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A CLASS OF BINARY RESPONSE MODELS FOR GROUPED 
DURATION DATA 

GLENN T. SUEYOSHI 
Department of Economics, D008, University of California, San Diego, La Jolla, CA 92093-0508, USA 

SUMMARY 

This paper explores the relationship between conventional models for binary response such as the probit 
and logit, and the proportional hazard (PH) and related specifications for grouped duration data. I outline a 
general class of hazard models for grouped duration data based upon the choice of period-specific 
distribution functions, facilitating a thorough analysis of the implications of various specifications and 
consideration of various issues of model identification. This class of models nests, among others, the 
proportional hazard, probit, and logit specifications for interval survival. I consider the implications of 
various specifications for hazard behaviour, focusing on familiar specifications. While the specifications 
will generally yield results that are quite similar along a number of dimensions, there are significant 
differences. The probit model generates non-proportional effects of variables on the discrete hazard, while 
the logit and PH tend to show only slight non-proportionality. Furthermore, while the effects of variables 
on the derivatives are considerably larger for the probit specification, the time-pattern of the probit effects 
is relatively insensitive to changes in explanatory variables. I illustrate these issues by providing an 
example taken from Katz's (1986) unemployment data from the Panel Study of Income Dynamics. 

1. INTRODUCTION 

One strand of econometric duration research has emphasized the close relationship between the 
standard maximum likelihood estimator for the grouped data, proportional hazard (PH) model, 
and traditional binary outcome specifications (Kiefer, 1988a; Sueyoshi, 1991). This literature 
argues that at a fundamental level, the likelihood of a particular observation on a grouped PH 
duration is simply the probability of observing a series of binary outcomes, with the 
probabilities for each trial given by the extreme value cumulative distribution function evaluated 
at an aggregator of period specific data and parameters.' 

The equivalence of the PH specification and a binary extreme value model suggests that it may 
be profitable to explore further the relationship between commonly employed hazard 
specifications and familiar models for binary data such as the probit and the logit. Given the 
considerable accumulated experience of empirical researchers in estimating and interpreting 
binary response models, probit or logit duration specifications may be a natural approach for 
analysing grouped duration data. Indeed, the PH model is sometimes advanced as a more 
sophisticated alternative to a naive approach of estimating a probit-type model with observations 
pooled across discrete durations (Diamond and Hausman, 1984). The PH model is perceived as 
an attractive alternative since it allows for a simple, easily estimable form of time-variation and 

'The presence of unobserved, individual specific components in the hazard complicates matters slightly, generating a 
panel random effects specification. See Sueyoshi (1994) for details. 
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covariate-dependence in the conditional survival probabilities. Thus, a generalization of the 
naive pooled probit or logit specification would address an obvious gap in the literature and have 
the added benefit of allowing a class of flexible duration models to be estimated using 
conventionally available econometric software.2 

In this paper I examine more closely the relationship between grouped hazard specifications 
and binary response models. I link the two specifications by outlining a general class of models 
for discrete conditional survivors that is based upon cumulative distribution functions. I first 
derive the class of parametric, continuous-time hazard specifications which generates this 
family of conditional survivor functions. Next, I discuss a number of specific cases, including, 
but not limited to the extreme value (PH), logit and probit specifications, and use the results to 
discuss important issues of model identification in the grouped duration setting. These results 
provide an explicit relationship between hazard and sequential binary outcome models, allowing 
me to identify the implicit restrictions on hazard behaviour associated with simple logit and 
probit specifications, and to relax those restrictions in practical ways. The framework of 
analysis extends readily to other specifications for conditional survivor functions. 

The comparison of various duration models outlined in this paper provides a number of 
insights into the restrictions on hazard behaviour imposed by alternative specifications. For 
example, examination of the PH and the extended probit and logit specifications suggests that 
results from the logit and PH specifications will be quite similar. In contrast, estimates from a 
probit-type group duration model should depart significantly from both of these specifications, 
exhibiting covariate effects that are decidedly non-proportional. Furthermore, the form of the 
probit non-proportionality is relatively insensitive to changes in explanatory variables. More 
generally, as with standard binary response models, it appears that the choice of distributional 
form for the grouped duration model is not innocuous, and in a duration context will have 
important implications for the effects of covariates on exit probabilities. 

In Section 2, I review results for duration models and outline the structure of the sequential 
binary outcome approach to analyzing discrete duration data. Section 3 describes a class of 
hazard specifications which generates binary outcome models with specified probability 
functions and provides familiar examples based upon PH, as well as models with log-logistic 
and log-normal durations. In Section 4, I explore the different implications of various 
assumptions about the form of the binary response model for hazard behaviour. Section 5 
contains an empirical example using unemployment duration data from the Panel Study of 
Income Dynamics (PSID). 

2. BASIC DURATION RESULTS 

I begin by briefly reviewing relevant results for duration models. Let T be a positive, continuous 
random variable for the time to exit from a given state. The hazard function at time t is defined 
as the conditional probability of exiting the state, given survival up to time t: 

A(t) = lim Prob(t < T < t + dt I T > t) 
,(t)= lim (1) 

dtIO dt 

I allow for the influence of observable individual heterogeneity on the hazard rates through 
observable covariates, or regressor variables, X. More specifically, the hazard A is allowed to 
differ across individuals through a parameterization which depends upon observable variables X 

2See for example, Narendranathan and Stewart (1993), who estimate duration models that follow this approach. 
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and parameters ,/; this more general hazard function is denoted A(t, X, /). By standard 

arguments, the survivor function associated with this hazard specification is given by 
S(t, X, ) = Prob(T~ t) = exp(-fJ A(s, X, /) ds), and the corresponding probability density for 
T is f(t, X, /3) = A(t, X, ))S(t, X, /3). Likelihood contributions for a sample of individuals with 
observable and censored continuous failure times are based upon the specification for S and f.3 

Conventional economic data provide observations on failure times which are aggregated to 
form discrete intervals. Thus, one typically observes unemployment spell and union strike 
durations in weeks, or job tenure in years, rather than as continuous realizations of T. Discrete 
failure data of this form have been termed grouped duration data (Kiefer, 1988a) and are easily 
handled by describing a mapping from a continuous-time specification to the discrete 
observations.4 

Consider the survivor function evaluated at a set of arbitrarily chosen durations tj for 
j= 1,..., J. These durations will typically correspond to survey design points; for example, the 
tj may refer to the weeks of unemployment or the months of a work stoppage observed in the 
sample. Following convention, I divide the time until period tj into j half-open intervals, with 
bounds given by a fixed set of durations t], t2, . .,tj with to = 0. Survival to time tj is the same as 
surviving each of the intervals[tk_ , t,) for k= 1, ...,j, so the overall survivor function may be 
expressed in terms of interval specific, conditional survivor functions a defined by 

ak(X, p) = S(tk, X, T tk,) = exp(- A(, X, /) ds) (2) 

By the definition of conditional probabilities, the survivor function at an arbitrary tj may be 
written as S(tj, X, p) = ni,l ak(X, /8). 

