 reports the percentage of series in

which the ARCH parameter, δ1, is significant. Observe that only a 9% of the cases in the

local level and a 17% in the smooth trend show significant ARCH effects for T = 200. Of

course, for large samples these figures rapidly increase to reach the 100%.

In this section, we have found that the disturbance at of a reduced form ARIMA model

has weaker ARCH effects compared to εt and/or ηt. This is reflected mainly in a smaller

structure of the acf of squares, that leads to a value for δ1 smaller than the corresponding

to the unobserved components. Furthermore, when dealing with small samples, a higher

sampling error may lead to the lack of rejection of the homoscedasticity hypothesis in

series that are indeed generated as a sum of conditionally heteroscedastic processes.

4. Analysis of the forecasting performance

In this section we derive expressions of the prediction intervals obtained when an unob-

served component model with GARCH disturbances is considered to represent the dy-

namic evolution of series with stochastic trends. We will see how these intervals adapt

their length depending on whether the conditional variance at the moment when the pre-

diction is made is over or under the marginal variance. On the other hand, we also derive

the intervals that are obtained when fitting the corresponding ARIMA model. We will see

that there may be crucial differences between both prediction intervals mainly when the

conditional heteroscedasticity affects only the transitory component.
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4.1 Prediction intervals in series with stochastic levels

Consider that yt is given by the local level model in (7) with GARCH errors (LL-GARCH).

It is well known that if one wants to minimize the mean squared forecast error (MSFE),

then the conditional mean is the optimal point predictor of yT+k. Assuming that the

parameters are known, the Kalman Filter derived in Harvey et al. (1992) may be imple-

mented to obtain estimates of the underlying state at time t = 1, 2, . . . , T denoted by mt.

Then, the optimal linear point predictor is given by

ŷT+k = mT , k = 1, 2, ... (30)

Taking into account that the T under the expectation means that it is conditional on the

information available at time T, the corresponding MSFE is given by

MSFE(ŷT+k) = E
T

[
(yT+k − ŷT+k)2

]
= E

T

[
(µT + ηT+1 + . . . + ηT+k + εT+k −mT )2

]
= Pµ

T + E
T

[ε2
T+k] +

k∑
j=1

E
T

[η2
T+j ], k = 1, 2, ...

= Pµ
T + σ2

ε + k σ2
η +

1− (γ1 + γ2)k

1− (γ1 + γ2)
(qT+1 − σ2

η)

+ (α1 + α2)k−1 (hT+1 − σ2
ε), k = 1, 2, ... (31)

where Pµ
T = E

T
[(µT −mT )2], and hT+1 and qT+1 are the conditional variances of εT+1 and

ηT+1, respectively (see Harvey et al., 1992, for further details). Expressions (hT+1 − σ2
ε)

and (qT+1 − σ2
η) may be interpreted as measures of the excess volatility at the time the

prediction is made with respect to the marginal variance in both noises. Note that the

MSFE of the homoscedastic local level model is given by the first three terms of (31).

Furthermore, given that α1 + α2 < 1, the MSFE of the LL-GARCH becomes a linear

function of k in the long run, with the same slope as its homoscedastic counterpart, but

with a different intercept due to the contribution of the fourth term in (31). However,
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for short and medium horizons, depending on whether the excess kurtosis is negative or

positive, the influence of the excess volatility in both noises leads to a MSFE smaller or

greater than that of the homoscedastic local level model. It is also important to note that

there is a significant difference in the behavior of the MSFE depending on whether the

conditional heteroscedasticity affects the long or the short-run components. An excess

volatility in the permanent component affects the MSFE for all horizons while the effect

of an excess volatility in the transitory component vanishes in the long run. Therefore,

when the heteroscedasticity only affects the transitory noise, the MSFE converges to the

one obtained in the homoscedastic model. However, when the long run component is

heteroscedastic, depending on the sign of the excess volatility, the MSFE is over or under

the MSFE obtained in the homoscedastic model for all prediction horizons.

Consider now that the predictions are obtained using the IMA-GARCH representation

of yt given by (3) and (29). In this case, the optimal linear predictor of yT+k given the

information available at time T is given by

ŷT+k = yT + θaT , k = 1, 2, ... (32)

with MSFE

MSFE(ŷT+k) =


E
T

[a2
T+1], k = 1

E
T

[a2
T+k] + (1 + θ)2

∑k−1
j=1 E

T
[a2

T+j ], k = 2, 3, ...

