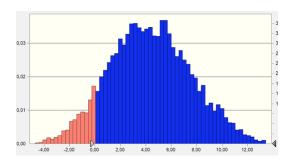
Problemas de dos muestras



Mike Wiper Departamento de Estadística Universidad Carlos III de Madrid

Grado en Estadística y Empresa

Objetivo

	$\nu = 45^{\circ}$							
	ν_2	75%	90%	95%	97.5%			
	6	0.71	1.39	1.84	2.27			
$v_1 = 24$	8	0.71	1.38	1.80	2.18			
	12	0.70	1.35	1.75	2.11			
	24	0.69	1.33	1.71	2.06			
	∞	0.68	1.30	1.68	2.01			

Mostrar como resolver un famoso problema de dos muestras utilizando el método Monte Carlo.

Problemas de dos muestras

Queremos estimar la diferencia entre las medias: $\delta = \mu_1 - \mu_2$ para dos poblaciones normales: Normal (μ_i, σ_i^2) para i = 1, 2.

Tomamos dos muestras independientes de tamaños n_i , and medias \bar{y}_i y varianzas muestrales s_i^2 , para i=1,2.

¿Cómo podemos hacer inferencia clásica y bayesiana para este problema?

Problemas de dos muestras

Queremos estimar la diferencia entre las medias: $\delta = \mu_1 - \mu_2$ para dos poblaciones normales: Normal (μ_i, σ_i^2) para i = 1, 2.

Tomamos dos muestras independientes de tamaños n_i , and medias \bar{y}_i y varianzas muestrales s_i^2 , para i=1,2.

¿Cómo podemos hacer inferencia clásica y bayesiana para este problema?

Depende de lo que suponemos sobre las varianzas.

Varianzas conocidas

Usando la inferencia frecuentista, tenemos

$$ar{Y}_1 - ar{Y}_2 \sim \mathsf{Normal}\left(\delta, rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}
ight)$$

y un intervalo de $100(1-lpha)\,\%$ de confianza para δ es:

$$\bar{y}_1 - \bar{y}_2 \pm z \left(1 - \frac{\alpha}{2}\right) \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}.$$

Desde el enfoque bayesiano, con distribuciones a priori "no informativas" $f(\mu_i) \propto 1$ para i = 1, 2, tenemos:

$$\mu_i | {
m datos} \sim {
m Normal} \left(ar{y}_i, rac{\sigma_i^2}{n_i}
ight) {
m para} \ i = 1, 2 {
m \ y \ luego},$$
 $\delta | {
m datos} \sim {
m Normal} \left(ar{y}_1 - ar{y}_2, rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}
ight)$

y el intervalo bayesiano coincide con el clásico.

Varianzas desconocidas pero iguales: enfoque frecuentista

En la inferencia frecuentista, es fácil ver que

$$S_c^2 = \frac{1}{n_1 + n_2 - 2} \left[(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2 \right]$$

es un estimador insesgado de la varianza $\sigma^2=\sigma_1^2=\sigma_2^2$ y luego tememos que el intervalo es

$$\bar{y}_1 - \bar{y}_2 \pm t_{n_1+n_2-2} \left(1 - \frac{\alpha}{2}\right) s_c \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}.$$

Varianzas desconocidas pero iguales: enfoque bayesiano

Desde el enfoque bayesiano, escribiendo $\phi=\frac{1}{\sigma^2}$ y usando la distribución a priori "no informativa" $f(\mu_1,\mu_2,\phi)\propto \frac{1}{\phi}$, tenemos

y usando los resultados para la distribución normal gamma, tenemos, otra vez, que el intervalo bayesiano coincide con el intervalo clásico.

6/17

Varianzas desconocidas pero iguales: el problema de Behrens y Fisher

Recordamos que para σ_1^2 , σ_2^2 conocidos, se tiene:

$$ar{Y}_1 - ar{Y}_2 \sim \mathsf{Normal}\left(\delta, rac{\sigma_1^2}{\mathit{n}_1} + rac{\sigma_2^2}{\mathit{n}_2}
ight).$$

Luego, si n_1 y n_2 son muy grandes, para implementar la inferencia frecuentista, sería suficiente sustituir la varianza de $\bar{Y}_1 - \bar{Y}_2$ con

$$\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}$$

en la fórmula para el intervalo con varianzas conocidas.