Note further that likelihood contributions for grouped duration data are based solely upon the 
survivor functions S(t) evaluated at the periods of interest, and hence upon the a evaluated at 
various t,. For example, the probability of an observed exit in the jth interval is given by: 
S(tj_,, X, ) - S(tj, , ,) = (1 - aj(X, p)) rnil aK(X, 8), which is the probability of surviving 
the first j - 1 intervals, but not surviving the jth. If individual i's duration data takes the form 
(Yi, 6,, Xi) where Y, represents the interval associated with the observed grouped duration, 6, is 
a (0, 1 = censored) right censoring indicator, and X, is the vector of explanatory variables, the 
log likelihood function for the N* individuals in the sample may be written 

N* Y,- ' 

log L() = Z log (1 - ay(X,, 0))6' n a(X,, 0) (3) 
,=1 i k=1 

where 0 contains ,/ and any extra parameters of interest. 
An equivalent specification is described by Kiefer (1988a). Rearranging equation (3), the 

sample likelihood function may be written as the likelihood for non-identical Bernoulli trials 
taken over all N= I=i Yi individual-period combinations, 

N 

log ) dlog aj (X,, ) + (1 lo(1 - )l( - aj (X, ))} (4) 
n= 

3See also the general surveys provided by Lancaster (1990), Kalbfleisch and Prentice (1980), and Kiefer (1988b). 
4Both Heckman and Singer (1984) and Lancaster argue that it is desirable to work in continuous time and translate to 
discrete as necessary. In particular, this approach makes explicit the assumptions of stationarity implicit in 
identification of the marginal effects of explanatory variables. See the above references for further discussion. This 
paper works in the other direction, deriving the class of continuous-time hazard functions associated with a particular 
discrete hazard specification, and discussing associated identification issues. 
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where j, is the interval associated with the nth individual-period trial, d, is a binary indicator 
representing survival of the interval, and X, is the corresponding vector of covariates. This 
specification differs from the standard binary response likelihood only in that the usual 
likelihoods based upon the logistic or normal cumulative distribution functions are replaced by 
the a response probabilities which depend upon integrated hazard components. 

There are three aspects of this representation of the grouped duration specification that 
deserve emphasis. First, given data on grouped durations, the probability model for the 
observed data is completely specified through parameterization of the a functions. Thus, 
any issues associated with duration dependence and the effects of covariates on hazards are 
embodied in the specification for the functional form of the a, as well as the ways that these 
conditional survivor functions vary across time. This result has important implications for 
the identification of duration specifications in grouped settings. Second, since the 
specification of the a characterizes the observable duration process, any features of the 
underlying probability model not derived directly from the a are not identified from grouped 
duration data. Lastly, the apparent similarity of the specification above and a sequential 
logit or probit model highlights the close relationship between duration models and more 
familiar models for discrete choice. For example, a conventional binary choice specification 
which pools observations across time-intervals is equivalent to choosing time-constant a 
based upon a cumulative distribution function such as the normal or logistic. The stationarity 
assumption placed upon the coefficients in the pooled specification is therefore associated 
with particular restrictions upon the underlying hazard process. Given the framework 
outlined above, it is easy to analyse characteristics of the hazard specifications implied by 
standard binary choice models, and to build specifications which admit various forms of 
duration dependence and covariate effects through flexibility in the specification of the a 
and the associated coefficients. 

3. HAZARD SPECIFICATION 

3.1. A Class of Parametric Hazards 

I consider a class of continuous time hazard models which is a natural extension of the semi- 
parametric baseline hazard models considered by Prentice and Gloeckler (1978), Meyer (1986), 
Kiefer (1988a), Han and Hausman (1990), and Sueyoshi (1992, 1991). Translating the 
continuous time specifications of this section to the grouped duration data found in applied 
settings raises a number of important identification issues which I defer to Section 3.3. In this 
extended specification, the hazard is expressed as a set of interval specific functions based upon 
density and cumulative distribution functions. This class nests the PH, sequential logit and 
probit models outlined above, as well as other standard binary outcome specifications. 
Moreover, it allows for a generalization of the simple pooled binary choice specification by 
allowing for duration dependence and non-proportional effects of covariates. 

Suppose for the remainder of the discussion and without loss of generality that a duration of 
interest t is in the jth interval so that it satisfies, tj _, t < tj. For notational convenience, define 
the time-varying index function, Zj(t) = X: + hj(t), (the dependence of Z upon X and P is 
suppressed), and consider a hazard specification of the form 

fA)(Z(t)) 
Aj (t, X, hj= hi'(t) (5) 

I1 -IFj(Zj(t)), 
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where j indexes the interval of interest, and where fj and Fj are the density and cumulative 
distribution functions for an arbitrary continuous random variable.5 The expression on the right 
is simply the negative of the derivative of log{ 1 - Fj(Zj(t))}. The flexibility in the model arises 
from the choices of fj and Fj and the choice of hj across intervals j. The full specification of 
the hazard is therefore dependent upon the pair { F,, hj} for all relevant intervals. 

In order to satisfy the positivity restrictions imposed by hazard specifications and the corer 
conditions for the conditional survivor functions, the continuous and everywhere on the domain 
[tj_, tj) differentiable functions hj must, for all j, satisfy lims,, , hj(s) = -oo and hj(s) 0O for 
all s E [tj_l, tj). The first condition is required for the conditional survivor to have the desired 
form and for it to approach 1 at the beginning of the interval; the latter condition is obviously 
required for non-negativity of the hazard. Note that these restrictions do not in themselves 

impose important shape restrictions upon the hazards because of the flexibility I allow in the 
choice of F, and the form of hj for t> tj_. For simplicity, I will assume that the distribution 
function F is constant across intervals, as are the /, so that the only time-dependence in the 
hazards is derived from the successive specifications of h,. These restrictions may be relaxed 
with little substantive effect on the arguments below. 

After substituting in the hazard and performing the required integration, the conditional 
interval survivor function for durations in the jth interval is given by aj(t, X, P) = 1 - F(Zj(t)).6 
Thus, by standard analysis, the survival probabilities for the kth interval may be viewed as the 
probability that a random variable exceeds the aggregator, Pr(e>Zj(tj)), where E has a 
cumulative distribution function F. 

