if (!require(prob)) install.packages("prob")
Loading required package: prob
Loading required package: combinat
Attaching package: 'combinat'
The following object is masked from 'package:utils':
combn
Loading required package: fAsianOptions
Loading required package: timeDate
Loading required package: timeSeries
Loading required package: fBasics
Loading required package: fOptions
Attaching package: 'prob'
The following objects are masked from 'package:base':
intersect, setdiff, union
library(prob)
tosscoin(3) # Tres monedas
toss1 toss2 toss3
1 H H H
2 T H H
3 H T H
4 T T H
5 H H T
6 T H T
7 H T T
8 T T T
rolldie(2) # Dado de seis caras
X1 X2
1 1 1
2 2 1
3 3 1
4 4 1
5 5 1
6 6 1
7 1 2
8 2 2
9 3 2
10 4 2
11 5 2
12 6 2
13 1 3
14 2 3
15 3 3
16 4 3
17 5 3
18 6 3
19 1 4
20 2 4
21 3 4
22 4 4
23 5 4
24 6 4
25 1 5
26 2 5
27 3 5
28 4 5
29 5 5
30 6 5
31 1 6
32 2 6
33 3 6
34 4 6
35 5 6
36 6 6
cards()
rank suit
1 2 Club
2 3 Club
3 4 Club
4 5 Club
5 6 Club
6 7 Club
7 8 Club
8 9 Club
9 10 Club
10 J Club
11 Q Club
12 K Club
13 A Club
14 2 Diamond
15 3 Diamond
16 4 Diamond
17 5 Diamond
18 6 Diamond
19 7 Diamond
20 8 Diamond
21 9 Diamond
22 10 Diamond
23 J Diamond
24 Q Diamond
25 K Diamond
26 A Diamond
27 2 Heart
28 3 Heart
29 4 Heart
30 5 Heart
31 6 Heart
32 7 Heart
33 8 Heart
34 9 Heart
35 10 Heart
36 J Heart
37 Q Heart
38 K Heart
39 A Heart
40 2 Spade
41 3 Spade
42 4 Spade
43 5 Spade
44 6 Spade
45 7 Spade
46 8 Spade
47 9 Spade
48 10 Spade
49 J Spade
50 Q Spade
51 K Spade
52 A Spade
tosscoin(3, makespace=TRUE)
toss1 toss2 toss3 probs
1 H H H 0.125
2 T H H 0.125
3 H T H 0.125
4 T T H 0.125
5 H H T 0.125
6 T H T 0.125
7 H T T 0.125
8 T T T 0.125
probspace(rolldie(2))
X1 X2 probs
1 1 1 0.02777778
2 2 1 0.02777778
3 3 1 0.02777778
4 4 1 0.02777778
5 5 1 0.02777778
6 6 1 0.02777778
7 1 2 0.02777778
8 2 2 0.02777778
9 3 2 0.02777778
10 4 2 0.02777778
11 5 2 0.02777778
12 6 2 0.02777778
13 1 3 0.02777778
14 2 3 0.02777778
15 3 3 0.02777778
16 4 3 0.02777778
17 5 3 0.02777778
18 6 3 0.02777778
19 1 4 0.02777778
20 2 4 0.02777778
21 3 4 0.02777778
22 4 4 0.02777778
23 5 4 0.02777778
24 6 4 0.02777778
25 1 5 0.02777778
26 2 5 0.02777778
27 3 5 0.02777778
28 4 5 0.02777778
29 5 5 0.02777778
30 6 5 0.02777778
31 1 6 0.02777778
32 2 6 0.02777778
33 3 6 0.02777778
34 4 6 0.02777778
35 5 6 0.02777778
36 6 6 0.02777778
iidspace(c("H","T"), ntrials=3, probs=c(0.7, 0.3))
X1 X2 X3 probs
1 H H H 0.343
2 T H H 0.147
3 H T H 0.147
4 T T H 0.063
5 H H T 0.147
6 T H T 0.063
7 H T T 0.063
8 T T T 0.027
(S = rolldie(2, makespace=TRUE))
