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Introduction: one sample inference problems

Initially, we shall consider the problem of estimating the mean, µ, and/or
variance, σ2, of a single normal population, X|µ, σ2 ∼ N

(
µ, σ2

)
, with density

f
(
x|µ, σ2

)
=

1
σ
√

2π
exp

(
− 1

2σ2
(x− µ)2

)
from a Bayesian perspective.

We shall consider three different scenarios:

a) inference for µ when σ2 is known,

b) inference for σ2 when µ is known,

c) joint inference for µ, σ2.

and will assume throughout that we observe a sample, x, of size n.



Inference for µ when σ is known

In order to develop a conjugate prior, we must first represent the normal
distribution in exponential family form. We have:

f(x|µ) = exp
(
− µ2

2σ2

)
︸ ︷︷ ︸

C(µ)

1
σ
√

2π
exp

(
− x2

2σ2

)
︸ ︷︷ ︸

h(x)

exp

 µ

σ2︸︷︷︸
φ(µ)

x︸︷︷︸
s(x)


which is a one-parameter exponential family representation as in Definition 3.



A conjugate prior distribution

Given this exponential family representation, from Theorem 9, we can derive
the form of a conjugate prior distribution as

p(µ) ∝ C(µ)a exp(φ(µ)b)

∝ exp
(
− µ2

2σ2

)a
exp

( µ
σ2
b
)

∝ exp
(
− 1

2σ2

[
aµ2 − 2bµ

])
∝ exp

(
− a

2σ2

[
µ− b

a

]2)

which is also a normal distribution, µ ∼ N
(
m, τ2

)
, where m = b

a and τ2 = σ2

a .



The predictive and posterior distributions

Theorem 16
Let X|µ ∼ N

(
µ, σ2

)
with prior distribution µ ∼ N

(
m, τ2

)
. Then the

predictive distribution of X is

X ∼ N
(
m,σ2 + τ2

)
.

Given a sample x = (x1, . . . , xn), the posterior distribution is µ|x ∼
N
(
m?, τ?2

)
where

m? =
1
τ2m+ n

σ2x̄
1
τ2 + n

σ2

τ?2 =
(

1
τ2

+
n

σ2

)−1

.



Derivation of the predictive distribution

Proof We can write X = µ+ ε where µ ∼ N
(
m, τ2

)
and ε ∼ N

(
0, σ2

)
are

independent. Thus, the marginal distribution of X is

X ∼ N
(
m+ 0, σ2 + τ2

)
and the result follows.

We can derive the posterior distribution either directly via Bayes theorem, or
alternatively via Theorem 9. In order to apply Bayes theorem, it is first useful
to give a general expression for the normal likelihood function.



The normal likelihood function

Theorem 17
If a sample, x, of size n is taken from the normal distribution X|µ, σ2 ∼
N
(
µ, σ2

)
, then the likelihood function is

l(µ, σ|x) = (2π)−
n
2σ−n exp

(
− 1

2σ2

[
(n− 1)s2 + n(µ− x̄)2

])

where s2 = 1
n−1

∑n
i=1(xi − x̄)2.



Proof

l(µ, σ|x) =
n∏
i=1

1
σ
√

2π
exp

(
− 1

2σ2
(xi − µ)2

)

= (2π)−
n
2σ−n exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2
)

= (2π)−
n
2σ−n exp

(
− 1

2σ2

n∑
i=1

(xi − x̄+ x̄− µ)2
)

= (2π)−
n
2σ−n exp

(
− 1

2σ2

[
n∑
i=1

(xi − x̄)2 + n(µ− x̄)2
])

and the result follows.

Now the posterior distribution can be derived from Bayes theorem in the usual
way.



Derivation of the posterior distribution via Bayes Theorem

Proof

p(µ|x) ∝ p(µ)l(µ|x)

∝ exp
(
− 1

2τ2
(µ−m)2

)
σ−n

(
− 1

2σ2

[
(n− 1)s2 + n(µ− x̄)2

])
∝ exp

(
−1

2

[(
µ−m

τ

)2

+ n

(
µ− x̄

σ

)2
])

∝ exp
(
−1

2

[(
1
τ2

+
n

σ2

)
µ2 − 2

(m
τ2

+
nx̄

σ2

)
µ

])

∝ exp

−1
2

(
1
τ2

+
n

σ2

)[
µ−

m
τ2 + n

σ2x̄
1
τ2 + n

σ2

]2


which is a normal density; µ|x ∼ N
(

m
τ2

+ n
σ2 x̄

1
τ2

+ n
σ2
,
(

1
τ2 + n

σ2

)−1
)

.



Derivation via Theorem 9

Proof In deriving the prior distribution, we found that m = b/a and τ2 = σ2/a
where f(µ) ∝ C(µ)a exp(φ(µ)b) is the conjugate representation of the prior in
Theorem 9. Therefore, a = σ2/τ2 and b = mσ2/τ2. Also, we have s(x) = x
in our exponential family representation, which implies that, a posteriori,

a? = a+ n =
σ2

τ2
+ n = σ2

(
1
τ2

+
n

σ2

)
b? = b+

n∑
i=1

s(xi) = m
σ2

τ2
+ nx̄ = σ2

(
1
τ2
m+

n

σ2
x̄

)
,

so that the posterior distribution is given by µ|x ∼ N
(
m?, τ?2

)
where

m? =
b?

a?
=

m
τ2 + n

σ2x̄
1
τ2 + n

σ2

, τ?2 =
σ2

a?
=
(

1
τ2

+
n

σ2

)−1

.