(33)

where

E
T

[a2
T+k] = σ2

a + (δ1 + δ2)k−1(σ2
T+1 − σ2

a), k = 1, 2, ... (34)

In this case, σ2
T+1 is the conditional variance of aT+1, and (σ2

T+1−σ2
a) is the corresponding
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measure of the excess volatility. By plugging (34) into (33) we find that

MSFE(ŷT+k) =



σ2
a + (σ2

T+1 − σ2
a), k = 1

[
(1 + θ)2(k − 1) + 1

]
σ2

a +

[
(1+θ)2−(δ1+δ2)k−1(θ(2+θ)+δ1+δ2)

1−(δ1+δ2)

]
(σ2

T+1 − σ2
a), k = 2, 3, ...

(35)

Note that the MSFE in (35) can also be separated into a linear and a nonlinear part,

defined by the first and second terms of the expression, respectively. It is clear from this

expression that as k increases, the MSFE(ŷT+k) is also a linear function of the horizon.

However, as long as the excess volatility is different from zero, the path of the IMA-

GARCH MSFE never converges to that of the homoscedastic IMA model. Moreover, the

sign of the excess volatility at time T determines if the IMA-GARCH prediction variance

will be smaller or greater for all k than the prediction variance of the homoscedastic IMA.

In this sense, the behavior is similar to that of the local level model with heteroscedastic

long-run disturbances.

In order to illustrate the behavior of the predictions intervals constructed from the two

alternative ways of dealing with stochastic levels, we generate series with their component

disturbances being GARCH processes and, assuming that the parameters of both models

are known6, we find the MSFEs at a given time T . Then, we construct 95% Gaussian

prediction intervals7 and calculate their observed coverage by generating B = 1000 tra-

jectories of yT+k conditional on the information at time T. The time points are arbitrarily

chosen to illustrate the behavior of the MSFEs in highly volatile and more quiet periods.

The first case is reported in Figure 6 and assumes that we are in a highly volatile

6In the reduced form ARIMA case, θ and σ2
a are directly derived from σ2

ε and σ2
η, while for the parameters

of the GARCH(1,1) model, δ1 and δ2, we use the mean estimates given in the Monte Carlo simulations of
the previous section.

7Although we know that if k > 1 the forecasts distribution is not Gaussian, the results of Pascual et al.
(2006) suggest that it may be a good approximation.
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period of a series generated from a LL-GARCH model where only εt is heteroscedastic,

with parameters α1 = 0.15, α2 = 0.8, and qη = 1. The 95% prediction intervals for

the LL-GARCH and the IMA-GARCH models are in solid and dashed lines, respectively.

The prediction intervals for the homoscedastic model is in dash-dotted lines. Finally, the

vertical clouds of points (marked with stars) are the 1000 generated observations for some

prediction horizons. Thus, according to the nominal coverage, 50 of these points should

lay outside the intervals for each k.

At the selected time point T , where hT+1 − σ2
ε = 4.2, we see that the IMA-GARCH

MSFEs produce too wide prediction intervals. In order to obtain the empirical coverage,

we simply count the number of observations lying inside each prediction interval and then

divide it by B. Figure 7 shows the empirical coverage of both models for each horizon

k. We can see that at k = 1 both intervals are pretty close to the nominal but as k

increases, the empirical coverage of the IMA-GARCH is almost 100%. As expected, the

homoscedastic model significantly underestimate the coverage for short horizons, but then

it works better because the effect of the large shock vanishes with k.

In the second example, we consider a quiet period where hT+1 − σ2
ε = −0.46. Then,

the IMA-GARCH MSFEs produce too narrow prediction intervals, covering around 92%

of the observations against a 95.8% of the LL-GARCH counterparts. Figure 8 plots the

coverage in this last case.