X1 X2 probs
1 1 1 0.02777778
2 2 1 0.02777778
3 3 1 0.02777778
4 4 1 0.02777778
5 5 1 0.02777778
6 6 1 0.02777778
7 1 2 0.02777778
8 2 2 0.02777778
9 3 2 0.02777778
10 4 2 0.02777778
11 5 2 0.02777778
12 6 2 0.02777778
13 1 3 0.02777778
14 2 3 0.02777778
15 3 3 0.02777778
16 4 3 0.02777778
17 5 3 0.02777778
18 6 3 0.02777778
19 1 4 0.02777778
20 2 4 0.02777778
21 3 4 0.02777778
22 4 4 0.02777778
23 5 4 0.02777778
24 6 4 0.02777778
25 1 5 0.02777778
26 2 5 0.02777778
27 3 5 0.02777778
28 4 5 0.02777778
29 5 5 0.02777778
30 6 5 0.02777778
31 1 6 0.02777778
32 2 6 0.02777778
33 3 6 0.02777778
34 4 6 0.02777778
35 5 6 0.02777778
36 6 6 0.02777778
(A = subset(S, X1 == X2))
X1 X2 probs
1 1 1 0.02777778
8 2 2 0.02777778
15 3 3 0.02777778
22 4 4 0.02777778
29 5 5 0.02777778
36 6 6 0.02777778
(B = subset(S, X1 + X2 >= 8))
X1 X2 probs
12 6 2 0.02777778
17 5 3 0.02777778
18 6 3 0.02777778
22 4 4 0.02777778
23 5 4 0.02777778
24 6 4 0.02777778
27 3 5 0.02777778
28 4 5 0.02777778
29 5 5 0.02777778
30 6 5 0.02777778
32 2 6 0.02777778
33 3 6 0.02777778
34 4 6 0.02777778
35 5 6 0.02777778
36 6 6 0.02777778
Prob(A, given=B)
[1] 0.2
Prob(B, given=A)
[1] 0.5
S = tosscoin(10, makespace=TRUE)
A = subset(S, isrep(S, vals="T", nrep=10))
1 - Prob(A)
[1] 0.9990234
prior = c(0.6, 0.3, 0.1)
like = c(0.003, 0.007, 0.01)
post = prior * like
post/sum(post)
[1] 0.3673469 0.4285714 0.2040816
S = rolldie(3, makespace=TRUE)
S = addrv(S, U = X1 - X2 + X3)
S = addrv(S, FUN=max, invars=c("X1","X2","X3"), name="V")
S = addrv(S, FUN=sum, invars=c("X1","X2","X3"), name="W")
S
X1 X2 X3 U V W probs
1 1 1 1 1 1 3 0.00462963
2 2 1 1 2 2 4 0.00462963
3 3 1 1 3 3 5 0.00462963
4 4 1 1 4 4 6 0.00462963
5 5 1 1 5 5 7 0.00462963
6 6 1 1 6 6 8 0.00462963
7 1 2 1 0 2 4 0.00462963
8 2 2 1 1 2 5 0.00462963
9 3 2 1 2 3 6 0.00462963
10 4 2 1 3 4 7 0.00462963
11 5 2 1 4 5 8 0.00462963
12 6 2 1 5 6 9 0.00462963
13 1 3 1 -1 3 5 0.00462963
14 2 3 1 0 3 6 0.00462963
15 3 3 1 1 3 7 0.00462963
16 4 3 1 2 4 8 0.00462963
17 5 3 1 3 5 9 0.00462963
18 6 3 1 4 6 10 0.00462963
19 1 4 1 -2 4 6 0.00462963
20 2 4 1 -1 4 7 0.00462963
21 3 4 1 0 4 8 0.00462963
22 4 4 1 1 4 9 0.00462963
23 5 4 1 2 5 10 0.00462963
24 6 4 1 3 6 11 0.00462963
25 1 5 1 -3 5 7 0.00462963
26 2 5 1 -2 5 8 0.00462963
27 3 5 1 -1 5 9 0.00462963
28 4 5 1 0 5 10 0.00462963
29 5 5 1 1 5 11 0.00462963
30 6 5 1 2 6 12 0.00462963
31 1 6 1 -4 6 8 0.00462963
32 2 6 1 -3 6 9 0.00462963
33 3 6 1 -2 6 10 0.00462963
34 4 6 1 -1 6 11 0.00462963
35 5 6 1 0 6 12 0.00462963
36 6 6 1 1 6 13 0.00462963
