Ejemplos simples de espacios de probabilidad


if (!require(prob)) install.packages("prob")
Loading required package: prob
Loading required package: combinat

Attaching package: 'combinat'
The following object is masked from 'package:utils':

    combn
Loading required package: fAsianOptions
Loading required package: timeDate
Loading required package: timeSeries
Loading required package: fBasics
Loading required package: fOptions

Attaching package: 'prob'
The following objects are masked from 'package:base':

    intersect, setdiff, union
library(prob)


   tosscoin(3)   # Tres monedas
  toss1 toss2 toss3
1     H     H     H
2     T     H     H
3     H     T     H
4     T     T     H
5     H     H     T
6     T     H     T
7     H     T     T
8     T     T     T
   rolldie(2)    # Dado de seis caras
   X1 X2
1   1  1
2   2  1
3   3  1
4   4  1
5   5  1
6   6  1
7   1  2
8   2  2
9   3  2
10  4  2
11  5  2
12  6  2
13  1  3
14  2  3
15  3  3
16  4  3
17  5  3
18  6  3
19  1  4
20  2  4
21  3  4
22  4  4
23  5  4
24  6  4
25  1  5
26  2  5
27  3  5
28  4  5
29  5  5
30  6  5
31  1  6
32  2  6
33  3  6
34  4  6
35  5  6
36  6  6
   cards()  
   rank    suit
1     2    Club
2     3    Club
3     4    Club
4     5    Club
5     6    Club
6     7    Club
7     8    Club
8     9    Club
9    10    Club
10    J    Club
11    Q    Club
12    K    Club
13    A    Club
14    2 Diamond
15    3 Diamond
16    4 Diamond
17    5 Diamond
18    6 Diamond
19    7 Diamond
20    8 Diamond
21    9 Diamond
22   10 Diamond
23    J Diamond
24    Q Diamond
25    K Diamond
26    A Diamond
27    2   Heart
28    3   Heart
29    4   Heart
30    5   Heart
31    6   Heart
32    7   Heart
33    8   Heart
34    9   Heart
35   10   Heart
36    J   Heart
37    Q   Heart
38    K   Heart
39    A   Heart
40    2   Spade
41    3   Spade
42    4   Spade
43    5   Spade
44    6   Spade
45    7   Spade
46    8   Spade
47    9   Spade
48   10   Spade
49    J   Spade
50    Q   Spade
51    K   Spade
52    A   Spade


Ejemplo con equiprobabilidad


tosscoin(3, makespace=TRUE)
  toss1 toss2 toss3 probs
1     H     H     H 0.125
2     T     H     H 0.125
3     H     T     H 0.125
4     T     T     H 0.125
5     H     H     T 0.125
6     T     H     T 0.125
7     H     T     T 0.125
8     T     T     T 0.125
probspace(rolldie(2))
   X1 X2      probs
1   1  1 0.02777778
2   2  1 0.02777778
3   3  1 0.02777778
4   4  1 0.02777778
5   5  1 0.02777778
6   6  1 0.02777778
7   1  2 0.02777778
8   2  2 0.02777778
9   3  2 0.02777778
10  4  2 0.02777778
11  5  2 0.02777778
12  6  2 0.02777778
13  1  3 0.02777778
14  2  3 0.02777778
15  3  3 0.02777778
16  4  3 0.02777778
17  5  3 0.02777778
18  6  3 0.02777778
19  1  4 0.02777778
20  2  4 0.02777778
21  3  4 0.02777778
22  4  4 0.02777778
23  5  4 0.02777778
24  6  4 0.02777778
25  1  5 0.02777778
26  2  5 0.02777778
27  3  5 0.02777778
28  4  5 0.02777778
29  5  5 0.02777778
30  6  5 0.02777778
31  1  6 0.02777778
32  2  6 0.02777778
33  3  6 0.02777778
34  4  6 0.02777778
35  5  6 0.02777778
36  6  6 0.02777778


Probabilidades desiguales


iidspace(c("H","T"), ntrials=3, probs=c(0.7, 0.3))
  X1 X2 X3 probs
1  H  H  H 0.343
2  T  H  H 0.147
3  H  T  H 0.147
4  T  T  H 0.063
5  H  H  T 0.147
6  T  H  T 0.063
7  H  T  T 0.063
8  T  T  T 0.027