¿Qué hacemos si los tamaños muestrales no son tan grandes?

La "solución" frecuentista

La aproximación de Welch sugiere estimar la distribución de $\bar{Y}_1 - \bar{Y}_2$ con una distribución t de Student (escalada y no centrada) con grados de libertad

$$\nu = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{s_1^4}{n_1^2(n_1 - 1)} + \frac{s_2^4}{n_2^2(n_2 - 1)}}.$$

Luego, el intervalo es:

$$\bar{y}_1 - \bar{y}_2 \pm t_{\nu} \left(1 - \frac{\alpha}{2}\right) \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}.$$

La "solución" frecuentista

La aproximación de Welch sugiere estimar la distribución de $\bar{Y}_1 - \bar{Y}_2$ con una distribución t de Student (escalada y no centrada) con grados de libertad

$$\nu = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{s_1^4}{n_1^2(n_1 - 1)} + \frac{s_2^4}{n_2^2(n_2 - 1)}}.$$

Luego, el intervalo es:

$$\bar{y}_1 - \bar{y}_2 \pm t_{\nu} \left(1 - \frac{\alpha}{2}\right) \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}.$$

Problema: la verdadera nivel de confianza depende de la razón de varianzas desconocidas $\frac{\sigma_1^2}{\sigma_z^2}$. ¡No es $100(1-\alpha)$ %!

Existen métodos alternativos: bootstrap, Mann Whitney, ... pero todos sufren problemas.

Ejemplo

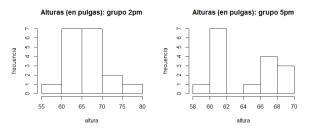
Hacemos 100000 simulaciones de dos muestras de datos normales con $n_1=n_2=10$, $\mu_1=0$, $\mu_2=5$ y $\sigma_1^2=\sigma_2^2=10$.

Con un valor nominal de $\alpha=0.05$, aproximadamente 48 % de los intervalos contienen el verdadero valor, $\delta=-5$.

```
n1 <- 10; n2 <- 10
mu1 <- 0; mu2 <- 5
delta <- mu1-mu2
sigma21 <- 10; sigma22 <- 10
alpha <- 0.05
simuls <- 100000
nfuera <- 0
for (i in 1:simuls){
    y1 <- rnorm(n1,mu1,sqrt(sigma21))
    y2 <- rnorm(n2,mu2,sqrt(sigma22))
    ci <- t.test(y1,y2)Sconf.int
    if (delta < ci[1] | delta > ci[2]){
        nfuera <- nfuera +1
    }
}
nfuera / simuls
```

Ejemplo

Datos de alturas de estudiantes de dos grupos (tomados del *Handbook of Biological Statistics por John Macdonald*).



El intervalo de un 95 % de confianza nominal es (-1,072,4,933).

El enfoque bayesiano

Supongamos que utilizamos distribuciones a priori "no-informativas": $f(\mu_i, \phi_i) \propto \frac{1}{\phi_i}$. Entonces, sabemos que dados los datos,

$$rac{\mu_i - ar{y}_i}{s_i/\sqrt{n_i}} \sim t_{n_i-1} \quad ext{para } i=1,2.$$

Luego, tenemos:

$$\delta - (\bar{y}_i - \bar{y}_2) = \frac{s_1}{\sqrt{n_1}} T_{n_1 - 1} - \frac{s_2}{\sqrt{n_2}} T_{n_2 - 1},$$

donde T_a representa una variable t de Student con a grados de libertad y:

$$\frac{\delta - (\bar{y}_i - \bar{y}_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{\frac{s_1}{\sqrt{n_1}} T_{n_1 - 1} - \frac{s_2}{\sqrt{n_2}} T_{n_2 - 1}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