4.2 Prediction intervals for series with smooth stochastic trends

Consider now that yt is given by the smooth trend model in (15), with εt being a

GARCH(1,1) process (ST-GARCH). In this case, the optimal linear point predictor is

given by

ŷT+k = mT + k bT , k = 1, 2, ... (36)
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where mT and bT are the Kalman Filter estimates of µt and βt at time T. From (36) we

find the general expression of the MSFE:

MSFE(ŷT+k) = Pµ
T + k2 P β

T + 2k Pµ,β
T +

k(k − 1)(2k − 1)
6

σ2
ξ + E

T
[ε2

T+k]

= Pµ
T + k2 P β

T + 2k Pµ,β
T +

k(k − 1)(2k − 1)
6

σ2
ξ + σ2

ε

+ (α1 + α2)k−1 (hT+1 − σ2
ε), k = 1, 2, ... (37)

where P β
T = E

T
[(βT −bT )2] and Pµ,β

T = E
T

[(µT −mT )(βT −bT )]. Note that the MSFE of the

homoscedastic smooth trend model is given by the first five terms of (37), and the last term

depends on the excess volatility. However, the long run predictions of the homoscedastic

and GARCH smooth trend model will have the same MSFEs since the heteroscedasticity

comes only from the transitory component.

Consider now the IMA(2,2)-GARCH(1,1) model in (5) and (29). In this case, the

optimal linear predictor is given by

ŷT+k =


2yT − yT−1 + θ1 aT + θ2 aT−1, k = 1

k ŷT+1 − (k − 1)(yT − θ2 aT ), k = 2, 3, ...

(38)

with MSFE

MSFE(ŷT+k) =


E
T

[a2
T+1], k = 1

∑k−1
j=0 B2

j E
T

[a2
T+k−j ], k = 2, 3, ...

(39)

where B0 = 1 and Bj = j (1 + θ1 + θ2) + (1 − θ2), j = 1, 2, ..., k − 1. After plugging

expression (34) in (39) we obtain

MSFE(ŷT+k) =



σ2
a + (σ2

T+1 − σ2
a), k = 1

(k − 1)
[
(1− θ2)2 + k (2k−1)+6(1−θ2) k

6 (1 + θ1 + θ2)2
]
σ2

a

+
∑k−1

j=0 B2
j (δ1 + δ2)k−1−j (σ2

T+1 − σ2
a), k = 2, 3, ...

(40)
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In this case, the first term is the linear part of the MSFE and the second the nonlinear

one, defined as a function of the excess volatility and the prediction horizon, k. When

compared to the MSFE of the smooth trend model, however, the nonlinear term does not

vanish when k increases. Therefore, as in the IMA(1,1)-GARCH case, any shock that

leads to an excess volatility different from zero is permanent and thus the MSFE of the

heteroscedastic model will differ from that of the homoscedastic one for all prediction

horizons. Figure 9 presents a case in which the prediction intervals of simulated series

are calculated at a highly volatile period. For the simulations, we set σ2
ε = 1, α1 = 0.15,

α2 = 0.8, and σ2
ξ = 0.5 (i.e qξ = 0.5).

We see from Figure 9 that again, the IMA-GARCH MSFEs produce too wide prediction

intervals. Indeed, they contain almost all observations for each prediction horizon. The

empirical coverages have been plotted in Figure 10, where it can be observed that when the

prediction horizon is small, IMA-GARCH prediction intervals underestimate the coverage

but for horizons larger than 4, these intervals become wide enough to cover almost 100%

of the observations. On the other hand, the coverages of the homoscedastic model are

smaller than the nominal for short horizons but since the effects of volatility shocks are

transitory, they converge to the nominal of 95% for horizons larger than approximately 8.

Consider now the same exercise in a quiet period. The observed coverage is shown in

Figure 11. This is the opposite case since the IMA-GARCH prediction intervals underes-

timate the nominal coverage. In fact, since the reduced form model takes the low variance

scenario as permanent, the IMA-GARCH MSFEs are smaller than those of the Smooth

Trend-GARCH for all prediction horizons, thus producing too narrow intervals.

Summarizing, in the models where the transitory component, εt, is the only het-

eroscedastic component, the shocks to the variance are purely transitory. Consequently,

the homoscedastic and the unobserved component-GARCH prediction intervals stick to
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each other for large prediction horizons. However, depending on the sign of the excess

volatility, the ARIMA-GARCH counterparts may be wider or thinner than the intervals

obtained with the corresponding unobserved component model. This is due to its inca-

pacity of distinguishing whether the heteroscedasticity affects the long or the short run

components, and it may lead to significant differences between the two prediction inter-

vals, specially for medium and long term. Therefore, the use of reduced form ARIMA

models to construct prediction intervals may be inappropriate to capture the underlying

uncertainty of the heteroscedastic components.