The overall survivor may be written as ST(t,X, /)= aj(t,X, ) nH-'1 ak(tk, X, P), with 
corresponding density function, fT(t, X, P)= h'j(t)f(Zj(t)) n-: ak(t,, X, /). More importantly 
for practical purposes, the unconditional probability of a failure in the jth discrete interval is 
given by the simple expression 

Prob(tj,_ T < tj IX,l) = S(t,_,,X,) - S(t, X, ) 

j-1 

= F(Zj(t,)) 11I 1 - F(Zk(t))1 (6) 
k= 

which is identical to the likelihood associated with a series of binary outcomes given in equation 
(3). A grouped duration, hazard specification of the form (5) is therefore equivalent to a 
sequential discrete choice model with error distribution functions F, and period-specific 
aggregator functions Zj(tj). 

Because of the importance of the proportional hazards model in applied research, it is worth 
comparing the present continuous time specification to a conventional continuous time 
proportional hazards specification. The derivative of the log hazard at t in interval j with respect 
to the mth covariate is 

a log A(t, X, /) /f(Zj(t)) f(Zj(t)) 
=]Pm. q - ' (7) 

axm .f(Zj(t)) 1-F (Zi (t)) 

5In the general case, the F, functions may vary across intervals, but in applied work, Fj will most commonly be 
assumed to be the same for each interval. I choose Z,(t) to be a linear aggregator of parameters and explanatory 
variables to correspond to standard treatments of logit and probit estimation, but as in all such models, other single or 
multiple index specifications may be employed with no substantive effect on the results in this paper. 
6 Note that in the current continuous duration setting, these functions differ in notation from the a functions given 
above in their dependence on an additional argument t. For purposes of correspondence, one may view the earlier a 
conditional survivor functions as implicitly evaluated at t = t,. 
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Proportionality occurs if and only if the term in parentheses on the right is a constant so that the 
log derivative is independent of the period of observation.7 Obviously, this restriction holds for 
only a limited subset of all valid choices for F and h, with various choices generating differing 
degrees of departure from the proportionality assumption. 

3.2. Examples of Hazard Assumptions 
In this section, I examine several leading models from the literature on binary outcomes and 
examine their relationship to the class of continuous-time hazards described above. 

3.2.1. Proportional Hazards 
Suppose first that for each interval, F is the cumulative distribution function for a Type-I 
extreme value random variable: 

F(z)= 1 -exp{-exp(z)} (8) 

f(z) = exp z - exp(z)} (9) 

for -oo < z < oo. While the time-function for the jth interval, hi, is not identified from grouped 
duration data and in general may take a variety of forms, for illustration purposes it will be 
useful to choose hj to satisfy 

h(t) = log 1 o(s) ds (10) 

for some arbitrary non-negative function, ,o(s): R + -> R , so that 

)o (t) 
hj(t)= A(t (11) 

J1 A(s) ds 

Note that the within-interval dynamics of the hazard depend upon the shape assumptions 
embodied in the individual hi, while the overall specification for duration dependence also 
depends upon the variation in the h across intervals. 

By virtue of equation (5), the typical hazard in the jth interval takes the form 

A,(t, X, ) = exp{Zj(t) } = Ao(t) exp(XB) (12) 
Jf 
t 

O(s) ds 

with additive separability of the log hazard in t and X, yielding a traditional proportional 
hazards specification. 

Consider the special case where, for t in the jth interval, lo(t) = Cj, where CJ is a constant. It 
follows that hj(t)=log(Cj.(t-tj_,)) and the hazard in the interval is exponential with a 
constant, individual specific hazard; Aj(t, X, B) = Cj exp(Xp8) and Ij(t, X, p) = 0 for t E [tj , tj). 
Note that even in this simple interval exponential form, with F the extreme value CDF, the 
interval hazard specification offers a generalization of the traditional exponential hazard since 
different constants C may be chosen for different intervals, generating an interval constant 
hazard shape as described by Lancaster (1990, p. 43). In this specification, durations will be 

7Lancaster provides the additional caveat that models with time-varying X are not, strictly speaking, proportional 
hazard since changes in the X and the hazard may occur only locally. 
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exponential within intervals but the level of this constant hazard will change across intervals. 
Alternatively, more general time-variation may be generated through greater flexibility in the 
choice in the hj across intervals, generating an interval proportional hazard model (Sueyoshi, 
1991). Different proportional hazards models may be derived by specifying A,(t) and evaluating 
hj(t) accordingly. For example, if hj(t)= log(t"- t_,) the specification is Weibull; 
hj(t) = log(61/y) + log(eY'(' - e'- -i')) generates a Gompertz interval hazard. 

Not surprisingly, the force of the proportionality assumption is the property that the log 
derivatives of the hazards associated with respect to explanatory variables are time-invariant; 
a log Aj(t,X, I)/OXm = 1m for all intervals and durations, and that the overall survivor and 
density functions for durations are also extreme value and thus PH: 

j-1 

ST(t, X, /) = exp{-exp(Zj(t))} fl exp{-exp(Z,(t))} 
k= 1 

(13) 

= exp - exp(X/3 + log [ 2o(s) ds. 

The overall density function for the duration is defined accordingly. Note, however, that the 
form of the interval proportional hazard is generally not preserved in the overall model. If, for 
example, each of the hj(t) is chosen to generate an interval Weibull hazard, the overall duration 
density is also Weibull if and only if the 6 are the same across intervals. It is easy to verify that 
the requirement of parameter stationarity also holds for the exponential and Gompertz 
distributions. 

3.2.2. Log-logistic interval hazards 
Given the familiarity and computational simplicity of the logit binary response specification, an 
obvious alternative to the PH specification is to choose the F to be a logistic CDF. The logit 
specification is based upon the cumulative distribution function and density: 

F(z) = (14) 
1 + exp(z) 

F(z)= exp(z) (15) 
(1 + exp(z))2 

for -oo < z < oo. A simple analogue of the flexible form PH model might then involve estimating 
a pooled logit with period-specific constant terms to allow for time-effects. 