(S = rolldie(2, makespace=TRUE))
   X1 X2      probs
1   1  1 0.02777778
2   2  1 0.02777778
3   3  1 0.02777778
4   4  1 0.02777778
5   5  1 0.02777778
6   6  1 0.02777778
7   1  2 0.02777778
8   2  2 0.02777778
9   3  2 0.02777778
10  4  2 0.02777778
11  5  2 0.02777778
12  6  2 0.02777778
13  1  3 0.02777778
14  2  3 0.02777778
15  3  3 0.02777778
16  4  3 0.02777778
17  5  3 0.02777778
18  6  3 0.02777778
19  1  4 0.02777778
20  2  4 0.02777778
21  3  4 0.02777778
22  4  4 0.02777778
23  5  4 0.02777778
24  6  4 0.02777778
25  1  5 0.02777778
26  2  5 0.02777778
27  3  5 0.02777778
28  4  5 0.02777778
29  5  5 0.02777778
30  6  5 0.02777778
31  1  6 0.02777778
32  2  6 0.02777778
33  3  6 0.02777778
34  4  6 0.02777778
35  5  6 0.02777778
36  6  6 0.02777778
(A = subset(S, X1 == X2))
   X1 X2      probs
1   1  1 0.02777778
8   2  2 0.02777778
15  3  3 0.02777778
22  4  4 0.02777778
29  5  5 0.02777778
36  6  6 0.02777778
(B = subset(S, X1 + X2 >= 8))
   X1 X2      probs
12  6  2 0.02777778
17  5  3 0.02777778
18  6  3 0.02777778
22  4  4 0.02777778
23  5  4 0.02777778
24  6  4 0.02777778
27  3  5 0.02777778
28  4  5 0.02777778
29  5  5 0.02777778
30  6  5 0.02777778
32  2  6 0.02777778
33  3  6 0.02777778
34  4  6 0.02777778
35  5  6 0.02777778
36  6  6 0.02777778


Prob(A, given=B)
[1] 0.2
Prob(B, given=A)
[1] 0.5


S = tosscoin(10, makespace=TRUE)
A = subset(S, isrep(S, vals="T", nrep=10))
1 - Prob(A)
[1] 0.9990234


prior = c(0.6, 0.3, 0.1)
like = c(0.003, 0.007, 0.01)
post = prior * like
post/sum(post)
[1] 0.3673469 0.4285714 0.2040816