5. An empirical illustration

In this section we fit unobserved component models with GARCH disturbances to real

time series with stochastic levels and/or trends. We also find their stationary transforma-

tions and fit ARMA-GARCH models to them. In particular, we analyze a series of daily

Pound/Euro exchange rate and another of monthly UK inflation rate8.

With respect to the inflation rate, the period analyzed spans from July 1961 to August

2007, thus containing T = 554 observations, while the exchange rates have been observed

from January 3, 2000 to March 29, 2007 with T = 1626 observations. Figure 12 plots both

series together with their corresponding sample autocorrelations of their first differences.

The correlogram of the exchange rate returns suggests that the first differenced series

can be well represented by an MA(1) model with θ < 0 and, consequently, the dynamic

dependence of the series of exchange rates, yt, can be explained by the local level model.

With respect to the correlogram of the differenced inflation, it also suggests an MA(1)

8More specifically, the exchange rate corresponds to the the daily closing price of the Pound (£) per
unit of Euro (e), while the inflation rate is defined as the log-difference of the monthly seasonally adjusted
consumer price index (CPI), multiplied by 100 to have percentage rates. Both series have been downloaded
from the EcoWin database. An intervention analysis of the series using auxiliary residuals (see Harvey
and Koopman, 1992) was carried out with the program STAMP 6.20 of Koopman et al. (2000).
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dependence but with more structure in its autocorrelations. Therefore, we have decided

to include a cyclical component to capture this structure.

On the other hand, it is possible to observe that the sample autocorrelations of squared

observations are in general greater than the squared sample autocorrelations of the original

observations. This indicates the presence of a conditionally heteroscedastic structure. Fol-

lowing the procedure of Broto and Ruiz (2009), we first fit the homoscedastic unobserved

component model to the series to obtain information about which component is condition-

ally heteroscedastic by analyzing the auxiliary residuals. We also fit an ARMA model to

the corresponding first differences. According to the Akaike and Schwarz information cri-

teria, the best fit for the Pound/Euro exchange rate is obtained with the IMA(1,1) model,

and the best fit for the UK inflation rate is obtained with an ARIMA(1,1,1) model9. Table

4 reports the results. First note that the signal-to-noise ratios, qη, for both series are dif-

ferent. For the exchange rate series, q̂η = 2.349, which implies an MA parameter equal to

-0.244 that is rather close to the estimated MA parameter of -0.242. On the other hand, for

the inflation rate, the variance of the transitory component is much larger than that of the

permanent component, yielding q̂η = 0.098. In this case, the MA parameter implied by qη

is equal to -0.732, which is smaller than the estimated by the ARMA(1,1) model (-0.871).

In order to evaluate the fit in each series, Table 4 also reports the sample mean, skewness

(SK), excess kurtosis (κ̄), and the Ljung-Box Q-statistics of the one-step-ahead residuals

of both models, υ̂t and ât. In general, it seems that the models selected fit relatively well

the conditional mean of the series, although in the UK case, we see that the ARMA(1,1)

has a little bit worse fit than the local level plus cycle model. In any case, a positive

9Within the ARIMA framework, in order to capture the cyclical component of the UK inflation rate,
at least an ARMA(2,1) is needed. However, the ARMA(1,1) model not only has a better fit according to
the criteria selected, but also is the one chosen by TRAMO (Time Series Regression with ARIMA Noise,
Missing Observations and Outliers), which is a program developed by Victor Gómez and Agust́ın Maravall
for automatic modelling, estimation and forecasting of ARIMA models; see Gómez and Maravall (1996)
for further details.
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excess kurtosis and a significantly large Q-statistic of the squared residuals suggest that

the models fail to capture the heteroscedasticity of the series. This leads to propose a

GARCH process in all models to account for the dependence of the variance.

In order to decide wether to impose a GARCH process in the transitory and/or perma-

nent components of the unobserved component models, we analyze the difference between

the squared autocorrelations of the auxiliary residuals and the sample autocorrelations

of the squared auxiliary residuals; see Broto and Ruiz (2009) for further details. With

respect to the exchange rate series, we found that both components may be conditionally

heteroscedastic10, so that the model is specified with both, εt and ηt being GARCH(1,1)

processes. For the UK inflation rate, given that qη is very small, we decided to include

GARCH(1,1) effects only in the transitory component, εt, so that the permanent compo-

nent noise, ηt, is homoscedastic.