Once again, so long as the regularity conditions are satisfied, h is not identified from grouped 
data and may be chosen in quite general ways. Nevertheless, one particular specification may be 
of interest. Suppose that the h function takes the within-interval log-linear form 

hj(t) = 6 log(t - t,) + C (16) 

for 6>0 and some constant C. Note that this is a 'local-memory' specification for hj in the 
sense that the time function depends upon the elapsed interval duration, rather than the elapsed 
total duration. It follows from equation (5) that the hazard is given by 

A .( X 6 exp(X + 6 log(t- tj)+C) (17) t - t(t,X, p, 6) = log(t - t) + C)(17) t - i_ 1 .1 + exp(Xf + 6 log(t - ti_ ) + C). 
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which is also the hazard for interval durations which follow the log-logistic distribution with 
mean u = - 61 (X/ + C), and variance a2 = z2/362, (Lancaster, 1990, p 44).8 

The overall survivor function is given by the product of the conditional survivors, 

1 i-1 
ST(t, X, ) = exp( 1 + exp(Z,(tk)) }- (18) 

l+exp(Zj(t)) k=1 

and the underlying probability density for durations is 

exp(Zj(t)) 
iZ 

fT(t,X, ) = 1 + exp(Zj(t)) 1 + exp(Z(t))}- (19) 
1+ exp(z,(t)) k= 

In contrast to the PH specification above, even when the hj functions are the same across 
intervals, the overall survivor is not of the same form as the interval specific survivor functions 
and thus the overall duration density is not log-logistic. As a result, the duration behaviour 
implied by the sequential logit interpretation of survival imposes more complicated time- 
interactions than the PH model. 

Evaluating the effects of explanatory variables on the hazard rate is also more involved than in 
the PH specification. Substituting into equation (7) yields 

a log A (t, X, f, 6)(20) 
=- t1 - , (t, , p, 6) (20) 

3Xm 6 

so that the effect of covariate m on the hazard at time t involves Bm, but weighted by a time- 
dependent term that depends upon 'elapsed interval duration' as well as the hazard level. 
Examination of the parameter Pm alone overstates the effect of the hcovariate within an interval, 
with the deviation between 6 and the true effect increasing with the hazard level and duration. 

This specification of the hazard process provides a practical framework for application of the 
traditional binary logistic specification to duration data. The framework provides an explicit 
linkage between the binary specification and the underlying hazard, allowing one easily to assess 
the implications and assumptions of a given specification. For example, if the underlying 
interval durations are assumed to be distributed as a log-logistic as above, the grouped data 
maximum likelihood specification involves estimating a pooled logit specification with period 
specific constant terms. This is a simple generalization of the naive specification in which one 
estimates a pooled logit with a single constant term. If, however, the h functions are assumed to 
be stationary and constant with observations on equal length intervals, the pooled specification is 
optimal. 

3.2.3. Log-normal interval hazards 
Suppose that one chooses F to be the standard normal distribution function 4<, and estimates the 
binary outcome model as though it were a standardized probit. Then, 

F(z)= 4(z) (21) 

f(z)= 0(z) (22) 

'It is easy to verify that the log-logistic hazard may take a variety of shapes depending upon the choice of the 
parameter 6. The time-derivative of A, A(t) = A(t) (6 - 1)/(t - t)- A(t). For 6 < 1, the hazard is monotonically 
decreasing; for 6= 1, it is monotonically decreasing with a different origin; for 6= 1 the hazard possesses an inverted 
U-shape and attains a maximum at t = tj + I (6 - 1)/exp(Xp + C)1 '/6. 
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As above, there are a number of specifications possible for hj, but a familiar choice is given by 
hj(t) = log(t - tj_) + C.9 The resulting hazard specification 

(t, X,, ) = -log(t-t )+C) (23) 
t- tj- 1 - ~(XP - log(t- t- 1) + C). 

is recognizable as the hazard for a log-normal interval duration model. The overall survivor 
function is 

j-1 

ST(t, X, ) = {1 - (Z(t))} l { 1 - a(Zk,(t,))} (24) 
k-=l 

and the underlying probability density for durations is given by 

~1 ji-l 
fT(t, X, P) = 0(Z (t)) f { 1 -4 (Z(tk))} (25) 

t-tj- k=1 

which is proportional to the log-normal density within intervals, but is not log-normal across 
intervals. 

Using equation (7) to evaluate the derivative the log hazard with respect to an arbitrary 
covariate at t, 

a log A (t) p ( Z/(t)) lg t= =Pm.-Zi(t) + (Z()) (26) 
axm 1 -4 (Zi(t)), 

so that the effect of covariate m on the hazard at time t is multiplicative in P,' but with the 
proportionality term depending upon the X, / and t through Zj(t) and through the Mills-ratio 
evaluated at Zj(t). 

3.3. Grouped Data and Identification 

In the preceding discussion, I outlined a class of continuous-time, parametric hazards which 
generates binary outcome models for conditional survival. For purposes of illustration, I also 
provided examples where the hj(t) functions are assumed to be log-linear in the interval 
duration so that the interval durations are distributed as extreme value, log-logistic or log- 
normal, yielding exponential, logistic and normal cumulative distribution functions, 
respectively. While the log-linearity assumption is sufficient for interval survivors to follow the 
desired distributions, that assumption is not required for the result. Indeed, any function 
satisfying the regularity conditions for h outlined above will generate the desired binary 
response model. For example, one alternative to the log-logistic is to maintain the assumption 
that F is logistic, but that hj(t) = -6 /(t- tj ), h'(t) = 6/(t- tj_ )2 for 6 >0. Similarly, one can 
'mix' models by assuming, for example, a logistic F but choosing hj(t) to follow the Weibull or 
Gompertz forms for hj outlined above. While the underlying interval durations are not log- 
logistic, each of these specifications also generates a logit interval survival model; in each case, 
however, the period-specific constant will possess a different interpretation. 

9As with all probit models, there is an implicit normalization with respect to the error variance. The force of the 
arguments is unchanged if every term is standardized by the standard deviation a. Thus, h,(t) may be replaced by 
log(t - t_ )/a, and 0 would be evaluated at (Xf + h,(t))/a. In this specification, 1/a replaces the 6 in the log-logistic 
and is only identified given data with varying interval lengths. 
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The flexibility allowed in the choice of h is related to more general issues of identifiability in 

grouped duration settings. To better focus ideas, suppose as above that grouped durations are 
available on a sample of individuals and that a representative individual i's duration data takes 
the form described in Section 1. Likelihood contributions are then based upon functions of the 
aggregators Zi evaluated at durations t defined by the design points t,,..., tj. In the context of 
the continuous time specifications above, the survivor and the Zj functions are evaluated only at 
the endpoints t=tj and never for other t in the interval (tj_,, tj). Thus, there is no sample 
information available to identify the behaviour of h within a given j interval. 

It follows that assumptions about the within-interval behaviour of the hazard are not in 
general identified non-parametrically, are not testable using grouped data, and that identification 
of the entire hazard shape requires some parametric smoothness applied to the hj functions. 
Note further that even if one is willing to make some parametric assumptions about within- 
interval behaviour of hi, the shape of the hazard may still not be identified solely from the 
observable data. If, for example, the intervals are of constant length, even the strong 
assumption that the hi are identical parametric functions is not sufficient to pin down the within- 
interval dynamics. 