El enfoque bayesiano

Supongamos que utilizamos distribuciones a priori "no-informativas": $f(\mu_i, \phi_i) \propto \frac{1}{\phi_i}$. Entonces, sabemos que dados los datos,

$$rac{\mu_i - ar{y}_i}{s_i/\sqrt{n_i}} \sim t_{n_i-1} \quad ext{para } i=1,2.$$

Luego, tenemos:

$$\delta - (\bar{y}_i - \bar{y}_2) = \frac{s_1}{\sqrt{n_1}} T_{n_1 - 1} - \frac{s_2}{\sqrt{n_2}} T_{n_2 - 1},$$

donde T_a representa una variable t de Student con a grados de libertad y:

$$\frac{\delta - (\bar{y}_i - \bar{y}_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{\frac{s_1}{\sqrt{n_1}} T_{n_1 - 1} - \frac{s_2}{\sqrt{n_2}} T_{n_2 - 1}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$= T_{n_1 - 1} \sin \phi - T_{n_2 - 1} \cos \phi \quad \text{donde } \phi = \tan^{-1} \frac{s_1/\sqrt{n_1}}{s_2/\sqrt{n_2}}.$$

→□▶→□▶→■▶ ● 少♀♡

Mike Wiper

La distribución de Behrens y Fisher

Se dice que una variable $\delta = T_{\nu_1} \sin \phi - T_{\nu_2} \cos \phi$ tiene una distribución de Behrens y Fisher con parámetros ν_1, ν_2, ϕ .

No se puede expresar la densidad en una forma sencilla, pero sí existen tablas de la distribución para aproximar a la función de distribución.

Tal	ble A	1.1	Percer	itage j	points o	f the Be	ehre	ns-Fis	her di	stribu	tion
	$\psi=0^{\circ}$						$\psi = 15^{\circ}$				
	ν_2	75%	90%	95%	97.5%		ν_2	75%	90%	95%	97.5%
	6	0.72	1.44	1.94	2.45		6	0.72	1.45	1.95	2.45
$\nu_1 = 6$	8	0.71	1.40	1.86	2.31	$\nu_1 = 6$	8	0.72	1.41	1.87	2.32
	12	0.70	1.36	1.78	2.18		12	0.71	1.37	1.80	2.19
	24	0.68	1.32	1.71	2.06		24	0.69	1.34	1.73	2.09
	∞	0.67	1.28	1.65	1.96		∞	0.68	1.30	1.67	2.00

El método Monte Carlo

En lugar de usar integración numérica, otra manera de aproximación de las características de una distribución se basa en generar una muestra de la distribución y usar los valores muestrales para aproximar.

Para aproximar una esperanza E[g(Y)] para una variable Y, donde $V[g(Y)] < \infty$, se genera una muestra $y_1,...,y_N$ y se estima con

$$\hat{g} = \frac{1}{N} \sum_{i=1}^{N} g(y_i).$$

- Justificado por la ley de los números grandes.
- Se puede estimar la precisión de la aproximación usando un intervalo de confianza: $\hat{g} \pm 1,96 \mathrm{dt}(g)/\sqrt{N}$.

Usando el método Monte Carlo para simular de una distribución de Behrens y Fisher

Utilizamos el siguiente algorítmo para generar una muestra de tamaño N de la distribución de Behrens con parámetros ν_1, ν_2, ϕ .

Para i en 1, ..., N

- ullet Generar $T_1^{(i)}\sim t_{
 u_1}$, $T_2^{(i)}\sim t_{
 u_2}$.
- Calcular $D_i = T_1^{(i)} \sin \theta T_2^{(i)} \cos \phi$.

Se utilizan los percentiles de la muestra $d_1,...,d_n$ para hallar un intervalo de credibilidad. Además, se puede aumentar la precisión de la estimación aumentando el tamaño de la muestra.

Ejemplo



- Intervalo frecuentista: (-1,072,4,933).
- Intervalo bayesiano "exacta": (-1,175,5,036).
- Intervalo MC con 100000 simulaciones: (-1,175,5,024).

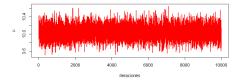
Una curiosidad sobre la solución bayesiana

Una curiosidad sobre la solución bayesiana

¡Fue introducido por Fisher como solución usando su método de inferencia fiducial!

Resumen y siguiente sesión

En esta sesión, vimos que en muchos, pero no todos, problemas de dos muestras, con una selección apropiada de la distribución a priori, resultados bayesianos coinciden numéricamente con los frecuentistas.



En la próxima sesión, comentamos una dificultad con la distribución a priori conjugada empleada en problemas normales y mostramos como hacer inferencia con una a priori más razonable mediante el muestreo de Gibbs.