Table 5 shows the estimation results of the described unobserved component models

with GARCH disturbances and the corresponding ARIMA-GARCH models. As a general

conclusion, we see that these results are in concordance with the analytical findings of

previous sections. First, after comparing the estimates of the ARCH parameters, α1,

γ1, of the local level model with δ1 of the reduced form IMA model, we see that δ1 is

clearly smaller. This result is more evident in the UK inflation rate, where α̂1 ≈ 2 δ̂1.

Second, we observe that in both series α̂1 + α̂2 ≈ δ̂1 + δ̂2, as expected because in one

case we have assumed only one heteroscedastic component and in the other case, the

transitory and permanent components have the same persistence. Finally, the estimates

of the conditional mean and marginal variances do not change significantly after including

the ARCH effects, supporting the fact that the introduction of nonlinearities in the form

of GARCH process does not affect the fit of the conditional mean. With respect to the

10Results of this exploratory analysis are available upon request.
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diagnostics, observe that in both series of residuals the excess kurtosis is smaller than in

the corresponding homoscedastic models. Furthermore, the autocorrelations of squares

are not any longer significant.

Finally, conditional on the estimated models for each series, we find the prediction

intervals obtained by using the theoretical mean squared forecast errors. They are plotted

in Figure 13. For the exchange rate series, the time point selected corresponds to a period,

in June of 200011. Note that the LL-GARCH prediction intervals have the same width

as those of the IMA-GARCH for the one-step-ahead predictions. However, the prediction

intervals of the LL-GARCH are wider for larger prediction horizons. Finally, it is worth

noting that the homoscedastic model is not able to incorporate the information about

the volatility shock and therefore it produces prediction intervals that are really worse in

terms of coverage.

With respect to the UK inflation rate, the period considered to make predictions is

December, 2001. Compared to the high volatility period of the 70’s and the beginning

of the 80’s, the time point selected is within a quiet period. Consequently, the excess

volatility is negative and the theoretical MSFEs of the heteroscedastic models are smaller

than those of the homoscedastic model. Thus, this model produces too wide prediction

intervals. On the other hand, the ARIMA-GARCH model assumes that this period of low

volatility is permanent, so that the resulting prediction intervals are always narrower than

those of the LL-GARCH. However, as the volatility shocks are assumed to be transitory

by the LL-GARCH model, the prediction intervals are narrow at first but then become

wider to follow the path of the homoscedastic prediction intervals.

11For this series, we have re-estimated the models with a sample of the same size but taking into account

data prior to 2000. The results have not changed significantly compared to those reported previously.
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6. Conclusions

In this paper we analyze the effects of taking differences and fit ARMA models to condi-

tionally heteroscedastic series with stochastic trends. In particular, we consider the local

level and smooth trend models with GARCH(1,1) disturbances. We show that although

working with the ARIMA reduced form model is simpler because there is only one distur-

bance, working with the unobserved component model may lead to discover conditionally

heteroscedastic structures that could not be apparent in the reduced form noise.

More interestingly, we also show that working with the unobserved component models

generates more accurate prediction intervals when the heteroscedasticity only affects the

transitory component. In this case, the effects of the heteroscedasticity disappear as

the prediction horizon increases. Therefore, the prediction intervals produced by the

unobserved component models converge to the homoscedastic intervals. However, the

presence of a unit root in the reduced form model, lead to generate prediction intervals

that never converge to the homoscedastic intervals.

Finally, the empirical application with the Pound-Euro exchange rate and the UK

inflation rate illustrates our main findings. Namely, a weaker heteroscedasticity of the

reduced form noise compared to that of the unobserved components, and a differential be-

havior of the IMA-GARCH and LL-GARCH prediction intervals depending on the source

of the volatility shocks.
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7. Figures and Tables

Figure 1: Relationship between κ̄∆y and persistence. The GARCH coefficients, α2 and γ2 are fixed
to 0.85.
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Autocorrelation function Rate of decay

Figure 2: Autocorrelations of (∆yt)2 for several local level models with conditionally Normal
GARCH(1,1) disturbances and qη =