How to remember the updating formulae

There is a simple way of remembering the normal updating formulae. Note
firstly that the maximum likelihood estimator for µ is

X̄ ∼ N
(
µ,
σ2

n

)
.

Now, the posterior precision is given by 1
τ?2

= 1
τ2 + n

σ2 where 1
τ2 is the prior

precision and n
σ2 is the precision of the estimator X̄ so,

posterior precision = prior precision + precision of MLE.

Also, the posterior mean is simply a weighted average, m? = wm+ (1−w)x̄,
where w = 1/τ2

1
τ2

+ n
σ2

is proportional to the prior precision.

posterior mean = prior precision × prior mean + precision of MLE × MLE
prior precision + precision of MLE .



Interpretation

Write τ2 = σ2/α so that the prior distribution is µ ∼ N
(
m, σ

2

α

)
and the

posterior distribution is

µ|x ∼ N
(
αm+ nx̄

α+ n
,
σ2

α+ n

)
.

Thus we can interpret the information in the prior as being equivalent to the

information in a sample of size α = σ2

τ2 with sample mean m.



Limiting results and comparison with classical results

Suppose that we let α → 0 (or equivalently, τ2 → ∞). Then the posterior
distribution tends to

µ|x ∼ N
(
x̄,
σ2

n

)
and the posterior mean is equal to the MLE and, for example, a posterior 95%
credible interval

µ± 1.96
σ√
n

is (numerically) equal to the classical 95% confidence interval.

The limiting (improper) prior distribution in this case is uniform,

p(µ) ∝ 1.



Inference for σ when µ is known

In order to find a conjugate density for σ (or σ2), we can again represent the
normal density in one-dimensional exponential family form as

f(x|σ) =
1
σ︸︷︷︸

C(σ)

1√
2π︸︷︷︸

h(x)

exp

− 1
2σ2︸ ︷︷ ︸
φ(σ)

(x− µ)2︸ ︷︷ ︸
s(x)

 .

This implies that a conjugate prior for σ takes the form

p(σ) ∝ σ−c exp
(
− d

2σ2

)
for some values of c, d. This is not a well known distributional form, although
we can derive a simple prior distribution using a transformation.



A conjugate prior for the precision φ

It is much easier to work in terms of the precision φ = 1
σ2. In this case, we

have X|φ ∼ N
(
µ, 1

φ

)
and

f(x|φ) =

√
φ

2π
exp

(
−φ

2
(x− µ)2

)
which is already in exponential family form and implies that a conjugate prior
density for φ is

p(φ) ∝
(√

φ
)c

exp
(
−φ

2
d

)
for some c, d, which is a gamma density, φ ∼ G

(
a
2,
b
2

)
, where a = c + 2 and

b = d.

Note that using the change of variables formula on the prior for σ, we could
also show that the implied prior for φ has the same structure.



Inference for φ when µ is known

Theorem 18
Let X|φ ∼ N

(
µ, 1

φ

)
and suppose that φ ∼ G

(
a
2,
b
2

)
for some a, b. Then, the

marginal distribution of X is

X − µ√
b/a

∼ Ta

and given a sample x = (x1, . . . , xn), the posterior distribution of φ is

φ|x ∼ G
(
a+ n

2
,
b+ (n− 1)s2 + n(µ− x̄)2

2

)
.



Proof of the predictive distribution

Proof Define Z =
√
φ(X − µ) ∼ N (0, 1) and Y = bφ ∼ χ2

a and therefore,
from standard distribution theory we know that Z√

Y/a
∼ Ta, is a Student’s t

distributed random variable with a degrees of freedom and transforming back,
we have

Z√
Y/a

=
X − µ√
b/a

which proves the predictive distribution formula.

In order to demonstrate the formula for the posterior distribution, it is first
convenient to give the formula for the reparameterized normal likelihood
function.



The reparameterized normal likelihood function

Theorem 19
If a sample, x, of size n is taken from the normal distribution X| ∼ N

(
µ, 1

φ

)
,

then the likelihood function is

l(µ, φ|x) = (2π)−
n
2φ

n
2 exp

(
−φ

2
[
(n− 1)s2 + n(µ− x̄)2

])

where s2 = 1
n−1

∑n
i=1(xi − x̄)2.

Proof This follows immediately by substituting φ = 1/σ2 in Theorem 17.

Given this form for the normal likelihood function, the posterior distribution in
Theorem 18 can be derived immediately from Bayes Theorem by combining
prior and likelihood.



Interpretation

In this case, we can interpret the information in the prior as equivalent
to the information in a sample y of size a where the sufficient statistic∑n
i=1(yi − µ)2 = b.

Limiting results

Letting a, b→ 0, we have the limiting improper prior f(φ) ∝ 1
φ and the limiting

posterior distribution

φ|x ∼ G
(
n

2
,

∑n
i=1(xi − µ)2

2

)
so that E[φ|x] =

(
1
n

n∑
i=1

(xi − µ)2
)−1

which is the classical MLE of φ. Note however that

E

[
1
φ

∣∣∣∣x] = E
[
σ2|x

]
=
∑n
i=1(xi − µ)2

n− 2

which is not the MLE of σ2.



Interval estimation for σ (or σ2)

Theorem 20
Let φ ∼ G

(
a
2,
b
2

)
and define σ = 1/

√
φ. Then the constant, c, such that

p = P (σ < c) = P (σ2 < c2), for given p, is c =
√

b
χ2
a(1−p)

.

Proof

p = P (σ < c) = P
(
σ2 < c2

)
= P

(
φ >

1
c2

)
= P

(
bφ >

b

c2

)
= P

(
Y >

b

c2

)
where Y ∼ χ2

a

b

c2
= χ2

a(1− p)

c =

√
b

χ2
a(1− p)

.



