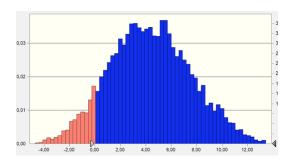
#### Problemas de dos muestras



Mike Wiper Departamento de Estadística Universidad Carlos III de Madrid

Grado en Estadística y Empresa

## Objetivo

|            | $\nu = 45^{\circ}$ |      |      |      |       |  |  |  |
|------------|--------------------|------|------|------|-------|--|--|--|
|            | $\nu_2$            | 75%  | 90%  | 95%  | 97.5% |  |  |  |
|            | 6                  | 0.71 | 1.39 | 1.84 | 2.27  |  |  |  |
| $v_1 = 24$ | 8                  | 0.71 | 1.38 | 1.80 | 2.18  |  |  |  |
|            | 12                 | 0.70 | 1.35 | 1.75 | 2.11  |  |  |  |
|            | 24                 | 0.69 | 1.33 | 1.71 | 2.06  |  |  |  |
|            | $\infty$           | 0.68 | 1.30 | 1.68 | 2.01  |  |  |  |

Mostrar como resolver un famoso problema de dos muestras utilizando el método Monte Carlo.

#### Problemas de dos muestras

Queremos estimar la diferencia entre las medias:  $\delta = \mu_1 - \mu_2$  para dos poblaciones normales: Normal  $(\mu_i, \sigma_i^2)$  para i = 1, 2.

Tomamos dos muestras independientes de tamaños  $n_i$ , and medias  $\bar{y}_i$  y varianzas muestrales  $s_i^2$ , para i=1,2.

¿Cómo podemos hacer inferencia clásica y bayesiana para este problema?

#### Problemas de dos muestras

Queremos estimar la diferencia entre las medias:  $\delta = \mu_1 - \mu_2$  para dos poblaciones normales: Normal  $(\mu_i, \sigma_i^2)$  para i = 1, 2.

Tomamos dos muestras independientes de tamaños  $n_i$ , and medias  $\bar{y}_i$  y varianzas muestrales  $s_i^2$ , para i=1,2.

¿Cómo podemos hacer inferencia clásica y bayesiana para este problema?

Depende de lo que suponemos sobre las varianzas.

#### Varianzas conocidas

Usando la inferencia frecuentista, tenemos

$$ar{Y}_1 - ar{Y}_2 \sim \mathsf{Normal}\left(\delta, rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}
ight)$$

y un intervalo de  $100(1-lpha)\,\%$  de confianza para  $\delta$  es:

$$\bar{y}_1 - \bar{y}_2 \pm z \left(1 - \frac{\alpha}{2}\right) \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}.$$

Desde el enfoque bayesiano, con distribuciones a priori "no informativas"  $f(\mu_i) \propto 1$  para i = 1, 2, tenemos:

$$\mu_i | {
m datos} \sim {
m Normal} \left( ar{y}_i, rac{\sigma_i^2}{n_i} 
ight) {
m para} \ i = 1, 2 {
m \ y \ luego},$$
  $\delta | {
m datos} \sim {
m Normal} \left( ar{y}_1 - ar{y}_2, rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2} 
ight)$ 

y el intervalo bayesiano coincide con el clásico.



## Varianzas desconocidas pero iguales: enfoque frecuentista

En la inferencia frecuentista, es fácil ver que

$$S_c^2 = \frac{1}{n_1 + n_2 - 2} \left[ (n_1 - 1)S_1^2 + (n_2 - 1)S_2^2 \right]$$

es un estimador insesgado de la varianza  $\sigma^2=\sigma_1^2=\sigma_2^2$  y luego tememos que el intervalo es

$$\bar{y}_1 - \bar{y}_2 \pm t_{n_1+n_2-2} \left(1 - \frac{\alpha}{2}\right) s_c \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}.$$

# Varianzas desconocidas pero iguales: enfoque bayesiano

Desde el enfoque bayesiano, escribiendo  $\phi=\frac{1}{\sigma^2}$  y usando la distribución a priori "no informativa"  $f(\mu_1,\mu_2,\phi)\propto \frac{1}{\phi}$ , tenemos

y usando los resultados para la distribución normal gamma, tenemos, otra vez, que el intervalo bayesiano coincide con el intervalo clásico.

6/17

# Varianzas desconocidas pero iguales: el problema de Behrens y Fisher

Recordamos que para  $\sigma_1^2$ ,  $\sigma_2^2$  conocidos, se tiene:

$$ar{Y}_1 - ar{Y}_2 \sim \mathsf{Normal}\left(\delta, rac{\sigma_1^2}{\mathit{n}_1} + rac{\sigma_2^2}{\mathit{n}_2}
ight).$$

Luego, si  $n_1$  y  $n_2$  son muy grandes, para implementar la inferencia frecuentista, sería suficiente sustituir la varianza de  $\bar{Y}_1 - \bar{Y}_2$  con

$$\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}$$

en la fórmula para el intervalo con varianzas conocidas.