S = rolldie(3,  makespace=TRUE)
S = addrv(S, U = X1 - X2 + X3)
S = addrv(S, FUN=max, invars=c("X1","X2","X3"), name="V")
S = addrv(S, FUN=sum, invars=c("X1","X2","X3"), name="W")
S
    X1 X2 X3  U V  W      probs
1    1  1  1  1 1  3 0.00462963
2    2  1  1  2 2  4 0.00462963
3    3  1  1  3 3  5 0.00462963
4    4  1  1  4 4  6 0.00462963
5    5  1  1  5 5  7 0.00462963
6    6  1  1  6 6  8 0.00462963
7    1  2  1  0 2  4 0.00462963
8    2  2  1  1 2  5 0.00462963
9    3  2  1  2 3  6 0.00462963
10   4  2  1  3 4  7 0.00462963
11   5  2  1  4 5  8 0.00462963
12   6  2  1  5 6  9 0.00462963
13   1  3  1 -1 3  5 0.00462963
14   2  3  1  0 3  6 0.00462963
15   3  3  1  1 3  7 0.00462963
16   4  3  1  2 4  8 0.00462963
17   5  3  1  3 5  9 0.00462963
18   6  3  1  4 6 10 0.00462963
19   1  4  1 -2 4  6 0.00462963
20   2  4  1 -1 4  7 0.00462963
21   3  4  1  0 4  8 0.00462963
22   4  4  1  1 4  9 0.00462963
23   5  4  1  2 5 10 0.00462963
24   6  4  1  3 6 11 0.00462963
25   1  5  1 -3 5  7 0.00462963
26   2  5  1 -2 5  8 0.00462963
27   3  5  1 -1 5  9 0.00462963
28   4  5  1  0 5 10 0.00462963
29   5  5  1  1 5 11 0.00462963
30   6  5  1  2 6 12 0.00462963
31   1  6  1 -4 6  8 0.00462963
32   2  6  1 -3 6  9 0.00462963
33   3  6  1 -2 6 10 0.00462963
34   4  6  1 -1 6 11 0.00462963
35   5  6  1  0 6 12 0.00462963
36   6  6  1  1 6 13 0.00462963
37   1  1  2  2 2  4 0.00462963
38   2  1  2  3 2  5 0.00462963
39   3  1  2  4 3  6 0.00462963
40   4  1  2  5 4  7 0.00462963
41   5  1  2  6 5  8 0.00462963
42   6  1  2  7 6  9 0.00462963
43   1  2  2  1 2  5 0.00462963
44   2  2  2  2 2  6 0.00462963
45   3  2  2  3 3  7 0.00462963
46   4  2  2  4 4  8 0.00462963
47   5  2  2  5 5  9 0.00462963
48   6  2  2  6 6 10 0.00462963
49   1  3  2  0 3  6 0.00462963
50   2  3  2  1 3  7 0.00462963
51   3  3  2  2 3  8 0.00462963
52   4  3  2  3 4  9 0.00462963
53   5  3  2  4 5 10 0.00462963
54   6  3  2  5 6 11 0.00462963
55   1  4  2 -1 4  7 0.00462963
56   2  4  2  0 4  8 0.00462963
57   3  4  2  1 4  9 0.00462963
58   4  4  2  2 4 10 0.00462963
59   5  4  2  3 5 11 0.00462963
60   6  4  2  4 6 12 0.00462963
61   1  5  2 -2 5  8 0.00462963
62   2  5  2 -1 5  9 0.00462963
63   3  5  2  0 5 10 0.00462963
64   4  5  2  1 5 11 0.00462963
65   5  5  2  2 5 12 0.00462963
66   6  5  2  3 6 13 0.00462963
67   1  6  2 -3 6  9 0.00462963
68   2  6  2 -2 6 10 0.00462963
69   3  6  2 -1 6 11 0.00462963
70   4  6  2  0 6 12 0.00462963
71   5  6  2  1 6 13 0.00462963
72   6  6  2  2 6 14 0.00462963
73   1  1  3  3 3  5 0.00462963
74   2  1  3  4 3  6 0.00462963
75   3  1  3  5 3  7 0.00462963
76   4  1  3  6 4  8 0.00462963
77   5  1  3  7 5  9 0.00462963
78   6  1  3  8 6 10 0.00462963
79   1  2  3  2 3  6 0.00462963
80   2  2  3  3 3  7 0.00462963
81   3  2  3  4 3  8 0.00462963
82   4  2  3  5 4  9 0.00462963
83   5  2  3  6 5 10 0.00462963
84   6  2  3  7 6 11 0.00462963
85   1  3  3  1 3  7 0.00462963
86   2  3  3  2 3  8 0.00462963
87   3  3  3  3 3  9 0.00462963
88   4  3  3  4 4 10 0.00462963
89   5  3  3  5 5 11 0.00462963
90   6  3  3  6 6 12 0.00462963
91   1  4  3  0 4  8 0.00462963
92   2  4  3  1 4  9 0.00462963
93   3  4  3  2 4 10 0.00462963
94   4  4  3  3 4 11 0.00462963
95   5  4  3  4 5 12 0.00462963
96   6  4  3  5 6 13 0.00462963
97   1  5  3 -1 5  9 0.00462963
98   2  5  3  0 5 10 0.00462963
99   3  5  3  1 5 11 0.00462963
100  4  5  3  2 5 12 0.00462963
101  5  5  3  3 5 13 0.00462963
102  6  5  3  4 6 14 0.00462963
103  1  6  3 -2 6 10 0.00462963
104  2  6  3 -1 6 11 0.00462963
105  3  6  3  0 6 12 0.00462963