Limiting case posterior interval estimation of σ and σ2

Theorem 21
Let X|φ ∼ N (µ, 1/φ) with (improper) prior distribution f(φ) ∝ 1/φ. Then

φ|x ∼ G
(
n

2
,

∑n
i=1(xi − µ)2

2

)
.

Moreover, let σ = 1/
√
φ. Then a 100(1− p)% credible interval for σ is√∑n
i=1(xi − µ)2

χ2
n

(
1− p

2

) < σ <

√∑n
i=1(xi − µ)2

χ2
n

(
p
2

)
and a 100(1− p)% credible interval for σ2 is∑n

i=1(xi − µ)2

χ2
n

(
1− p

2

) < σ2 <

∑n
i=1(xi − µ)2

χ2
n

(
p
2

) ,

which are equal to the classical 100(1− p)% confidence intervals for σ and σ2.



Proof We have already given the posterior density for φ and the credible
intervals follow immediately from Theorem 20 by setting a = n and b =∑n
i=1(xi − µ)2.



Joint inference for µ and φ

When both parameters are unknown, it is again convenient to model in terms
of the precision, φ, instead of the variance. Representing the normal density in
exponential family form, we have

f(x|µ, φ) =
√
φ exp

(
−φµ

2

2

)
︸ ︷︷ ︸

C(µ,φ)

1√
2π︸︷︷︸

h(x)

exp

 φµ︸︷︷︸
φ1(µ,φ)

x︸︷︷︸
s1(x)

−φ
2︸︷︷︸

φ2(µ,φ)

x2︸︷︷︸
s2(x)


so that a conjugate prior for µ, φ can be found as

p(µ, φ) ∝
(√

φ exp
(
−φµ

2

2

))a
exp

(
b1φµ− b2

φ

2

)
for some a, b1, b2

∝ φ
a
2 exp

(
−φ

2
[
aµ2 − 2b1µ+ b2

])
∝ φ

a
2 exp

(
−φ

2
[
d+ a(µ− c)2

])
where c = b1/a and d = b2 − b21/a. This is a normal-gamma distribution.



The normal-gamma distribution

Definition 7
Let Y = (Y1, Y2) and suppose that Y1|Y2 ∼ N

(
θ, 1
λY2

)
and Y2 ∼ G(δ, κ).

Then the distribution of Y is called a normal-gamma distribution, Y ∼
NG(θ, λ, δ, κ). The normal-gamma density function is

f(y) =
κδ

Γ(δ)

√
λ

2π
y

2δ−1
2

2 exp
(
−y2

2
[
2κ+ λ(y1 − θ)2

])
for −∞ < y1 <∞, y2 > 0.

The following theorem gives the properties of the marginal distribution of Y1.

Theorem 22
If Y = (Y1, Y2) ∼ NG(θ, λ, δ, κ), then Y1−θ√

κ/(λδ)
∼ T2δ. Furthermore, E[Y1] = θ

if δ > 1
2 and V [Y1] = κ

λ(δ−1) if δ > 1.



Proof

f(y1) =
∫
f(y1, y2) dy2

=
κδ

Γ(δ)

√
λ

2π

∫ ∞

0

y
2δ−1

2
2 exp

(
−y2

2
[
2κ+ λ(y1 − θ)2

])
dy2

∝
∫ ∞

0

y
2δ+1

2 −1
2 exp

(
−y2

2
[
2κ+ λ(y1 − θ)2

])
dy2

∝
(
2κ+ λ(y1 − θ)2

)2δ+1
2 ∝

1 +
1
2δ

(
y1 − θ√
κ/(λδ)

)2


2δ+1
2

and defining T = Y1−θ√
κ/(λδ)

, we see that f(t) ∝
(
1 + 1

2δt
2
)2δ+1

2 which is the

nucleus of a Student’s t density with 2δ degrees of freedom. The mean and
variance formulae follow from writing Y1 = θ +

√
κ/(λδ)T and noting that

E[T ] = 0 for 2δ > 1 and V [T ] = 2δ
2δ−2 = δ

δ−1 for 2δ > 2.



Conjugate inference for µ, φ given a normal-gamma prior

Theorem 23
Let X|µ, φ ∼ N

(
µ, 1

φ

)
and µ, φ ∼ NG

(
m,α, a2,

b
2

)
so that µ|φ ∼ N

(
m, 1

αφ

)
and φ ∼ G

(
a
2,
b
2

)
. Then the marginal distribution of X is

X −m√
(α+ 1)b/(αa)

∼ Ta.

Given a sample, x, the posterior distribution of µ, φ is

µ, φ ∼ NG
(
m?, α?,

a?

2
,
b?

2

)
where

m? =
αm+ nx̄

α+ n
α? = α+ n

a? = a+ n

b? = b+ (n− 1)s2 +
αn

α+ n
(m− x̄)2.



Proof Note first that

X|φ ∼ N
(
m,

(
1 +

1
α

)
1
φ

)
.

Therefore, X and φ have a normal gamma distribution.