37 1 1 2 2 2 4 0.00462963
38 2 1 2 3 2 5 0.00462963
39 3 1 2 4 3 6 0.00462963
40 4 1 2 5 4 7 0.00462963
41 5 1 2 6 5 8 0.00462963
42 6 1 2 7 6 9 0.00462963
43 1 2 2 1 2 5 0.00462963
44 2 2 2 2 2 6 0.00462963
45 3 2 2 3 3 7 0.00462963
46 4 2 2 4 4 8 0.00462963
47 5 2 2 5 5 9 0.00462963
48 6 2 2 6 6 10 0.00462963
49 1 3 2 0 3 6 0.00462963
50 2 3 2 1 3 7 0.00462963
51 3 3 2 2 3 8 0.00462963
52 4 3 2 3 4 9 0.00462963
53 5 3 2 4 5 10 0.00462963
54 6 3 2 5 6 11 0.00462963
55 1 4 2 -1 4 7 0.00462963
56 2 4 2 0 4 8 0.00462963
57 3 4 2 1 4 9 0.00462963
58 4 4 2 2 4 10 0.00462963
59 5 4 2 3 5 11 0.00462963
60 6 4 2 4 6 12 0.00462963
61 1 5 2 -2 5 8 0.00462963
62 2 5 2 -1 5 9 0.00462963
63 3 5 2 0 5 10 0.00462963
64 4 5 2 1 5 11 0.00462963
65 5 5 2 2 5 12 0.00462963
66 6 5 2 3 6 13 0.00462963
67 1 6 2 -3 6 9 0.00462963
68 2 6 2 -2 6 10 0.00462963
69 3 6 2 -1 6 11 0.00462963
70 4 6 2 0 6 12 0.00462963
71 5 6 2 1 6 13 0.00462963
72 6 6 2 2 6 14 0.00462963
73 1 1 3 3 3 5 0.00462963
74 2 1 3 4 3 6 0.00462963
75 3 1 3 5 3 7 0.00462963
76 4 1 3 6 4 8 0.00462963
77 5 1 3 7 5 9 0.00462963
78 6 1 3 8 6 10 0.00462963
79 1 2 3 2 3 6 0.00462963
80 2 2 3 3 3 7 0.00462963
81 3 2 3 4 3 8 0.00462963
82 4 2 3 5 4 9 0.00462963
83 5 2 3 6 5 10 0.00462963
84 6 2 3 7 6 11 0.00462963
85 1 3 3 1 3 7 0.00462963
86 2 3 3 2 3 8 0.00462963
87 3 3 3 3 3 9 0.00462963
88 4 3 3 4 4 10 0.00462963
89 5 3 3 5 5 11 0.00462963
90 6 3 3 6 6 12 0.00462963
91 1 4 3 0 4 8 0.00462963
92 2 4 3 1 4 9 0.00462963
93 3 4 3 2 4 10 0.00462963
94 4 4 3 3 4 11 0.00462963
95 5 4 3 4 5 12 0.00462963
96 6 4 3 5 6 13 0.00462963
97 1 5 3 -1 5 9 0.00462963
98 2 5 3 0 5 10 0.00462963
99 3 5 3 1 5 11 0.00462963
100 4 5 3 2 5 12 0.00462963
101 5 5 3 3 5 13 0.00462963
102 6 5 3 4 6 14 0.00462963
103 1 6 3 -2 6 10 0.00462963
104 2 6 3 -1 6 11 0.00462963
105 3 6 3 0 6 12 0.00462963
106 4 6 3 1 6 13 0.00462963
107 5 6 3 2 6 14 0.00462963
108 6 6 3 3 6 15 0.00462963
109 1 1 4 4 4 6 0.00462963
110 2 1 4 5 4 7 0.00462963
111 3 1 4 6 4 8 0.00462963
112 4 1 4 7 4 9 0.00462963
113 5 1 4 8 5 10 0.00462963
114 6 1 4 9 6 11 0.00462963
115 1 2 4 3 4 7 0.00462963
116 2 2 4 4 4 8 0.00462963
117 3 2 4 5 4 9 0.00462963
118 4 2 4 6 4 10 0.00462963
119 5 2 4 7 5 11 0.00462963
120 6 2 4 8 6 12 0.00462963
121 1 3 4 2 4 8 0.00462963
122 2 3 4 3 4 9 0.00462963
123 3 3 4 4 4 10 0.00462963
124 4 3 4 5 4 11 0.00462963
125 5 3 4 6 5 12 0.00462963
126 6 3 4 7 6 13 0.00462963
127 1 4 4 1 4 9 0.00462963
128 2 4 4 2 4 10 0.00462963
129 3 4 4 3 4 11 0.00462963
130 4 4 4 4 4 12 0.00462963
131 5 4 4 5 5 13 0.00462963