' 
Alternatively, if the hj are assumed to be identical parametric functions of 

elapsed interval duration and the intervals are of variable length, the variable interval length and 
assumption of identical hj functions allows one to identify parts of the within-interval hazard 
shape. 

More generally, the current discussion suggests that while the concept of hazard 
proportionality is of theoretical interest, a continuing focus on properties of the continuous time 
hazard is misplaced. As noted above, only characteristics associated with the conditional 
survivor probabilities a are identified from the data. Thus, absent non-testable restrictions on the 
hazard shape, all that can be identified from grouped data are the hj(tj)." While specifications 
of the continuous time hazard function of the general form (5) are of academic interest and 
facilitate comparisons with familiar proportional hazards specifications such as the Weibull, any 
assumptions in those specifications that go beyond the choice of a are fundamentally untestable 
in grouped data settings. 

Given the impossibility of identifying within-period dynamics from grouped duration data, it 
may instead be desirable to consider properties of the hazard which do not rely upon untestable 
restrictions on within-interval hazard shapes. Evaluation of alternative duration specifications 
should instead focus on the implications of alternative assumptions about the discrete-time 
hazard specification, 

T 
j(X, p) = 1 - aj(X, /,) =F(Zj(tj)). Indeed, the force of alternative 

assumptions for a discrete time hazard process lies in differences between the predictive ability 
of the models and between the estimated duration and covariate effects associated with 
alternative specifications for the aj. 

4. A COMPARISON OF MODELS 

In this section I provide a simple framework for consideration of the implications for hazard 
behaviour of different specifications for the a. There are two primary points of comparison. 

'0To take a simple example, if the hi functions are identically log-linear in the elapsed interval duration, interval- 
specific constants estimated from the binary outcome model provide estimates of 6 log(t-t,-t )+C. If there is 
variation in the interval length, the parameters C and 6 are identified (from a regression of the period-specific 
constants on the log(t - tj_ )); with common interval lengths, 6 and C are not separately identified. Note further that in 
the special case where the intervals are of constant unit length, C is identified, but 6 is not. 
"This point has been emphasized by Kiefer in the context of PH specifications and is equally valid in the more general 
current discussion. 
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First, alternative specifications may imply different predicted probabilities of survival for an 
individual with given characteristics. Practical experience with discrete choice models suggests, 
however, that the predicted probabilities, and hence the goodness-of-fits for the models, will 
generally be quite similar over a wide range of specifications for F. 

Apart from goodness-of-fit, applied researchers are most often interested in the effects of 
changes in the explanatory variables upon hazard rates. Covariates may be thought of as having 
two primary effects on exit hazards: (1) they can alter the hazard at a given point in time, and 
(2) they may change the nature of time-dependence in the hazard. By their nature, proportional 
hazards models concern themselves with (1) and ignore (2) since they place restrictions on the 
effects of variables upon the hazard rate. In contrast, more general models allow for interaction 
between the time-dependence in the hazards and the explanatory variables. Thus, of particular 
interest is a comparison of the extent to which alternative specifications for a with similar 
goodness-of-fit imply different effects of changing covariates. 

For continuous time hazard specifications, a natural measure of the interaction between time- 
dependence and the explanatory variable is derived by examining the derivative of the log 
hazard function at various durations. This derivative function is, however, not fully identified 
from grouped data. A natural alternative for discrete hazards is to consider the derivative of the 
log discrete hazard with respect to an arbitrary covariate, 

a log P(Zj(t)) f(Zi(tj)) (27) 

axm F(Zj(tj)) 
which yields a discrete analogue to equation (7). The expression, which should be familiar to 
those who work with binary response models, provides a measure the proportionate change in 
the discrete hazard resulting from changes in the explanatory variables. 

In continuous time, the assumption of proportionality would ensure that the derivatives of 
log A are constant across durations; in the most common specification where the aggregator 
function is exp(Xp), the log derivatives are also independent of the X. These results do not 
obtain for other distributional assumptions, nor do they necessarily follow in the discrete setting 
even if the model is PH, since f(z)/F(z) is likely to differ slightly across durations. More 
generally, the two relevant issues concern whether the logarithmic derivatives of F are roughly 
constant across time (discrete hazard proportionality), and whether individual characteristics X 
alter the nature of any observed time-dependence. 

To examine these questions, I first consider the behaviour of the derivative of the log discrete 
hazard function at comparable points. Intuitively, maximum likelihood estimation of binary 
response models will roughly fit the empirical exit probabilities under the assumed distributional 
shape.12 Thus, for a given individual with exit probability p, each model will be evaluated at 
roughly the inverse of the cumulative distribution function at that point, z = F-'(p). Of primary 
interest is the degree to which the log derivative f(z)/F(z) varies across specifications, holding 
the predicted probability p = F(z) constant. 

The relationship between models will obviously depend upon the shapes of the cumulative 
distribution functions and the log derivatives of the cumulatives evaluated at various points. 
To ground the discussion, I will analyse the differences between the three familiar distributions 
discussed above: extreme value, normal and logistic. As is well known, the normal and logistic 

'2More formally, White (1982) demonstrates that under reasonable regularity conditions, the maximum likelihood 
estimator is a strongly consistent estimator for the parameter vector which minimizes the Kullback-Leibler 
Information. In essence, ML minimizes the distance between the expected true log-likelihood and the expected 
assumed log-likelihood, with expectations taken with respect to the true distribution. 
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distribution functions are quite similar, with the density functions differing primarily in the 
tails. The extreme value distribution is skewed, with the cumulative distribution increasing 
more rapidly in the left tail than is the case for both the normal and logistic.13 One might 
therefore expect that the normal and logistic models will generate estimates that are roughly 
the same, while the extreme value results will differ due to the asymmetry of the density 
function. 