¿Qué hacemos si los tamaños muestrales no son tan grandes?

#### La "solución" frecuentista

La aproximación de Welch sugiere estimar la distribución de  $\bar{Y}_1 - \bar{Y}_2$  con una distribución t de Student (escalada y no centrada) con grados de libertad

$$\nu = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{s_1^4}{n_1^2(n_1 - 1)} + \frac{s_2^4}{n_2^2(n_2 - 1)}}.$$

Luego, el intervalo es:

$$\bar{y}_1 - \bar{y}_2 \pm t_{\nu} \left(1 - \frac{\alpha}{2}\right) \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}.$$

#### La "solución" frecuentista

La aproximación de Welch sugiere estimar la distribución de  $\bar{Y}_1 - \bar{Y}_2$  con una distribución t de Student (escalada y no centrada) con grados de libertad

$$\nu = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{s_1^4}{n_1^2(n_1 - 1)} + \frac{s_2^4}{n_2^2(n_2 - 1)}}.$$

Luego, el intervalo es:

$$\bar{y}_1 - \bar{y}_2 \pm t_{\nu} \left(1 - \frac{\alpha}{2}\right) \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}.$$

Problema: la verdadera nivel de confianza depende de la razón de varianzas desconocidas  $\frac{\sigma_1^2}{\sigma_z^2}$ . ¡No es  $100(1-\alpha)$  %!

Existen métodos alternativos: bootstrap, Mann Whitney, ... pero todos sufren problemas.

#### **Ejemplo**

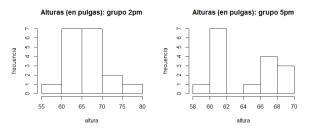
Hacemos 100000 simulaciones de dos muestras de datos normales con  $n_1=n_2=10$ ,  $\mu_1=0$ ,  $\mu_2=5$  y  $\sigma_1^2=\sigma_2^2=10$ .

Con un valor nominal de  $\alpha=0.05$ , aproximadamente 48 % de los intervalos contienen el verdadero valor,  $\delta=-5$ .

```
n1 <- 10; n2 <- 10
mu1 <- 0; mu2 <- 5
delta <- mu1-mu2
sigma21 <- 10; sigma22 <- 10
alpha <- 0.05
simuls <- 100000
nfuera <- 0
for (i in 1:simuls){
    y1 <- rnorm(n1,mu1,sqrt(sigma21))
    y2 <- rnorm(n2,mu2,sqrt(sigma22))
    ci <- t.test(y1,y2)Sconf.int
    if (delta < ci[1] | delta > ci[2]){
        nfuera <- nfuera +1
    }
}
nfuera / simuls
```

### **Ejemplo**

Datos de alturas de estudiantes de dos grupos (tomados del *Handbook of Biological Statistics por John Macdonald*).



El intervalo de un 95 % de confianza nominal es (-1,072,4,933).

### El enfoque bayesiano

Supongamos que utilizamos distribuciones a priori "no-informativas":  $f(\mu_i, \phi_i) \propto \frac{1}{\phi_i}$ . Entonces, sabemos que dados los datos,

$$rac{\mu_i - ar{y}_i}{s_i/\sqrt{n_i}} \sim t_{n_i-1} \quad ext{para } i=1,2.$$

Luego, tenemos:

$$\delta - (\bar{y}_i - \bar{y}_2) = \frac{s_1}{\sqrt{n_1}} T_{n_1 - 1} - \frac{s_2}{\sqrt{n_2}} T_{n_2 - 1},$$

donde  $T_a$  representa una variable t de Student con a grados de libertad y:

$$\frac{\delta - (\bar{y}_i - \bar{y}_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{\frac{s_1}{\sqrt{n_1}} T_{n_1 - 1} - \frac{s_2}{\sqrt{n_2}} T_{n_2 - 1}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

### El enfoque bayesiano

Supongamos que utilizamos distribuciones a priori "no-informativas":  $f(\mu_i, \phi_i) \propto \frac{1}{\phi_i}$ . Entonces, sabemos que dados los datos,

$$rac{\mu_i - ar{y}_i}{s_i/\sqrt{n_i}} \sim t_{n_i-1} \quad ext{para } i=1,2.$$

Luego, tenemos:

$$\delta - (\bar{y}_i - \bar{y}_2) = \frac{s_1}{\sqrt{n_1}} T_{n_1 - 1} - \frac{s_2}{\sqrt{n_2}} T_{n_2 - 1},$$

donde T<sub>a</sub> representa una variable t de Student con a grados de libertad y:

$$\frac{\delta - (\bar{y}_i - \bar{y}_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{\frac{s_1}{\sqrt{n_1}} T_{n_1 - 1} - \frac{s_2}{\sqrt{n_2}} T_{n_2 - 1}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$= T_{n_1 - 1} \sin \phi - T_{n_2 - 1} \cos \phi \quad \text{donde } \phi = \tan^{-1} \frac{s_1/\sqrt{n_1}}{s_2/\sqrt{n_2}}.$$