106  4  6  3  1 6 13 0.00462963
107  5  6  3  2 6 14 0.00462963
108  6  6  3  3 6 15 0.00462963
109  1  1  4  4 4  6 0.00462963
110  2  1  4  5 4  7 0.00462963
111  3  1  4  6 4  8 0.00462963
112  4  1  4  7 4  9 0.00462963
113  5  1  4  8 5 10 0.00462963
114  6  1  4  9 6 11 0.00462963
115  1  2  4  3 4  7 0.00462963
116  2  2  4  4 4  8 0.00462963
117  3  2  4  5 4  9 0.00462963
118  4  2  4  6 4 10 0.00462963
119  5  2  4  7 5 11 0.00462963
120  6  2  4  8 6 12 0.00462963
121  1  3  4  2 4  8 0.00462963
122  2  3  4  3 4  9 0.00462963
123  3  3  4  4 4 10 0.00462963
124  4  3  4  5 4 11 0.00462963
125  5  3  4  6 5 12 0.00462963
126  6  3  4  7 6 13 0.00462963
127  1  4  4  1 4  9 0.00462963
128  2  4  4  2 4 10 0.00462963
129  3  4  4  3 4 11 0.00462963
130  4  4  4  4 4 12 0.00462963
131  5  4  4  5 5 13 0.00462963
132  6  4  4  6 6 14 0.00462963
133  1  5  4  0 5 10 0.00462963
134  2  5  4  1 5 11 0.00462963
135  3  5  4  2 5 12 0.00462963
136  4  5  4  3 5 13 0.00462963
137  5  5  4  4 5 14 0.00462963
138  6  5  4  5 6 15 0.00462963
139  1  6  4 -1 6 11 0.00462963
140  2  6  4  0 6 12 0.00462963
141  3  6  4  1 6 13 0.00462963
142  4  6  4  2 6 14 0.00462963
143  5  6  4  3 6 15 0.00462963
144  6  6  4  4 6 16 0.00462963
145  1  1  5  5 5  7 0.00462963
146  2  1  5  6 5  8 0.00462963
147  3  1  5  7 5  9 0.00462963
148  4  1  5  8 5 10 0.00462963
149  5  1  5  9 5 11 0.00462963
150  6  1  5 10 6 12 0.00462963
151  1  2  5  4 5  8 0.00462963
152  2  2  5  5 5  9 0.00462963
153  3  2  5  6 5 10 0.00462963
154  4  2  5  7 5 11 0.00462963
155  5  2  5  8 5 12 0.00462963
156  6  2  5  9 6 13 0.00462963
157  1  3  5  3 5  9 0.00462963
158  2  3  5  4 5 10 0.00462963
159  3  3  5  5 5 11 0.00462963
160  4  3  5  6 5 12 0.00462963
161  5  3  5  7 5 13 0.00462963
162  6  3  5  8 6 14 0.00462963
163  1  4  5  2 5 10 0.00462963
164  2  4  5  3 5 11 0.00462963
165  3  4  5  4 5 12 0.00462963
166  4  4  5  5 5 13 0.00462963
167  5  4  5  6 5 14 0.00462963
168  6  4  5  7 6 15 0.00462963
169  1  5  5  1 5 11 0.00462963
170  2  5  5  2 5 12 0.00462963
171  3  5  5  3 5 13 0.00462963
172  4  5  5  4 5 14 0.00462963
173  5  5  5  5 5 15 0.00462963
174  6  5  5  6 6 16 0.00462963
175  1  6  5  0 6 12 0.00462963
176  2  6  5  1 6 13 0.00462963
177  3  6  5  2 6 14 0.00462963
178  4  6  5  3 6 15 0.00462963
179  5  6  5  4 6 16 0.00462963
180  6  6  5  5 6 17 0.00462963
181  1  1  6  6 6  8 0.00462963
182  2  1  6  7 6  9 0.00462963
183  3  1  6  8 6 10 0.00462963
184  4  1  6  9 6 11 0.00462963
185  5  1  6 10 6 12 0.00462963
186  6  1  6 11 6 13 0.00462963
187  1  2  6  5 6  9 0.00462963
188  2  2  6  6 6 10 0.00462963
189  3  2  6  7 6 11 0.00462963
190  4  2  6  8 6 12 0.00462963
191  5  2  6  9 6 13 0.00462963
192  6  2  6 10 6 14 0.00462963
193  1  3  6  4 6 10 0.00462963
194  2  3  6  5 6 11 0.00462963
195  3  3  6  6 6 12 0.00462963
196  4  3  6  7 6 13 0.00462963
197  5  3  6  8 6 14 0.00462963
198  6  3  6  9 6 15 0.00462963
199  1  4  6  3 6 11 0.00462963
200  2  4  6  4 6 12 0.00462963
201  3  4  6  5 6 13 0.00462963
202  4  4  6  6 6 14 0.00462963
203  5  4  6  7 6 15 0.00462963
204  6  4  6  8 6 16 0.00462963
205  1  5  6  2 6 12 0.00462963
206  2  5  6  3 6 13 0.00462963
207  3  5  6  4 6 14 0.00462963
208  4  5  6  5 6 15 0.00462963
209  5  5  6  6 6 16 0.00462963
210  6  5  6  7 6 17 0.00462963
211  1  6  6  1 6 13 0.00462963
212  2  6  6  2 6 14 0.00462963
213  3  6  6  3 6 15 0.00462963
214  4  6  6  4 6 16 0.00462963
215  5  6  6  5 6 17 0.00462963
216  6  6  6  6 6 18 0.00462963