Figure 1 plots the derivatives of the log cumulative distribution funct ion, f(z)/F(z) for the 
three specifications against various values of F(z). It is immediately apparent that the log 
derivatives differ substantively between the three distributions at most cumulative probabilities, 
with the probit diverging significantly at low probability values, and the logit exhibiting smaller 
values at higher probabilities. For example, at F(z)= 0-10, the probit derivative is 1-76 as 
compared with the 0-95 and 0-90 values for the proportional hazard model and logit 
specification, respectively. This divergence implies that the models will provide very different 
predictions of the proportionate change in the discrete hazard resulting from changes in the 
explanatory variables. In particular, for an individual with an exit probability less than 0-5, the 
probit will show significantly greater sensitivity to explanatory variables than will the other 
specifications. Thus, the conventional wisdom regarding the similarity of probit and logit 
models does not extend to evaluation of the proportionate changes in the discrete hazard, nor 
does it apply to the probit and PH specifications. 
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Figure 1. Derivatives of the log hazard function, f(z)/F(z), evaluated at values of the hazard 
probabilities F(z); various specifications for the discrete hazard function F 

1In their common forms, the distributions have means 0, 0 and 6= -0-5772, where 6 is Euler's constant, and 
variances 1, r2/3 and 7r2/6, respectively. For further details and results, see Johnson and Kotz (1970), Nelson (1982), 
and Lancaster (1990). 
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The choice of F generates other implications for the predicted influence of X. Bear in mind 
that the actual z will depend upon characteristics X, parameters ,B and duration through the h 
function. Since variation in the hazard for a given specification depends upon changes in the z 
for a given (generally) nonlinear function F, the hazards will vary across both time, as a result 
of variation in the period-specific constants, and across individuals, as a result of variation in 
the X. 

To examine the importance of this variation, I plot the log derivative f(z)/F(z) against 
standardized values of z to assess the sensitivity to changes in z (Figure 2). There are two 
aspects of Figure 2 that are of primary importance. First, the non-proportionality in the discrete 
hazard results from a non-zero slope for the curve. For an individual with time-constant 
covariates, time-variation in the derivative of the log discrete hazard occurs solely as the period- 
specific constants alter the evaluation point z around X4; with a perfectly flat curve, the effects 
are constant at all durations. From Figure 2 it is apparent that the slopes for the three 
specifications differ considerably at various values of z. The slope of the probit curve is 
considerably larger (in absolute value) than the corresponding logit and PH curves for small 
values of z, while the proportional and logistic models diverge for values of z in the centre of 
the distributions. For z in the lower tail, the slope of the PH curve is approximately zero; the 
logistic exhibits greater variability, but the curve is still relatively flat. As a result, for duration 
data exhibiting low to moderate exit rates, the binary response hazard models employing a 
probit specification will tend to depart from proportionality far more than logistic models, which 
in turn will be slightly less proportional than the extreme value specification. 

Second, estimates of the effects of variables on the time-pattern of the percentage changes in 
the hazard will depend upon the second derivatives of the curves in Figure 2. As noted above, a 
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Figure 2. Derivatives of the log hazard function, f(z)/F(z), for various standardized values for z; 
various specifications for the discrete hazard function F 
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particular time-pattern for the proportionate impact of covariates is generated by evaluating the 
derivative functions at a given Xi/, and allowing the period-specific constant terms to vary. In 
general, evaluating these expressions at different X will result in different patterns of time- 
variation. In this regard, note that the probit specification curve is close to linear for moderate z. 
Thus, while the log derivatives for the probit specification will have non-proportional effects, 
the pattern of this time-variation should be approximately the same for various values of X. 
From Figure 2, it is apparent that individuals with large X3 will exhibit smaller proportionate 
changes in the discrete hazard than those with small X3, but the difference between the two 
should be roughly constant for various durations. In contrast, the relatively small slopes and 
greater amounts of curvature in the proportional and logit curves imply that variation in the X 
will generate only slight changes in the log derivative f(z)/F(z), but that variation in X will 
alter the time-pattern of these changes. 

5. AN EMPIRICAL EXAMPLE 

To illustrate a number of the specification issues discussed above, I estimate duration models 
for unemployment data taken from the Panel Study of Income Dynamics (PSID). I focus on the 
question of whether probit, logit, and PH models estimated on the same data generate different 
implications for the hazard of exit from unemployment and the effects of explanatory variables 
on these conditional exit probabilities. 

I estimate relatively simple sequential binary outcome models where duration dependence is 
built into the specification through a period-specific constant. The data used in this analysis are 
derived from the 1980 and 1981 PSID (Waves 14 and 15) and consist of observations on the 
duration of unemployment spells for 1055 individuals.'4 In addition to information on spell 
duration, the data indicate whether a spell ended via a new job, recall, or by censoring. 
Accompanying the unemployment spell information are a variety of demographic and economic 
characteristics.'5 The variables used in this analysis are described briefly and descriptive 
statistics presented in Table I. 

In Table II, I present parameter estimates from three binary outcome specifications of the recall 
hazard. The estimates are derived from an independent competing risk specification where exit 
from unemployment via new job is treated as a censored outcome.16 The first two columns contain 
parameter estimates and asymptotic standard errors for the PH model and correspond to the model 
of Table 3 of Sueyoshi (1991). The latter models consist of estimates derived from sequential 
probit and logit models, where each model contains period-specific constant terms that are 
designed to capture duration dependence in the hazard process. The models may alternatively be 
viewed as a simple pooled binary response model with period-specific constants. Approximately 
13,300 individual-period responses are used to estimate the 57 parameters in each model. 

The fit of the models as measured by a simple likelihood criterion is almost identical across 
specifications. While the PH specification fits marginally better than the logit specification, 

'4Katz (1986) describes the construction of the data set and characteristics of the sample in greater detail. The data 
correspond to a subset of observations from the PSID, and excludes spells initiated by plant closing. 
'5More extensive analyses of these data may be found in papers by Katz (1986), Han and Hausman (1990), and 
Sueyoshi (1991). In particular, I defer consideration of the possibility of time-variation in the coefficients to future 
analysis. 
16The maximum likelihood estimation of the sequential binary outcome models employed the Gauss-Newton 
algorithm in an iterated, weighted nonlinear least squares procedure. Each model is estimated for 40 weeks with 
durations beyond that period artificially right-censored. Corresponding estimates for the new job hazard are not 
presented, but are available upon request. 
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Table I. Variable names and descriptive statistics, Katz (1986) sample of 1055 spells from the PSID 

Variable Description Mean Std. dev. 