X,φ ∼ NG

(
m,

(
1 +

1
α

)−1

, a/2, b/2

)

and the marginal distribution of X follows immediately from Theorem 22

setting (θ, λ, δ, κ) =
(
m,
(
1 + 1

α

)−1
, a/2, b/2

)
. In order to calculate the

posterior distribution, we can use Bayes theorem:



p(µ, φ|x) ∝ p(µ, φ)l(µ, φ|x)

∝ φ
a−1
2 exp

(
−φ

2
[
b+ α(µ−m)2

])
φ
n
2 exp

(
−φ

2
[
(n− 1)s2 + n(µ− x̄)2

])
∝ φ

a+n−1
2 exp

(
−φ

2
[
b+ (n− 1)s2 + (α+ n)µ2 − 2(αm+ nx̄)µ+ αm2 + nx̄2

])
∝ φ

a+n−1
2 exp

(
−φ

2

[
b+ (n− 1)s2 + (α+ n)

(
µ− αm+ nx̄

α+ n

)2

+ αm2 + nx̄2−

−(αm+ nx̄)2

α+ n

])
∝ φ

a+n−1
2 exp

(
−φ

2

[
b+ (n− 1)s2 +

αn

α+ n
(m− x̄)2+

(α+ n)
(
µ− αm+ nx̄

α+ n

)2
])

which is the nucleus of the given normal-gamma density.



Results with the limiting prior

Suppose that we use the improper prior p(µ, φ) ∝ 1
φ. Then,

p(µ, φ|x) ∝ 1
φ
φ
n
2 exp

(
−φ

2
[
(n− 1)s2 + n(µ− x̄)2

])
∝ φ

(n−1)−1
2 exp

(
−φ

2
[
(n− 1)s2 + n(µ− x̄)2

])
so that

µ, φ|x ∼ NG
(
x̄, n,

n− 1
2

,
(n− 1)s2

2

)



Now, from Theorem 22, we have that

µ− x̄√
(n− 1)s2/(n(n− 1))

=
µ− x̄

s/
√
n
∼ Tn−1.

Therefore, for example, a 100(1-p)% posterior credible interval for µ is

x̄± s√
n
Tn−1

(
1− p

2

)
which is equal to the classical confidence interval.



Semi-conjugate inference via Gibbs sampling

The fully conjugate, normal-gamma prior distribution is slightly unnatural from
the point of view of real prior choice, in that the distribution of µ depends
on the unknown model precision φ. An alternative is to assume that µ and φ
have independent prior distributions, say

µ ∼ N
(
m,

1
ψ

)
φ ∼ G

(
a

2
,
b

2

)
where m,ψ, a, b are all known.

In this case, the joint posterior distribution given a sample, x, is

p(µ, φ|x) ∝ φ
a+n

2 −1 exp
(
−1

2
[(
b+ (n− 1)s2

)
φ+ nφ(µ− x̄)2 + ψ(µ−m)2

])
.



The marginal distributions of µ and φ are

p(µ|x) ∝ exp
(
−ψ

2
(µ−m)2

)(
b+ (n− 1)s2 + n(µ− x̄)2

)−a+n
2

p(φ|x) ∝ φ
a+n

2 −1

√
nφ+ ψ

exp
(
−φ

2

[
b+ (n− 1)s2 +

nψ

nφ+ ψ
(m− x̄)2

])
.

Neither the joint posterior density or the marginal posterior densities has a
standard form. One possible solution is to use numerical integration techniques
to estimate the integration constants, moments etc. of these densities.

Another possibility is to use a Monte Carlo approach. In this case, direct
Monte Carlo sampling cannot easily be applied. However, an indirect approach
is available.



Note firstly that the conditional posterior densities of µ|φ,x and of φ|µ,x are
available in closed form. We have

µ|φ,x ∼ N
(
nφx̄+ ψm

nφ+ ψ
,

1
nφ+ ψ

)
φ|µ,x ∼ G

(
a+ n

2
,
b+ (n− 1)s2 + n(µ− x̄)2

2

)
It is straightforward to sample from these distributions. Therefore, we can set
up a Gibbs sampler to give an approximate Monte Carlo sample from the joint
posterior distribution.



Aside: The (two variable) Gibbs sampler

Assume that we wish to sample from the density of X = (X1, X2). Suppose
that the conditional densities, p(·|X2) and p(·|X1) are known. Then the (two
variable) Gibbs sampler (Geman and Geman 1984) is a scheme for iteratively
sampling these conditional densities as follows.

1. t = 0. Fix an initial value x
(0)
1 .

2. Sample x
(t)
2 ∼ p

(
x2|x(t−1)

1

)
.

3. Sample x
(t)
1 ∼ p

(
x1|x(t)

2

)
.

4. Set t = t+ 1.

5. Go to 2.



As t increases, it can be demonstrated that the sampled values approximate a
Monte Carlo sample from the joint density, p(X) and can be used in the same
way as any other Monte Carlo sample.

The Gibbs sampler is an example of a Markov chain Monte Carlo (MCMC)
algorithm and will be discussed in full in chapter 6.



Applying the Gibbs sampler to sampling p(µ, φ|x)

In our case, we can implement the Gibbs sampler as follows.

1. t = 0. Fix an initial value µ(0).

2. Generate φ(t) ∼ G

(
a+n

2 .
b+(n−1)s2+n

(
µ(t−1)−x̄

)2

2

)
.

3. Generate µ(t) ∼ N
(
nφ(t)x̄+ψm

nφ(t)+ψ
, 1
nφ(t)+ψ

)
4. Set t = t+ 1.

5. Go to 2.

In order to estimate the marginal density of µ, for example, we can recall that
p(µ|x) =

∫
p(µ|φ,x)p(φ|x) ≈ 1

T

∑T
t=1 p

(
µ|φ(t),x

)
.



Normal body temperature example

Example 20
The normal core body temperature, T , of a healthy adult is supposed to be
98.6 degrees fahrenheit or 37 degrees celsius on average. As temperature can
very around the mean, depending on given conditions, a normal model for
temperatures, say T |µ, φ ∼ N (µ, 1/φ), has been proposed.