132 6 4 4 6 6 14 0.00462963
133 1 5 4 0 5 10 0.00462963
134 2 5 4 1 5 11 0.00462963
135 3 5 4 2 5 12 0.00462963
136 4 5 4 3 5 13 0.00462963
137 5 5 4 4 5 14 0.00462963
138 6 5 4 5 6 15 0.00462963
139 1 6 4 -1 6 11 0.00462963
140 2 6 4 0 6 12 0.00462963
141 3 6 4 1 6 13 0.00462963
142 4 6 4 2 6 14 0.00462963
143 5 6 4 3 6 15 0.00462963
144 6 6 4 4 6 16 0.00462963
145 1 1 5 5 5 7 0.00462963
146 2 1 5 6 5 8 0.00462963
147 3 1 5 7 5 9 0.00462963
148 4 1 5 8 5 10 0.00462963
149 5 1 5 9 5 11 0.00462963
150 6 1 5 10 6 12 0.00462963
151 1 2 5 4 5 8 0.00462963
152 2 2 5 5 5 9 0.00462963
153 3 2 5 6 5 10 0.00462963
154 4 2 5 7 5 11 0.00462963
155 5 2 5 8 5 12 0.00462963
156 6 2 5 9 6 13 0.00462963
157 1 3 5 3 5 9 0.00462963
158 2 3 5 4 5 10 0.00462963
159 3 3 5 5 5 11 0.00462963
160 4 3 5 6 5 12 0.00462963
161 5 3 5 7 5 13 0.00462963
162 6 3 5 8 6 14 0.00462963
163 1 4 5 2 5 10 0.00462963
164 2 4 5 3 5 11 0.00462963
165 3 4 5 4 5 12 0.00462963
166 4 4 5 5 5 13 0.00462963
167 5 4 5 6 5 14 0.00462963
168 6 4 5 7 6 15 0.00462963
169 1 5 5 1 5 11 0.00462963
170 2 5 5 2 5 12 0.00462963
171 3 5 5 3 5 13 0.00462963
172 4 5 5 4 5 14 0.00462963
173 5 5 5 5 5 15 0.00462963
174 6 5 5 6 6 16 0.00462963
175 1 6 5 0 6 12 0.00462963
176 2 6 5 1 6 13 0.00462963
177 3 6 5 2 6 14 0.00462963
178 4 6 5 3 6 15 0.00462963
179 5 6 5 4 6 16 0.00462963
180 6 6 5 5 6 17 0.00462963
181 1 1 6 6 6 8 0.00462963
182 2 1 6 7 6 9 0.00462963
183 3 1 6 8 6 10 0.00462963
184 4 1 6 9 6 11 0.00462963
185 5 1 6 10 6 12 0.00462963
186 6 1 6 11 6 13 0.00462963
187 1 2 6 5 6 9 0.00462963
188 2 2 6 6 6 10 0.00462963
189 3 2 6 7 6 11 0.00462963
190 4 2 6 8 6 12 0.00462963
191 5 2 6 9 6 13 0.00462963
192 6 2 6 10 6 14 0.00462963
193 1 3 6 4 6 10 0.00462963
194 2 3 6 5 6 11 0.00462963
195 3 3 6 6 6 12 0.00462963
196 4 3 6 7 6 13 0.00462963
197 5 3 6 8 6 14 0.00462963
198 6 3 6 9 6 15 0.00462963
199 1 4 6 3 6 11 0.00462963
200 2 4 6 4 6 12 0.00462963
201 3 4 6 5 6 13 0.00462963
202 4 4 6 6 6 14 0.00462963
203 5 4 6 7 6 15 0.00462963
204 6 4 6 8 6 16 0.00462963
205 1 5 6 2 6 12 0.00462963
206 2 5 6 3 6 13 0.00462963
207 3 5 6 4 6 14 0.00462963
208 4 5 6 5 6 15 0.00462963
209 5 5 6 6 6 16 0.00462963
210 6 5 6 7 6 17 0.00462963
211 1 6 6 1 6 13 0.00462963
212 2 6 6 2 6 14 0.00462963
213 3 6 6 3 6 15 0.00462963
214 4 6 6 4 6 16 0.00462963
215 5 6 6 5 6 17 0.00462963
216 6 6 6 6 6 18 0.00462963
Prob(S, U > 6)
[1] 0.162037
Prob(S, U + W - V > 10)
[1] 0.3472222
Haces una tirada de 10 monedas. ¿Cuál es la probabilidad de observar al menos una cara?