Demographic and economic variables 

Age 
Female 
Schooling 
Non-white 
Dependents 
UI eligible 

Married 
Area unemploy. 
Wife works 
Homeowner 

Occupation dummies 

Labour 
Craft 
Clerical 
Professional 
Manager 

Industry dummies 

Metals 
Transp. equip. 
Other durables 

Non-durables 
Trade 
Transportation 
Mining 
Services 
Construction 

Age in previous year (year of spell) 
Indicator for female 
Number of years schooling 
Indicator for non-white 
Number of dependents in households 
Indicator for individual receiving unemployment 

insurance during spell 
Indicator for marital status in previous year 
County unemployment rate 
Indicator for wife works 
Indicator for homeownership 

Indicator for labourer or operative 
Indicator for craft 
Indicator for clerical, services, sales 
Indicator for professional and technical 
Indicator for manager 

Indicator for metals 
Indicator for transportation equipment 
Indicator for other durable goods manufacturing 

(excluding metals) 
Indicator for non-durable goods manufacturing 
Indicator for wholesale and retail trade 
Indicator for transportation and public utilities 
Indicator for mining and agriculture 
Indicator for services 
Indicator for construction 

which in turn fits better than the probit model, the likelihood differences are not striking. It 
would therefore appear to be premature to base strong conclusions on the proportional hazard 
results in preference to those from the other specifications. This close equivalence in fit raises 
the question of whether predictions of the effects of variables on hazard rates derived from 
these models are identical so that the specification differences are unimportant. The remainder 
of the analysis will focus on the influence of being NON-WHITE on the recall hazard. While 

many of the other parameters associated with individual characteristics are imprecisely 
measured, the negative impact of NON-WHITE is pronounced, and statistically significant at 
conventional significance levels. 

As is usually the case with models involving binary responses, interpretation of the 
coefficients is made difficult by the inherent non-linearity of the model. Since the first 

specification is PH, if this were a continuous model of durations, the ,/ coefficients could be 

interpreted as the derivative of log A. It is easy to see that this is not the case for the continuous 

probit and logit specifications since their log derivatives contain both X and t components. The 
conventional approach in the literature for handling problems of this nature has been to derive 

33-154 
0-167 

11-341 
0-506 
3-038 
0-636 

0-632 
7-701 
0-342 
0-439 

0-508 
0-223 
0-186 
0-039 
0-045 

0-058 
0-118 
0-123 

0-133 
0-103 
0-080 
0-034 
0-172 
0-180 

10-607 
0-373 
2-170 
0-500 
1-639 
0-481 

0-482 
2-551 
0-475 
0-496 

0-500 
0-416 
0-389 
0-193 
0-206 

0-234 
0-322 
0-329 

0-339 
0-305 
0-271 
0-182 
0-377 
0-384 
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Table II. Selected parameter estimates for binary outcome hazard models of independent recall hazard; 
various specifications for the discrete hazard function F 

Proportionala Probit Logit 
Variable Est. Std. err.b Est. Std. err. Est. Std. err. 

Age 0-014 0.004 0.006 0.002 0-015 0-005 
Female -0-016 0-157 0-006 0-075 -0-014 0-163 
Schooling -0-029 0.022 -0-015 0-012 -0-030 0.024 
Non-white -0-240 0.098 -0-116 0-049 -0-251 0.102 
No. of dependents -0-002 0-030 -0-005 0-015 -0-004 0.031 
UI receipt -0-188 0-097 -0-085 0-048 -0-195 0-102 
Married 0.045 0-148 0.037 0-073 0-051 0-154 
Area unemploy. -0-007 0-017 -0-003 0-008 -0-007 0.017 
Wife works 0.127 0.101 0.065 0-052 0.135 0.107 
Homeowner 0.391 0-099 0-206 0-050 0-411 0.104 

Industry indicators Yes Yes Yes 
Occup. indicators Yes Yes Yes 

Log likelihood -2167-89 -2170-57 -2168-37 

aThis specification corresponds to the proportional hazard model estimated in Table 3 of Sueyoshi (1991). For each of 
the three models, estimates of the 57 parameters are derived from 1055 individual observations which correspond to 
13,246 individual-interval binary trials. bAsymptotic standard errors. 

implications for the model evaluated at mean values for the explanatory variables. I modify and 
extend this approach to consider the behaviour of the model evaluated at quartiles of the 
aggregator. 

The discrete hazard for each period is computed by evaluating the appropriate cumulative 
distribution function at the sum of an aggregator representing X/f and the period specific intercept 
term. Figure 3 depicts the estimates of the discrete recall hazard function evaluated at the lower 
quartile of the sample.'7 Not surprisingly, all three models appear to track closely the same 
discrete hazard shapes and depict the familiar pattern of declining recall exit hazard. For these 
data, there are only minor differences between the specifications in terms of predicting discrete 
hazard rates. There is also little difference if the predicted hazards are disaggregated by race. 

Next, I analyse the change in the log discrete hazard associated with the NON-WHITE 
indicator variable. If this were a continuous covariate, one could simply evaluate the term 
/ff(z)/F(z) at various z representing the different periods of interest. However, since the 
variable in question is a binary indicator, I instead compute the discrete change in log F at 
various durations when the indicator for NON-WHITE is first set to 0 and then to 1, and 
evaluating the proportionate change in F: (F(1)/F(0) - 1). The discrete log derivatives depicted 
in Figure 4 are computed at the sum of the lower quartile value of the X/ and the estimated 
hj(tj) for each period. 

17The quartiles of the aggregator are computed for the entire sample, so that they do not reflect changes in the 
population of interest as individuals exit. Since larger aggregator values are positively associated with exit from 
unemployment, the quartile estimates will systematically overstate the corresponding values for the population at risk 
in each period. The lower quartiles of the aggregator are -0468, -0-196, and -0-481 for the proportional, probit, and 
logit models, respectively. The corresponding upper quartiles are 0.486, 0.201 and 0.497. The analysis below was 
repeated for other quantiles. The quantitative results differ slightly, but not substantively. 

426 



BINARY RESPONSE DURATION MODELS 

0o 

jI 6i 

a)oa 

- 1 ' 

\0 - 

- I I 

a ;\6 1t Ii \ 3 /, 

- a 2 a aaa 2 2a 
i I i I 

0 10 20 30 40 

Week 
1 = Extreme Value, 2 = Probit, 3 = Logit 

Figure 3. Estimates of the discrete recall hazard, F(y. + X1), with the aggregator evaluated at the lower 
quartile of the X, and an estimate of the period specifc constant yj; various specifications of the discrete 

hazard function F 

The differences across specifications are striking. While the PH and logit models exhibit only 
minor time-variability for the change in the log discrete hazard, the probit model predicts large, 
decidedly non-proportional effects of the NON-WHITE indicator.18 For example, the marginal 
effect of NON-WHITE on the hazard reduces the discrete unemployment recall hazard by 20% 
at a duration of 2 weeks, and by 33% at 21 weeks. The corresponding effects for the PH 

specification are 22% and 24%. Furthermore, the pattern of the variation clearly mirrors the 
variation in the underlying level of the log discrete hazard. As expected given the shapes of the 
underlying distribution functions, the logit model exhibits somewhat greater non-proportionality 
than the discrete proportional hazard model, but considerably less variability than the probit 
specification (Table III). While the mean proportionate change is generally comparable across 
all three specifications (though somewhat larger for the probit), the across-time variability as 
measured by both the standard deviation and inter-quartile range is 10-20 times greater for the 

probit than the other two specifications, with the logit model again acting as the intermediate 

specification. 
The second prediction of the framework above is that the time-pattern of the changes in the 

log discrete hazard for the probit model should not be sensitive to changes in the X. In Figure 5 
and Table IV, I examine this characteristic by computing the change in the log discrete hazard 