Mackowiak et al (1992) measured the core body temperatures of 130 individuals
and a histogram of the results is given below.
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The sample mean temperature is x̄ = 98.2492 fahrenheit with sample standard
deviation s = 0.7332. Thus, a classical 95% confidence interval for the true
mean temperature is

98.2492± 1.96× 0.7332/
√

130 = (98.1232, 98.3752)

and the hypothesis that the true temperature is 98.6 degrees is clearly rejected.

From a Bayesian viewpoint, we will analyze using two different prior
distributions. Firstly, we assume the limiting prior p(µ, φ) ∝ 1

φ and
secondly, we assume independent priors with relatively large variances, that is
µ ∼ N (98.6, 1) and φ ∼ G

(
1
2,

1
2

)
.

Given the limiting prior, we know that the posterior density of µ is µ−98.2492

0.7332/
√

130
∼

T129 and a 95% posterior credible interval for µ coincides with the classical
confidence interval.

Given the independent priors, the Gibbs sampler was run for 10000 iterations,
starting at µ(0) = 98.2492. The following diagram shows a plot of the
estimated posterior mean of µ versus the number of iterations.
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The estimated mean appears to have converged after 2000 iterations or less.
The estimated posterior mean of µ was E[µ|x] ≈ 98.2512.



The following diagram shows the posterior densities of µ given the limit and
independent priors.
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It can be seen that the posterior probability that µ is bigger than 98.6 fahrenheit
is virtually zero.



The final diagram shows the predictive density of T given the observed data
and the independent prior distributions.
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The fit of the normal distribution is reasonable although it might be improved
by incorporating other covariates, e.g. sex or heart rate.



A simple MATLAB code for executing the Gibbs sampler is as below.

n=length(temp); xbar=mean(temp); s=std(temp); % Summary statistics.
a=1; b=1; m=98.6; psi=1; % Priors for phi and mu.
iters=10000;mu=zeros(1,iters);phi=zeros(1,iters); % Sample
murange=98+[0:1000]/1000;pmu=zeros(1,length(murange));pmuuninf=pmu % initialization
xrange=min(temp)+[0:1000]*(max(temp)-min(temp))/1000; fx=zeros(1,length(xrange));

% Start of Gibbs sampler
mu(1)=xbar; phi(1)=gamrnd((a+n)/2,2/(b+(n-1)*s*s+n*((mu(1)-xbar)^2)));
for t=2:iters

mu(t)=normrnd((psi*m+n*phi(t-1)*xbar)/(psi+n*phi(t-1)),1/sqrt(psi+n*phi(t-1)));
phi(t)=gamrnd((a+n)/2,2/(b+(n-1)*s*s+n*((mu(t)-xbar)^2)));
pmu=pmu+normpdf(murange,(psi*m+n*phi(t)*xbar)/(psi+n*phi(t)),1/sqrt(psi+n*phi(t)));
fx=fx+normpdf(xrange,mu(t),1/sqrt(phi(t)));

end
pmu=pmu/iters; fx=fx/iters; %Normalization.

pmuuninf=normpdf(murange,xbar,s/sqrt(n)); %Posterior density given 1/phi prior.
% Plots
figure; plot([1:iters],cumsum(mu)./[1:iters]); figure;
plot(murange,pmuuninf); hold on; plot(murange,pmu,’-.r’); hold off;
figure; histadjusted(temp,10); hold on; plot(xrange,fx); hold off;



Two sample problems

Various two sample problems have been studied.

1. Paired data samples: difference in means.

2. Unpaired samples:

(a) Difference of two population means: variances known,
(b) Difference of two population means: variances unknown but equal,
(c) Difference of two population means: unknown variances,
(d) Ratio of two population variances.

We shall consider Bayesian inference for each situation in turn.



Paired data

As in classical inference, by considering the differences of each pair, this reduces
to a single normal sample inference problem.

Unpaired data: known variances

Assume that we have X|µX ∼ N
(
µX, σ

2
X

)
and Y ∼ N

(
µY , σ

2
Y

)
where σ2

X

and σ2
Y are known. Suppose also that we use independent, uniform priors for

µX and µY . Then, given samples x and y of sizes nX and nY respectively,
we know that the posterior distributions are independent normal

µX|x ∼ N
(
x̄,
σ2
X

nX

)
µY |y ∼ N

(
ȳ,
σ2
Y

nY

)
.

Therefore, if we define δ = µX−µY to be the difference in the two population
means, then the posterior distribution of δ is

δ|x,y ∼ N
(
x̄− ȳ,

σ2
X

nX
+
σ2
Y

nY

)
.



In this case, a 95% credible interval for δ is

x̄− ȳ ± 1.96

√
σ2
X

nX
+
σ2
Y

nY

which is equal to the corresponding classical confidence interval.

It is, of course, straightforward to generalize this result to the case when proper
priors for µX and µY are used.



Unpaired data: unknown, equal variances

Suppose now that X|µX, φ ∼ N
(
µX,

1
φ

)
and Y |µY , φ ∼ N

(
µY ,

1
φ

)
have

common, unknown precision φ and that we observe samples x and y of sizes
nX and nY respectively. Consider the joint prior distribution

p(µX, µY , φ) ∝ 1
φ
.

Then, the joint posterior distribution is

p(µX, µY , φ|x,y) ∝ φ
nX+nY

2 −1 exp
(
−φ

2
[
(nX − 1)s2X + (nY − 1)s2Y+

nX(µX − x̄)2 + nY (µY − ȳ)2
])

.