→□▶→□▶→■▶ ● 少♀♡

Mike Wiper

### La distribución de Behrens y Fisher

Se dice que una variable  $\delta = T_{\nu_1} \sin \phi - T_{\nu_2} \cos \phi$  tiene una distribución de Behrens y Fisher con parámetros  $\nu_1, \nu_2, \phi$ .

No se puede expresar la densidad en una forma sencilla, pero sí existen tablas de la distribución para aproximar a la función de distribución.

| Tal         | ble A            | 1.1  | Percer | itage j | points o | f the Be    | ehre                | ns-Fis | her di | stribu | tion  |
|-------------|------------------|------|--------|---------|----------|-------------|---------------------|--------|--------|--------|-------|
|             | $\psi=0^{\circ}$ |      |        |         |          |             | $\psi = 15^{\circ}$ |        |        |        |       |
|             | $\nu_2$          | 75%  | 90%    | 95%     | 97.5%    |             | $\nu_2$             | 75%    | 90%    | 95%    | 97.5% |
|             | 6                | 0.72 | 1.44   | 1.94    | 2.45     |             | 6                   | 0.72   | 1.45   | 1.95   | 2.45  |
| $\nu_1 = 6$ | 8                | 0.71 | 1.40   | 1.86    | 2.31     | $\nu_1 = 6$ | 8                   | 0.72   | 1.41   | 1.87   | 2.32  |
|             | 12               | 0.70 | 1.36   | 1.78    | 2.18     |             | 12                  | 0.71   | 1.37   | 1.80   | 2.19  |
|             | 24               | 0.68 | 1.32   | 1.71    | 2.06     |             | 24                  | 0.69   | 1.34   | 1.73   | 2.09  |
|             | $\infty$         | 0.67 | 1.28   | 1.65    | 1.96     |             | $\infty$            | 0.68   | 1.30   | 1.67   | 2.00  |

#### El método Monte Carlo

En lugar de usar integración numérica, otra manera de aproximación de las características de una distribución se basa en generar una muestra de la distribución y usar los valores muestrales para aproximar.

Para aproximar una esperanza E[g(Y)] para una variable Y, donde  $V[g(Y)] < \infty$ , se genera una muestra  $y_1,...,y_N$  y se estima con

$$\hat{g} = \frac{1}{N} \sum_{i=1}^{N} g(y_i).$$

- Justificado por la ley de los números grandes.
- Se puede estimar la precisión de la aproximación usando un intervalo de confianza:  $\hat{g} \pm 1,96 \mathrm{dt}(g)/\sqrt{N}$ .

## Usando el método Monte Carlo para simular de una distribución de Behrens y Fisher

Utilizamos el siguiente algorítmo para generar una muestra de tamaño N de la distribución de Behrens con parámetros  $\nu_1, \nu_2, \phi$ .

Para i en 1, ..., N

- ullet Generar  $T_1^{(i)}\sim t_{
  u_1}$  ,  $T_2^{(i)}\sim t_{
  u_2}$  .
- Calcular  $D_i = T_1^{(i)} \sin \theta T_2^{(i)} \cos \phi$ .

Se utilizan los percentiles de la muestra  $d_1,...,d_n$  para hallar un intervalo de credibilidad. Además, se puede aumentar la precisión de la estimación aumentando el tamaño de la muestra.

## **Ejemplo**





- Intervalo frecuentista: (-1,072,4,933).
- Intervalo bayesiano "exacta": (-1,175,5,036).
- Intervalo MC con 100000 simulaciones: (-1,175,5,024).

## Una curiosidad sobre la solución bayesiana



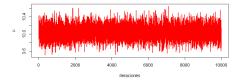
## Una curiosidad sobre la solución bayesiana



¡Fue introducido por Fisher como solución usando su método de inferencia fiducial!

#### Resumen y siguiente sesión

En esta sesión, vimos que en muchos, pero no todos, problemas de dos muestras, con una selección apropiada de la distribución a priori, resultados bayesianos coinciden numéricamente con los frecuentistas.



En la próxima sesión, comentamos una dificultad con la distribución a priori conjugada empleada en problemas normales y mostramos como hacer inferencia con una a priori más razonable mediante el muestreo de Gibbs.