√
2. The rate of decay reported in the right column is defined

as the ratio ρ
(∆y)2

τ /ρ
(∆y)2

τ−1 .
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Autocorrelation function Rate of decay

Figure 3: Autocorrelations of (∆2yt)2 for several smooth trend models with conditionally Normal
GARCH(1,1) disturbances. The rate of decay reported in the right column is defined as the ratio
ρ
(∆y)2

τ /ρ
(∆y)2

τ−1 .
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Figure 4: Autocorrelations of a2
t , resulting from different conditionally Normal GARCH(1,1) dis-

turbances with qη =
√

2. The solid and dash-dotted lines draw the autocorrelations of ε2
t and η2

t ,
respectively.
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q κ̄ε κ̄η θ κ̄∆y ρ
(∆y)2

1 κ̄a ρa2

1 ρa2

2 ρa2

3 ρa2

4 ρa2

5

0.5 0 3 -0.5 0.120 0.151 0.273 -0.030 0.008 -0.002 0.001 0.000

√
2 0 3 -0.324 0.515 0.068 0.665 -0.026 0.003 0.000 0.000 0.000

0.5 3 3 -0.5 1.080 0.260 0.818 0.194 -0.048 0.012 -0.003 0.001

√
2 3 3 -0.324 1.029 0.142 1.120 0.063 -0.007 0.001 0.000 0.000

0.5 3 0 -0.5 0.960 0.270 0.546 0.241 -0.060 0.015 0.004 0.001

√
2 3 0 -0.324 0.515 0.171 0.456 0.109 -0.011 0.001 0.000 0.000

Table 1: Theoretical moments of at resulting from local level models with either or both non-
Gaussian homoscedastic noises.
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Figure 5: Simulated autocorrelations of a2
t compared to the theoretical acf of εt, for different values

of qξ and GARCH parameters, α1 and α2.
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LL-GARCH(1,1) Estimated IMA(1,1)-GARCH(1,1)

Parameters Estimates T = 200 T = 500 T = 1000 T = 5000

q = 1

θ = −0.382 θ̂ -0.425 (0.099) -0.398 (0.067) -0.391 (0.050) -0.384 (0.023)

Q1(10) 23% 47% 76% 100%

γ1 = 0.15 ; γ2 = 0.8 δ̂1 0.055 (0.058) 0.053 (0.039) 0.050 (0.025) 0.048 (0.011)

α1 = 0 ; α2 = 0 δ̂2 0.668 (0.300) 0.748 (0.243) 0.821 (0.175) 0.880 (0.034)

κη = 5.57 κ̂a 3.137 (0.434) 3.277 (0.562) 3.367 (0.609) 3.466 (0.640)

ρη2

1 = 0.3 ρ̂a2

1 0.031 (0.082) 0.057 (0.071) 0.072 (0.068) 0.094 (0.054)

ρη2

2 = 0.285 ρ̂a2

2 0.033 (0.084) 0.051 (0.068) 0.064 (0.063) 0.081 (0.047)

ARCH effects (at 5%) 9% 39% 73% 100%

Table 2: Monte Carlo averages and standard deviations (in parenthesis) of the QML estimates of
the IMA-GARCH parameters when the series are generated by a local level model with GARCH
noises.
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Smooth Trend - GARCH(1,1) Estimated IMA(2,2)-GARCH(1,1)

Parameters Estimates T = 200 T = 500 T = 1000 T = 5000

qξ = 1

θ1 = −0.750 θ̂1 -0.733 (0.093) -0.729 (0.056) -0.729 (0.041) -0.727 (0.019)

θ2 = 0.231 θ̂2 0.218 (0.080) 0.218 (0.048) 0.223 (0.034) 0.221 (0.016)

Q1(10) 57% 79% 94% 100%

α1 = 0.1 δ̂1 0.054 (0.057) 0.048 (0.032) 0.048 (0.022) 0.045 (0.009)

α2 = 0.85 δ̂2 0.719 (0.273) 0.813 (0.185) 0.853 (0.127) 0.900 (0.023)

κε = 3.774 κ̂a 3.161 (0.471) 3.291 (0.448) 3.35 (0.424) 3.445 (0.234)

ρε2

1 = 0.179 ρ̂a2

1 0.032 (0.084) 0.051 (0.070) 0.063 (0.057) 0.069 (0.031)

ρε2

2 = 0.170 ρ̂a2

2 0.033 (0.085) 0.054 (0.067) 0.064 (0.054) 0.075 (0.033)

ARCH effects (at 5%): 17% 39% 64% 100%

Table 3: Monte Carlo averages and standard deviations (in parenthesis) of the QML estimates of
the IMA-GARCH parameters when the series are generated by the smooth trend model with a
GARCH transitory component.
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Figure 6: Prediction intervals of a LL-GARCH series where only the transitory component is
heteroscedastic, with α1 = 0.15, α2 = 0.8, and qη = 1. The time point is selected in a highly
volatile period.