'" Since the derivatives for the probit model exhibit so much time-variation, to aid in visual interpretation of Figure 4, I 
also plot a line representing a smooth of the probit derivatives using locally weighted regression (Chambers et al., 
1983). 
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Table III. Descriptive statistics for the proportionate change in the discrete recall hazard associated with 
the NON-WHITE indicator; various specifications for the discrete hazard function F 

Proportional Probit Logit 

Meana -0-2111 -0-2561 -0-2177 
Std. dev. 0.0017 0.0311 0.0035 
Minimum -0-2129 -0-3117 -0-2214 
Maximum -0-2060 -0-1949 -0-2072 
Q3 - Q1 0.0020 0.0501 0.0040 

"The proportionate change is computed as F(1)/F(O)- 1, where F(1) is the discrete hazard with the NON-WHITE 
indicator set to 1, and F(0) is the discrete hazard with the indicator set to 0. The XV are set to their lower quartile 
values and the period specific constants are used to estimate hi(tj). The descriptive statistics are computed for the 32 
periods with non-zero discrete hazard estimates. 
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Figure 4. Proportionate change in the discrete recall hazard associated with the NON-WHITE indicator 
variable, F(X/+ yg), with the aggregator evaluated at lower quartile of Xa and an estimate of the period 
specific constant yj. The discrete change in the hazard is computed as F(1)/F(O)- 1, where F(1) is the 

hazard with the NON-WHITE indicator set to 1, and F(O) is the hazard with the indicator set to 0 

evaluated at both the upper and lower quartiles of the XI§ and computing the difference at each 
duration. As predicted, the magnitude of the change in the hazard associated with the indicator 
variable differs greatly across quartiles for the probit model. The probit specification indicates 
that high quartile individuals possess, on average, derivatives that are roughly 3 percentage 
points higher than the derivatives for individuals with the low quartile value for X,S. However, 
as confirmed by the flat shape of the probit graph, there is little variation in the pattern of the 
changes across time so that the non-proportional time-pattern observed in Figure 4 is not altered 
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Table IV. Descriptive statistics for the difference between the upper and lower quartile estimates of the 
proportionate effect of race upon the discrete recall hazard of exit from unemployment; various 

specifications for the discrete hazard function F 

Proportional Probit Logit 

Meana 0.0024 0-0295 0-0048 
Std. dev. 0-0020 0.0000 0-0039 
Minimum 0-0003 0-0286 0-0005 
Maximum 0-0084 0-0300 0-0160 
Q3 - Q1 00023 0-0007 0-0048 

aThe quartile differences are computed as D(u) - D(l) where D(u) = F(1, u)/F(O, u) - 1 is the proportionate change 
in the discrete hazard associatedwith the NON-WHITE indicator, evaluated at the upper quartile, and D(l) is the 
proportionate change evaluated at the lower quartile. The descriptive statistics are computed for the 32 periods with 
non-zero discrete hazard estimates. 
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Figure 5. Difference between the upper and lower quartile estimates of the proportionate effect of race 
upon the discrete recall hazard of exit from unemployment; various specifications for the discrete hazard 
function F. The quartile differences are computed as D(u) - D(l) where D(u) = F(1, u)/F(O, u) - 1 is the 
proportionate change in the discrete hazard associated with the NON-WHITE indicator, evaluated at the 

upper quartile, and D(l) is proportionate change evaluated at the lower quartile 

by changes in X. In contrast, the logit and proportional hazards models exhibit considerably 
smaller differences in the log discrete hazard across quartiles, but with greater changes in the 
time-variation. These basic results are reflected in the descriptive statistics presented in Table IV 
which show a standard deviation for the probit that is zero to four decimal places, but 
considerably larger for the alternative specifications. 
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6. CONCLUSION 

In this paper I provide an explicit link between the estimation of binary response models for 
survival in a duration model setting, and the underlying hazards which generate responses with 
that structure. I show that the class of hazards which generates these models involves a set of 

interval-specific cumulative distribution functions F and within-interval functions of time h. 
This class of models is easy to specify, nests the proportional hazards, and probit and logit 
specifications, and allows for the familiar log-logistic and log-normal interval durations. 
Furthermore, the analysis provides a framework for a thorough analysis of the implications of 
various specifications for the interval survivor functions, as well as issues of identification of 
the within-interval hazard dynamics. 

Along these lines, I show that the natural analogues of the PH model involve estimating 
pooled logit or probit models with period specific constant terms. These specifications have 
particular implications for duration behaviour, with the probit model, in particular, deviating 
from proportionality, but imposing approximately proportional effects of explanatory variables 
on the derivatives of the log discrete hazard. This result suggests that some care should be taken 
to investigate the assumptions embodied in a particular specification of the conditional exit 

probabilities. Plotting the derivative of the log discrete hazard against standardized values and 

examining the first and second derivatives should provide a useful guide to evaluating the 

implicit assumptions underlying the assumed specifications u t a n. 
The framework suggest that one may further generalize binary response models for duration 

analysis by allowing for interval-specific time-varying coefficients. In the most general form, 
this specification involves estimating a sequential binary response model with a full set of 
parameters for each period, but more restrictive forms of variation are allowed. For a PH 
model, the time-variation in coefficients constitutes a form of non-proportionality. For other 
choices of F, time-varying coefficients merely provide extra time-variation in the influence of 
X upon the log discrete hazards. In all cases, however, an alternative hypothesis involving full 
or limited time-variation in the B coefficients is readily testable using auxiliary regression 
techniques (Sueyoshi, 1991; Engle, 1984; Davidson and MacKinnon, 1984, 1990) to evaluate 
the Lagrange Multiplier tests. These tests require only information available under the null 
hypothesis, and are easy to compute using conventional econometric software. The auxiliary 
regressions will often provide useful information about the nature of departures from the 
null. 

Finally, the close correspondence between grouped duration and binary response models 
suggests that there should be considerable gain to applying results from the discrete choice 
literature to the analysis of grouped duration models. The analysis in this paper suggests that 
much of the extensive and growing research on binary response specifications is directly 
applicable to a general class of hazard models. 
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