Prob(S, U > 6)
[1] 0.162037
Prob(S, U + W - V > 10)
[1] 0.3472222


Ejemplo:


Haces una tirada de 10 monedas. ¿Cuál es la probabilidad de observar al menos una cara?


S = tosscoin (10 , makespace = TRUE )
(A = subset (S, isrep (S, vals ="T", nrep =10)))
     toss1 toss2 toss3 toss4 toss5 toss6 toss7 toss8 toss9 toss10
1024     T     T     T     T     T     T     T     T     T      T
            probs
1024 0.0009765625


1 - Prob (A)
[1] 0.9990234


Tiras una moneda tres veces y calculas los valores de varias variables aletorias y funciones de esas variables alratorias.


S = rolldie(3,  makespace=TRUE)
S = addrv(S, U = X1 - X2 + X3)
S = addrv(S, FUN=max, invars=c("X1","X2","X3"),
name="V")
S = addrv(S, FUN=sum, invars=c("X1","X2","X3"),
name="W")
S
    X1 X2 X3  U V  W      probs
1    1  1  1  1 1  3 0.00462963
2    2  1  1  2 2  4 0.00462963
3    3  1  1  3 3  5 0.00462963
4    4  1  1  4 4  6 0.00462963
5    5  1  1  5 5  7 0.00462963
6    6  1  1  6 6  8 0.00462963
7    1  2  1  0 2  4 0.00462963
8    2  2  1  1 2  5 0.00462963
9    3  2  1  2 3  6 0.00462963
10   4  2  1  3 4  7 0.00462963
11   5  2  1  4 5  8 0.00462963
12   6  2  1  5 6  9 0.00462963
13   1  3  1 -1 3  5 0.00462963
14   2  3  1  0 3  6 0.00462963
15   3  3  1  1 3  7 0.00462963
16   4  3  1  2 4  8 0.00462963
17   5  3  1  3 5  9 0.00462963
18   6  3  1  4 6 10 0.00462963
19   1  4  1 -2 4  6 0.00462963
20   2  4  1 -1 4  7 0.00462963
21   3  4  1  0 4  8 0.00462963
22   4  4  1  1 4  9 0.00462963
23   5  4  1  2 5 10 0.00462963
24   6  4  1  3 6 11 0.00462963
25   1  5  1 -3 5  7 0.00462963
26   2  5  1 -2 5  8 0.00462963
27   3  5  1 -1 5  9 0.00462963
28   4  5  1  0 5 10 0.00462963
29   5  5  1  1 5 11 0.00462963
30   6  5  1  2 6 12 0.00462963
31   1  6  1 -4 6  8 0.00462963
32   2  6  1 -3 6  9 0.00462963
33   3  6  1 -2 6 10 0.00462963
34   4  6  1 -1 6 11 0.00462963
35   5  6  1  0 6 12 0.00462963
36   6  6  1  1 6 13 0.00462963
37   1  1  2  2 2  4 0.00462963
38   2  1  2  3 2  5 0.00462963
39   3  1  2  4 3  6 0.00462963
40   4  1  2  5 4  7 0.00462963
41   5  1  2  6 5  8 0.00462963
42   6  1  2  7 6  9 0.00462963
43   1  2  2  1 2  5 0.00462963
44   2  2  2  2 2  6 0.00462963
45   3  2  2  3 3  7 0.00462963
46   4  2  2  4 4  8 0.00462963
47   5  2  2  5 5  9 0.00462963
48   6  2  2  6 6 10 0.00462963
49   1  3  2  0 3  6 0.00462963
50   2  3  2  1 3  7 0.00462963
51   3  3  2  2 3  8 0.00462963
52   4  3  2  3 4  9 0.00462963