41

Figure 7: Observed coverage measured as the percentage of trajectories within the prediction
intervals.
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Figure 8: Observed coverage measured as the percentage of trajectories within the prediction
intervals.
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Figure 9: Prediction intervals of an ST-GARCH series, with α1 = 0.15, α2 = 0.8, and qξ = 0.5.
The time point is selected in a highly volatile period.



44

Figure 10: Observed coverage measured as the percentage of trajectories within the prediction
intervals.
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Figure 11: Observed coverage measured as the percentage of trajectories within the prediction
intervals.



46

Figure 12: UK inflation rate and the Pound/Euro (£/e) exchange rate: Evolution against time
and sample autocorrelations of their first differences.
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Pound/Euro exchange rate UK inflation rate

Local level IMA(1,1) Local level + cycle ARIMA(1,1,1)

σ̂2
ε = 0.083** σ̂2

a = 0.344** σ̂2
ε = 0.037** σ̂2

a = 0.08**

σ̂2
η = 0.195** θ̂ = -0.242** σ̂2

η = 0.004** θ̂ = -0.871**

σ̂2
κ = 0.015** φ̂ = 0.357**

υ̂t ât υ̂t ât

Mean 0.009 0.007 Mean -0.034 -0.001

SK 0.209 0.209 SK 0.571 0.558

κ̄ 0.997 0.994 κ̄ 1.964 1.834

Q(10) 15.44 15.42 Q(10) 15.30 18.95*

Q2(10) 109.8** 111.1** Q2(10) 69.44** 82.05**

Table 4: Estimates and sample moments of the residuals of the homoscedastic unobserved com-
ponent and ARIMA models fitted to the Pound/Euro exchange rate and UK inflation rate. σ̂2

κ is
the estimate of the cycle component variance and φ̂ is the estimate of the AR parameter, υ̂t and
ât are the estimates of the one-step-ahead innovations, SK is the skewness, κ̄ is the excess kurtosis
and Q(10) and Q2(10) are the classic lag-10 Ljung-Box statistics applied to the level and squared
residuals, respectively. *(**) Significant at 5% (1%) level.
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Pound/Euro exchange rate UK inflation rate

LL-GARCH IMA(1,1)-GARCH LLCycle-GARCH ARIMA(1,1,1)-GARCH

α̂0 = 1.00E-04** δ̂0 = 6.00E-04** α̂0 = 1.05E-04** δ̂0 = 4.44E-04**

α̂1 = 0.069** δ̂1 = 0.026** α̂1 = 0.079** δ̂1 = 0.041**

α̂2 = 0.930** δ̂2 = 0.971** α̂2 = 0.919** δ̂2 = 0.951**

γ̂0 = 2.00E-04** θ̂ = -0.244** σ̂2
η = 0.003** θ̂ = -0.897**

γ̂1 = 0.034** σ̂2
κ = 0.011** φ̂ = 0.344**

γ̂2 = 0.965**

υ̂†t â†t υ̂†t â†t

Mean 0.018 0.019 Mean -0.013 -0.011

SK 0.159 0.129 SK 0.553 0.618

κ̄ 0.412 0.333 κ̄ 1.106 1.217

Q(10) 11.37 10.93 Q(10) 8.133 9.548

Q2(10) 11.88 12.10 Q2(10) 14.03 15.20

Table 5: Estimates and sample moments of the residuals of the unobserved component and ARIMA
models with GARCH noises fitted to the Pound/Euro exchange rate and UK inflation rate. υ̂†t
and â†t are the estimates of the one-step-ahead innovations, divided by their conditional standard
deviations. See Table 4 for further explanation.
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Figure 13: Prediction intervals of the Pound/Euro exchange rate and UK inflation rate.