Given this joint distribution, we can see that

µX|φ,x,y ∼ N
(
x̄,

1
nXφ

)
µY |φ,x,y ∼ N

(
ȳ,

1
nY φ

)
.



Integrating out µX and µY successively from the joint distribution, we have

φ|x ∼ G
(
nX + nY − 2

2
,
(nX − 1)s2X + (nY − 1)s2Y

2

)
.

Also, from the previous slide, if δ = µX − µY , then

δ|φ,x,y ∼ N
(
x̄− ȳ,

1
φ

(
1
nX

+
1
nY

))
.

Thus, the joint posterior distribution of δ and φ is normal-gamma

δ, φ|x,y ∼ NG

(
x̄− ȳ,

(
1
nX

+
1
nY

)−1

,
nX + nY − 2

2
,
(nX − 1)s2X + (nY − 1)s2Y

2

)
.



Therefore, the marginal posterior distribution of δ is Student’s t:

δ − (x̄− ȳ)√
(nX−1)s2

X
+(nY−1)s2

Y(
1
nX

+ 1
nY

)−1
(nX+ny−2)

=
δ − (x̄− ȳ)√(

1
nX

+ 1
nY

)
(nX−1)s2

X
+(nY−1)s2

Y
nX+ny−2

∼ TnX+nY−2.

Now, a 95% credible interval for δ is given by

x̄− ȳ ± TnX+ny−2(0.975)

√(
1
nX

+
1
nY

)
sc

where s2c is the (classical) combined variance estimator

s2c =
(nX − 1)s2X + (nY − 1)s2Y

nX + ny − 2
.

This is equal to the usual, classical confidence interval.



The Behrens-Fisher problem

Now assume that X|µX, φX ∼ N
(
µX,

1
φX

)
and Y |µY , φY ∼ N

(
µY ,

1
φY

)
where all parameters are unknown. Given the (improper) prior distributions

p(µX, φX) ∝ 1
φX

and p(µY , φY ) ∝ 1
φY

then we know that the marginal posterior distributions of µX and µY are
independent, shifted, scaled t distributions:

µX − x̄

sX/
√
nX

∼ TnX−1
µY − ȳ

sY /
√
nY

∼ TnY−1.

Thus, if δ = µX − µY , we have

δ = TnX−1
sX√
nX

− TnY−1
sY√
nY

− (x̄− ȳ)

where Td represents a t distributed variable with d degrees of freedom.



We could try to derive the density formula of δ directly from this expression.
However, it is more straightforward to work in terms of a transformed variable.

Theorem 24
Let δ′ = δ−(x̄−ȳ)√

s2
X
/nX+s2

Y
/nY

. Then we can write

δ′ = TnX−1 sinω − TnY−1 cosω

where ω = tan−1 sX/
√
nX

sY /
√
nY

.

Proof From the previous page, we have

δ = TnX−1
sX√
nX

− TnY−1
sY√
nY

− (x̄− ȳ)

δ − (x̄− ȳ)√
s2X/nX + s2Y /nY

=
TnX−1

sX√
nX√

s2X/nX + s2Y /nY
−

TnY−1
sY√
nY√

s2X/nX + s2Y /nY

and the result follows by observing that the squares of the coefficients on the
right hand side sum to 1.



The Behrens-Fisher distribution

Definition 8
The distribution of

Y = Tν1 sinω − Tν2 cosω

where Tν1 and Tν2 are standard Student’s t variables with ν1 and ν2 degrees of
freedom, is the Behrens-Fisher distribution, (Behrens 1929) with parameters
ν1, ν2 and ω. In this case, we write Y ∼ BF(ν1, ν2, ω).

Thus, from Theorem 24, we have

δ′|x,y ∼ BF
(
nX − 1, nY − 1 tan−1 sX/

√
nX

sY /
√
nY

)
.

Note that this Bayesian solution to the Behrens-Fisher problem corresponds to
the fiducial solution and was first developed in this context by Fisher (1935).



Patil’s approximation and other appoximate methods

Tables of the percentage points of the Behrens-Fisher distribution are available
for given values of ω, see e.g. Kim and Cohen (1996). For other values, Patil’s
(1965) approximation may be applied.

If Y ∼ BF(ν1, ν2, ω) then we have Y/a ≈ Tb where

b = 4 +
(
ν1 cos2 ω
ν1 − 2

+
ν2 sin2 ω

ν2 − 2

)2 [
ν2
1 cos4 ω

(ν1 − 2)2(ν1 − 4)
+

ν2
2 sin4 ω

(ν2 − 2)2(ν2 − 4)

]−1

a =
b

b− 2

[
ν1 cos2 ω
ν1 − 2

+
ν2 sin2 ω

ν2 − 2

]−1

Alternative approximation methods are given by Ghosh (1975) or Willink
(2004).



A Monte Carlo approach

Another approach is to use Monte Carlo sampling to approximate a Behrens
Fisher distribution as follows. Suppose that Y ∼ BF(ν1, ν2, ω). Then we can
generate a sample from the Behrens Fisher distribution as follows:

1. Fix some large M.

2. For i = 1, . . . ,M

(a) Generate t
(i)
1 ∼ Tν1 and t

(i)
2 ∼ Tν2.

(b) Define y(i) = t
(i)
1 cosω − t

(i)
2 sinω.

Then, approximate 95% credible intervals for Y could be estimated using the
sample quantiles. If M is increased sufficiently, the accuracy of these estimates
can be derived to any fixed precision.