53   5  3  2  4 5 10 0.00462963
54   6  3  2  5 6 11 0.00462963
55   1  4  2 -1 4  7 0.00462963
56   2  4  2  0 4  8 0.00462963
57   3  4  2  1 4  9 0.00462963
58   4  4  2  2 4 10 0.00462963
59   5  4  2  3 5 11 0.00462963
60   6  4  2  4 6 12 0.00462963
61   1  5  2 -2 5  8 0.00462963
62   2  5  2 -1 5  9 0.00462963
63   3  5  2  0 5 10 0.00462963
64   4  5  2  1 5 11 0.00462963
65   5  5  2  2 5 12 0.00462963
66   6  5  2  3 6 13 0.00462963
67   1  6  2 -3 6  9 0.00462963
68   2  6  2 -2 6 10 0.00462963
69   3  6  2 -1 6 11 0.00462963
70   4  6  2  0 6 12 0.00462963
71   5  6  2  1 6 13 0.00462963
72   6  6  2  2 6 14 0.00462963
73   1  1  3  3 3  5 0.00462963
74   2  1  3  4 3  6 0.00462963
75   3  1  3  5 3  7 0.00462963
76   4  1  3  6 4  8 0.00462963
77   5  1  3  7 5  9 0.00462963
78   6  1  3  8 6 10 0.00462963
79   1  2  3  2 3  6 0.00462963
80   2  2  3  3 3  7 0.00462963
81   3  2  3  4 3  8 0.00462963
82   4  2  3  5 4  9 0.00462963
83   5  2  3  6 5 10 0.00462963
84   6  2  3  7 6 11 0.00462963
85   1  3  3  1 3  7 0.00462963
86   2  3  3  2 3  8 0.00462963
87   3  3  3  3 3  9 0.00462963
88   4  3  3  4 4 10 0.00462963
89   5  3  3  5 5 11 0.00462963
90   6  3  3  6 6 12 0.00462963
91   1  4  3  0 4  8 0.00462963
92   2  4  3  1 4  9 0.00462963
93   3  4  3  2 4 10 0.00462963
94   4  4  3  3 4 11 0.00462963
95   5  4  3  4 5 12 0.00462963
96   6  4  3  5 6 13 0.00462963
97   1  5  3 -1 5  9 0.00462963
98   2  5  3  0 5 10 0.00462963
99   3  5  3  1 5 11 0.00462963
100  4  5  3  2 5 12 0.00462963
101  5  5  3  3 5 13 0.00462963
102  6  5  3  4 6 14 0.00462963
103  1  6  3 -2 6 10 0.00462963
104  2  6  3 -1 6 11 0.00462963
105  3  6  3  0 6 12 0.00462963
106  4  6  3  1 6 13 0.00462963
107  5  6  3  2 6 14 0.00462963
108  6  6  3  3 6 15 0.00462963
109  1  1  4  4 4  6 0.00462963
110  2  1  4  5 4  7 0.00462963
111  3  1  4  6 4  8 0.00462963
112  4  1  4  7 4  9 0.00462963
113  5  1  4  8 5 10 0.00462963
114  6  1  4  9 6 11 0.00462963
115  1  2  4  3 4  7 0.00462963
116  2  2  4  4 4  8 0.00462963
117  3  2  4  5 4  9 0.00462963
118  4  2  4  6 4 10 0.00462963
119  5  2  4  7 5 11 0.00462963
120  6  2  4  8 6 12 0.00462963
121  1  3  4  2 4  8 0.00462963
122  2  3  4  3 4  9 0.00462963
123  3  3  4  4 4 10 0.00462963
124  4  3  4  5 4 11 0.00462963
125  5  3  4  6 5 12 0.00462963
126  6  3  4  7 6 13 0.00462963
127  1  4  4  1 4  9 0.00462963
128  2  4  4  2 4 10 0.00462963
129  3  4  4  3 4 11 0.00462963
130  4  4  4  4 4 12 0.00462963