S = tosscoin (10 , makespace = TRUE )
(A = subset (S, isrep (S, vals ="T", nrep =10)))
toss1 toss2 toss3 toss4 toss5 toss6 toss7 toss8 toss9 toss10
1024 T T T T T T T T T T
probs
1024 0.0009765625
1 - Prob (A)
[1] 0.9990234
Tiras una moneda tres veces y calculas los valores de varias variables aletorias y funciones de esas variables alratorias.
S = rolldie(3, makespace=TRUE)
S = addrv(S, U = X1 - X2 + X3)
S = addrv(S, FUN=max, invars=c("X1","X2","X3"),
name="V")
S = addrv(S, FUN=sum, invars=c("X1","X2","X3"),
name="W")
S
X1 X2 X3 U V W probs
1 1 1 1 1 1 3 0.00462963
2 2 1 1 2 2 4 0.00462963
3 3 1 1 3 3 5 0.00462963
4 4 1 1 4 4 6 0.00462963
5 5 1 1 5 5 7 0.00462963
6 6 1 1 6 6 8 0.00462963
7 1 2 1 0 2 4 0.00462963
8 2 2 1 1 2 5 0.00462963
9 3 2 1 2 3 6 0.00462963
10 4 2 1 3 4 7 0.00462963
11 5 2 1 4 5 8 0.00462963
12 6 2 1 5 6 9 0.00462963
13 1 3 1 -1 3 5 0.00462963
14 2 3 1 0 3 6 0.00462963
15 3 3 1 1 3 7 0.00462963
16 4 3 1 2 4 8 0.00462963
17 5 3 1 3 5 9 0.00462963
18 6 3 1 4 6 10 0.00462963
19 1 4 1 -2 4 6 0.00462963
20 2 4 1 -1 4 7 0.00462963
21 3 4 1 0 4 8 0.00462963
22 4 4 1 1 4 9 0.00462963
23 5 4 1 2 5 10 0.00462963
24 6 4 1 3 6 11 0.00462963
25 1 5 1 -3 5 7 0.00462963
26 2 5 1 -2 5 8 0.00462963
27 3 5 1 -1 5 9 0.00462963
28 4 5 1 0 5 10 0.00462963
29 5 5 1 1 5 11 0.00462963
30 6 5 1 2 6 12 0.00462963
31 1 6 1 -4 6 8 0.00462963
32 2 6 1 -3 6 9 0.00462963
33 3 6 1 -2 6 10 0.00462963
34 4 6 1 -1 6 11 0.00462963
35 5 6 1 0 6 12 0.00462963
36 6 6 1 1 6 13 0.00462963
37 1 1 2 2 2 4 0.00462963
38 2 1 2 3 2 5 0.00462963
39 3 1 2 4 3 6 0.00462963
40 4 1 2 5 4 7 0.00462963
41 5 1 2 6 5 8 0.00462963
42 6 1 2 7 6 9 0.00462963
43 1 2 2 1 2 5 0.00462963
44 2 2 2 2 2 6 0.00462963
45 3 2 2 3 3 7 0.00462963
46 4 2 2 4 4 8 0.00462963
47 5 2 2 5 5 9 0.00462963
48 6 2 2 6 6 10 0.00462963
49 1 3 2 0 3 6 0.00462963
50 2 3 2 1 3 7 0.00462963
51 3 3 2 2 3 8 0.00462963
52 4 3 2 3 4 9 0.00462963
53 5 3 2 4 5 10 0.00462963
54 6 3 2 5 6 11 0.00462963
55 1 4 2 -1 4 7 0.00462963
56 2 4 2 0 4 8 0.00462963
57 3 4 2 1 4 9 0.00462963
58 4 4 2 2 4 10 0.00462963
59 5 4 2 3 5 11 0.00462963
60 6 4 2 4 6 12 0.00462963
61 1 5 2 -2 5 8 0.00462963
62 2 5 2 -1 5 9 0.00462963