The frequentist approach to the Behrens-Fisher problem

No equivalent solution exists in frequentist inference because in this case, the
sampling distribution of δ′ depends upon the ratio, φX/φY , of the unknown
precisions.

The usual frequentist approximation to this sampling distribution is:

δ′ ≈ Tr where r =
(s2X/nX + s2Y /nY )2(
s4
X
/n2

X
nX−1 + s4

Y
/n2

Y
nY−1

)

However, we cannot know how good this approximation is for any given sample.



Another look at the normal body temperature example

Example 21
The sample contained 122 males and 22 females. The following two histograms
illustrate the temperature distributions for both groups.
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We may wish to question whether or not the mean body temperatures are the
same in both groups.



The means (and standard deviations) for males and females are 98.1046
(0.6988) and 98.3938 (0.7435) respectively.

In this case, an approximate classical 95% confidence interval for the mean
difference δ is given by (−0.5396,−0.0388) and there is strong evidence that
the mean body temperature is higher in females than in males.

Using a Bayesian approach with improper priors as outlined earlier, a 95%
posterior credible interval for δ is given by (−0.5359,−0.0426) which is slightly
narrower than the classical interval.



Also, the fitted predictive posterior densities for both groups are given in the
following diagram. The normal fits appear to have improved somewhat.
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Comparing two population variances

Suppose as earlier that X|µX, φX ∼ N
(
µX,

1
φX

)
and Y |µY , φY ∼

N
(
µY ,

1
φY

)
with the usual improper priors;

p(µX, φX) ∝ 1
φX

p(µY , φY ) ∝ 1
φY

.

Then, from earlier, given samples of sizes nX and nY , we know that

φX|x ∼ G
(
nX − 1

2
,
(nX − 1)s2X

2

)
φY |y ∼ G

(
nY − 1

2
,
(nY − 1)s2Y

2

)
and therefore,

(nX − 1)s2XφX ∼ χ2
nX−1 (nY − 1)s2Y φY ∼ χ2

nY−1.



Recalling that the ratio of two chi-squared distributions divided by their degrees
of freedom is F distributed, we thus have

s2X
s2Y

φX
φY

∼ FnX−1
nY−1

and Bayesian and classical credible intervals will coincide.



Application II: Bayesian inference for the
half-normal distribution

We will follow the analysis of Wiper et al (2008).

The half-normal distribution

If Z ∼ N (0, 1) then X = |Z| has a half-normal distribution, X ∼ HN (0, 1),
with probability density function

f(x) = 2φ(x) for x > 0, where

φ(x) =
1√
2π

exp
{
−x

2

2

}
is the standard normal pdf.



The generalized half-normal distribution

In this case, we allow the location and scale parameters to vary. Thus, let
X = ξ + η|Z| where Z is a standard normal random variable as earlier. Then
we say that X has a generalized half-normal distribution, X|ξ, η ∼ HN (ξ, η),
with density

f(x|ξ, η) =
2
η
φ

(
x− ξ

η

)
for x > ξ.



Applications

The half-normal distribution is a model for truncated data with applications in
various areas:

• measuring body fat indices in athletes (Pewsey 2002, 2004).

• stochastic frontier modeling (Aigner et al 1977, Meeusen and van den
Broeck, 1977).

• fluctuating asymmetry modeling (Palmer and Strobeck 1986).

• fibre buckling (Haberle 1991).

• blowfly dispersion (Dobzhansky and Wright 1947).



Classical inference for the half-normal distribution

Suppose we have a sample x = (x1, . . . , xn) from HN (ξ, η) and that we wish
to estimate ξ (and η). Now from Pewsey (2002,2004):

• The MLE for ξ is ξ̂ = x(1), the minimum of the data.

• Uncorrected and bias corrected estimators for η are

η̂ =

√√√√1
n

n∑
i=1

(xi − x(1))2 η̂BC =
√

n

n− 1
η̂

• An (asymptotic) 95% confidence interval for ξ:

x(1) + log(α)η̂Φ−1

(
1
2

+
1
2n

)
< ξ < x(1).



Bayesian inference for the half-normal distribution

Inference is similar to the usual normal case. First we reparameterize by
defining τ = 1

η2 so that

f(x|ξ, τ) = 2
√
τφ
(√
τ(x− ξ)

)
.

Now we can define a generalized version of the normal-gamma prior distribution,
that is the right-truncated normal-gamma distribution.



The right-truncated normal-gamma distribution

We say that, ξ, τ have a RTNG with parameters ξ0,m, α, a, b,

ξ, τ ∼ RT NG
(
ξ0,m, α,

a

2
,
b

2

)
if

p(ξ, τ) =
1

Φa

(
ξ0−m√
b/(αa)

)(b/2)a/2

Γ(a/2)

√
α

2π
τ
a+1
2 −1 exp

{
−τ

2
[
b+ α(ξ −m)2

]}

for ξ < ξ0 where Φd(·) is the Student’s t cdf with d degrees of freedom;

Φd(z) =
∫ z

−∞
φd(y) dy and

φd(y) =
Γ
(
d+1
2

)
Γ
(
d
2

) 1√
πd

(
1 +

y2

d

)−d+1
2



What is the motivation for this density?

p(ξ, τ) =
1

Φa

(
ξ0−m√
b/(αa)

)(b/2)a/2

Γ(a/2)

√
α

2π
τ
a+1
2 −1 exp

{
−τ

2
[
b+ α(ξ −m)2

]}

p(ξ, τ) =
1

Φa

(
ξ0−m√
b/(αa)

) (b/2)a/2

Γ(a/2)