63 3 5 2 0 5 10 0.00462963
64 4 5 2 1 5 11 0.00462963
65 5 5 2 2 5 12 0.00462963
66 6 5 2 3 6 13 0.00462963
67 1 6 2 -3 6 9 0.00462963
68 2 6 2 -2 6 10 0.00462963
69 3 6 2 -1 6 11 0.00462963
70 4 6 2 0 6 12 0.00462963
71 5 6 2 1 6 13 0.00462963
72 6 6 2 2 6 14 0.00462963
73 1 1 3 3 3 5 0.00462963
74 2 1 3 4 3 6 0.00462963
75 3 1 3 5 3 7 0.00462963
76 4 1 3 6 4 8 0.00462963
77 5 1 3 7 5 9 0.00462963
78 6 1 3 8 6 10 0.00462963
79 1 2 3 2 3 6 0.00462963
80 2 2 3 3 3 7 0.00462963
81 3 2 3 4 3 8 0.00462963
82 4 2 3 5 4 9 0.00462963
83 5 2 3 6 5 10 0.00462963
84 6 2 3 7 6 11 0.00462963
85 1 3 3 1 3 7 0.00462963
86 2 3 3 2 3 8 0.00462963
87 3 3 3 3 3 9 0.00462963
88 4 3 3 4 4 10 0.00462963
89 5 3 3 5 5 11 0.00462963
90 6 3 3 6 6 12 0.00462963
91 1 4 3 0 4 8 0.00462963
92 2 4 3 1 4 9 0.00462963
93 3 4 3 2 4 10 0.00462963
94 4 4 3 3 4 11 0.00462963
95 5 4 3 4 5 12 0.00462963
96 6 4 3 5 6 13 0.00462963
97 1 5 3 -1 5 9 0.00462963
98 2 5 3 0 5 10 0.00462963
99 3 5 3 1 5 11 0.00462963
100 4 5 3 2 5 12 0.00462963
101 5 5 3 3 5 13 0.00462963
102 6 5 3 4 6 14 0.00462963
103 1 6 3 -2 6 10 0.00462963
104 2 6 3 -1 6 11 0.00462963
105 3 6 3 0 6 12 0.00462963
106 4 6 3 1 6 13 0.00462963
107 5 6 3 2 6 14 0.00462963
108 6 6 3 3 6 15 0.00462963
109 1 1 4 4 4 6 0.00462963
110 2 1 4 5 4 7 0.00462963
111 3 1 4 6 4 8 0.00462963
112 4 1 4 7 4 9 0.00462963
113 5 1 4 8 5 10 0.00462963
114 6 1 4 9 6 11 0.00462963
115 1 2 4 3 4 7 0.00462963
116 2 2 4 4 4 8 0.00462963
117 3 2 4 5 4 9 0.00462963
118 4 2 4 6 4 10 0.00462963
119 5 2 4 7 5 11 0.00462963
120 6 2 4 8 6 12 0.00462963
121 1 3 4 2 4 8 0.00462963
122 2 3 4 3 4 9 0.00462963
123 3 3 4 4 4 10 0.00462963
124 4 3 4 5 4 11 0.00462963
125 5 3 4 6 5 12 0.00462963
126 6 3 4 7 6 13 0.00462963
127 1 4 4 1 4 9 0.00462963
128 2 4 4 2 4 10 0.00462963
129 3 4 4 3 4 11 0.00462963
130 4 4 4 4 4 12 0.00462963
131 5 4 4 5 5 13 0.00462963
132 6 4 4 6 6 14 0.00462963
133 1 5 4 0 5 10 0.00462963
134 2 5 4 1 5 11 0.00462963
135 3 5 4 2 5 12 0.00462963
136 4 5 4 3 5 13 0.00462963
137 5 5 4 4 5 14 0.00462963
138 6 5 4 5 6 15 0.00462963
139 1 6 4 -1 6 11 0.00462963
140 2 6 4 0 6 12 0.00462963
141 3 6 4 1 6 13 0.00462963
142 4 6 4 2 6 14 0.00462963
143 5 6 4 3 6 15 0.00462963
144 6 6 4 4 6 16 0.00462963
145 1 1 5 5 5 7 0.00462963
146 2 1 5 6 5 8 0.00462963
147 3 1 5 7 5 9 0.00462963
148 4 1 5 8 5 10 0.00462963
149 5 1 5 9 5 11 0.00462963
150 6 1 5 10 6 12 0.00462963
151 1 2 5 4 5 8 0.00462963
152 2 2 5 5 5 9 0.00462963
153 3 2 5 6 5 10 0.00462963
154 4 2 5 7 5 11 0.00462963
155 5 2 5 8 5 12 0.00462963
156 6 2 5 9 6 13 0.00462963
157 1 3 5 3 5 9 0.00462963
158 2 3 5 4 5 10 0.00462963
159 3 3 5 5 5 11 0.00462963
160 4 3 5 6 5 12 0.00462963
161 5 3 5 7 5 13 0.00462963
162 6 3 5 8 6 14 0.00462963
163 1 4 5 2 5 10 0.00462963
164 2 4 5 3 5 11 0.00462963
165 3 4 5 4 5 12 0.00462963
166 4 4 5 5 5 13 0.00462963
167 5 4 5 6 5 14 0.00462963
168 6 4 5 7 6 15 0.00462963
169 1 5 5 1 5 11 0.00462963
170 2 5 5 2 5 12 0.00462963
171 3 5 5 3 5 13 0.00462963
172 4 5 5 4 5 14 0.00462963
173 5 5 5 5 5 15 0.00462963
174 6 5 5 6 6 16 0.00462963
175 1 6 5 0 6 12 0.00462963
176 2 6 5 1 6 13 0.00462963
177 3 6 5 2 6 14 0.00462963
178 4 6 5 3 6 15 0.00462963
179 5 6 5 4 6 16 0.00462963
180 6 6 5 5 6 17 0.00462963
181 1 1 6 6 6 8 0.00462963
182 2 1 6 7 6 9 0.00462963
183 3 1 6 8 6 10 0.00462963
184 4 1 6 9 6 11 0.00462963
185 5 1 6 10 6 12 0.00462963
186 6 1 6 11 6 13 0.00462963
187 1 2 6 5 6 9 0.00462963
188 2 2 6 6 6 10 0.00462963
189 3 2 6 7 6 11 0.00462963
190 4 2 6 8 6 12 0.00462963
191 5 2 6 9 6 13 0.00462963
192 6 2 6 10 6 14 0.00462963
193 1 3 6 4 6 10 0.00462963
194 2 3 6 5 6 11 0.00462963
195 3 3 6 6 6 12 0.00462963
196 4 3 6 7 6 13 0.00462963
197 5 3 6 8 6 14 0.00462963
198 6 3 6 9 6 15 0.00462963
199 1 4 6 3 6 11 0.00462963
200 2 4 6 4 6 12 0.00462963
201 3 4 6 5 6 13 0.00462963
202 4 4 6 6 6 14 0.00462963
203 5 4 6 7 6 15 0.00462963
204 6 4 6 8 6 16 0.00462963
205 1 5 6 2 6 12 0.00462963
206 2 5 6 3 6 13 0.00462963
207 3 5 6 4 6 14 0.00462963
208 4 5 6 5 6 15 0.00462963
209 5 5 6 6 6 16 0.00462963
210 6 5 6 7 6 17 0.00462963
211 1 6 6 1 6 13 0.00462963
212 2 6 6 2 6 14 0.00462963
213 3 6 6 3 6 15 0.00462963
214 4 6 6 4 6 16 0.00462963
215 5 6 6 5 6 17 0.00462963
216 6 6 6 6 6 18 0.00462963
Calculas las respectivas probabilidades de algunos sucesos:
Prob(S, U > 6)
[1] 0.162037
Prob(S, U + W - V > 10)
[1] 0.3472222