√
α

2π
τ
a+1
2 −1 exp

{
−τ

2
[
b+ α(ξ −m)2

]}
︸ ︷︷ ︸

the usual normal gamma density

p(ξ, τ) =
1

Φa

(
ξ0−m√
b/(αa)

)
︸ ︷︷ ︸

from the truncation

(b/2)a/2

Γ(a/2)

√
α

2π
τ
a+1
2 −1 exp

{
−τ

2
[
b+ α(ξ −m)2

]}



The marginal density of ξ

p(ξ) =
1

Φa

(
ξ0−m√
b/(aα)

)Γ
(
a+1
2

)
Γ
(
a
2

) √ α

bπ

1 +
1
a

(
ξ −m√
b/(aα)

)2
−a+1

2

=
√
aα

b

φa

(
ξ−m√
b/(aα)

)
Φa

(
ξ0−m√
b/(aα)

) for ξ < ξ0

Thus, ξ′ = ξ−m√
b/(aα)

∼ Ta, truncated onto the region ξ′ < ξ0−m√
b/(aα)

.



Moments of ξ

E[ξ] = m−
√

b

aα

a+
(

ξ0−m√
b/(aα)

)2

a− 1

φa

(
ξ0−m√
b/(aα)

)
Φa

(
ξ0−m√
b/(aα)

) for a > 1

V [ξ] =
b

aα(a− 2)

a−
(

ξ0 −m√
b/(aα)

)a+

(
ξ0 −m√
b/(aα)

)2
 φa

(
ξ0−m√
b/(aα)

)
Φa

(
ξ0−m√
b/(aα)

)


− b

aα


a+

(
ξ0−m√
b/(aα)

)2

a− 1

φa

(
ξ0−m√
b/(aα)

)
Φa

(
ξ0−m√
b/(aα)

)


2

for a > 2

We have explicit formulae for all moments of ξ.



The conditional and marginal densities of τ

The conditional density of τ given ξ is the same as in the usual normal-gamma
model, that is

τ |ξ ∼ G
(
a

2
,
b+ α(ξ −m)2

2

)
for τ > 0.

The marginal distribution of τ is a Gaussian modulated gamma distribution,
that is τ ∼ GMG(

√
α(ξ0 −m), a, b), with density

p(τ) =
Φ (
√
ατ(ξ0 −m))

Φa

(
ξ0−m√
b/(aα)

) (
b
2

)a
2

Γ
(
a
2

)τ a2−1e−
b
2τ .



Moments of τ

E[τ ] =
Φa+2

(
ξ0−m√

b/(α(a+2))

)
Φa

(
ξ0−m√
b/(αa)

) a

b

E
[
τ2
]

=
Φa+4

(
ξ0−m√

b/(α(a+4))

)
Φa

(
ξ0−m√
b/(αa)

) a(a+ 2)
b2

We can derive all positive and negative moments of τ and therefore η.



The RTNG distribution is conjugate to the truncated normal

From standard normal gamma distribution theory, it is clear that given a sample
x of half-normal data, and a RTNG prior, ξ, τ ∼ RT NG

(
ξ0,m, α,

a
2,
b
2

)
, then

the posterior distribution is

ξ, τ |x ∼ RT NG
(
ξ?0,m

?, α?,
a?

2
,
b?

2

)
where

ξ?0 = min{ξ0,x}

m? =
αm+ nx̄

α+ n

α? = α+ n

a? = a+ n

b? = b+ (n− 1)s2 +
αn

α+ n
(m− x̄)2



The limiting case posterior

Suppose that we define the improper prior p(ξ, τ) ∝ 1
τ for −∞ < ξ < ∞.

Then, the posterior distribution is

ξ|x ∼ RT NG
(

min{x}, x̄, n, n− 1
2

,
(n− 1)s2

2

)
.

Also, the posterior mean in this case is:

E[ξ|x] = x̄− s√
n

n+
(

min{x}−x̄
s/
√
n

)2

n− 1

φn

(
min{x}−x̄
s/
√
n

)
Φn
(

min{x}−x̄
s/
√
n

) 6= ξ̂ = min{x}.

The classical and Bayesian estimator for ξ are different.



Comparison of the Bayesian posterior mean and the MLE

Bias

We simulated 1000 samples of various sizes from HN (0, 1). The Table
compares the estimated biases of the Bayesian posterior mean estimator of ξ
with the MLE.

n ξ̂ E[ξ|X]
5 0.217 −0.063

10 0.118 −0.011
20 0.060 −0.003
50 0.025 −0.0005

100 0.012 −0.0002
1000 0.001 2× 10−6

The bias of the Bayesian estimator is much lower than that of the MLE and
compares with Pewsey’s (2002,2004) unbiased estimator



Coverage of credible and confidence intervals

Classical intervals Bayesian intervals
Uncorrected Bias Corrected

n coverage length coverage length coverage length
5 0.880 0.585 0.904 0.655 0.950 0.910

10 0.916 0.332 0.927 0.350 0.945 0.398
20 0.937 0.177 0.943 0.181 0.951 0.192
50 0.944 0.073 0.946 0.074 0.949 0.076

100 0.948 0.037 0.948 0.037 0.950 0.038
1000 0.950 0.004 0.950 0.004 0.949 0.004



The athletes data example

Pewsey (2002,2004) analyzes data on the body fat indices of athletes.
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Maybe they can be well fitted by a half-normal model.



The predictive distribution function of X using Bayesian and classical methods

5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

 

 

Empirical cdf
Bayesian
Classical

The fit doesn’t look too good, but . . .



Extension: the half-t model
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. . . results of fitting a half-t distribution model are much more promising. But
that’s another story.
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