131  5  4  4  5 5 13 0.00462963
132  6  4  4  6 6 14 0.00462963
133  1  5  4  0 5 10 0.00462963
134  2  5  4  1 5 11 0.00462963
135  3  5  4  2 5 12 0.00462963
136  4  5  4  3 5 13 0.00462963
137  5  5  4  4 5 14 0.00462963
138  6  5  4  5 6 15 0.00462963
139  1  6  4 -1 6 11 0.00462963
140  2  6  4  0 6 12 0.00462963
141  3  6  4  1 6 13 0.00462963
142  4  6  4  2 6 14 0.00462963
143  5  6  4  3 6 15 0.00462963
144  6  6  4  4 6 16 0.00462963
145  1  1  5  5 5  7 0.00462963
146  2  1  5  6 5  8 0.00462963
147  3  1  5  7 5  9 0.00462963
148  4  1  5  8 5 10 0.00462963
149  5  1  5  9 5 11 0.00462963
150  6  1  5 10 6 12 0.00462963
151  1  2  5  4 5  8 0.00462963
152  2  2  5  5 5  9 0.00462963
153  3  2  5  6 5 10 0.00462963
154  4  2  5  7 5 11 0.00462963
155  5  2  5  8 5 12 0.00462963
156  6  2  5  9 6 13 0.00462963
157  1  3  5  3 5  9 0.00462963
158  2  3  5  4 5 10 0.00462963
159  3  3  5  5 5 11 0.00462963
160  4  3  5  6 5 12 0.00462963
161  5  3  5  7 5 13 0.00462963
162  6  3  5  8 6 14 0.00462963
163  1  4  5  2 5 10 0.00462963
164  2  4  5  3 5 11 0.00462963
165  3  4  5  4 5 12 0.00462963
166  4  4  5  5 5 13 0.00462963
167  5  4  5  6 5 14 0.00462963
168  6  4  5  7 6 15 0.00462963
169  1  5  5  1 5 11 0.00462963
170  2  5  5  2 5 12 0.00462963
171  3  5  5  3 5 13 0.00462963
172  4  5  5  4 5 14 0.00462963
173  5  5  5  5 5 15 0.00462963
174  6  5  5  6 6 16 0.00462963
175  1  6  5  0 6 12 0.00462963
176  2  6  5  1 6 13 0.00462963
177  3  6  5  2 6 14 0.00462963
178  4  6  5  3 6 15 0.00462963
179  5  6  5  4 6 16 0.00462963
180  6  6  5  5 6 17 0.00462963
181  1  1  6  6 6  8 0.00462963
182  2  1  6  7 6  9 0.00462963
183  3  1  6  8 6 10 0.00462963
184  4  1  6  9 6 11 0.00462963
185  5  1  6 10 6 12 0.00462963
186  6  1  6 11 6 13 0.00462963
187  1  2  6  5 6  9 0.00462963
188  2  2  6  6 6 10 0.00462963
189  3  2  6  7 6 11 0.00462963
190  4  2  6  8 6 12 0.00462963
191  5  2  6  9 6 13 0.00462963
192  6  2  6 10 6 14 0.00462963
193  1  3  6  4 6 10 0.00462963
194  2  3  6  5 6 11 0.00462963
195  3  3  6  6 6 12 0.00462963
196  4  3  6  7 6 13 0.00462963
197  5  3  6  8 6 14 0.00462963
198  6  3  6  9 6 15 0.00462963
199  1  4  6  3 6 11 0.00462963
200  2  4  6  4 6 12 0.00462963
201  3  4  6  5 6 13 0.00462963
202  4  4  6  6 6 14 0.00462963
203  5  4  6  7 6 15 0.00462963
204  6  4  6  8 6 16 0.00462963
205  1  5  6  2 6 12 0.00462963
206  2  5  6  3 6 13 0.00462963
207  3  5  6  4 6 14 0.00462963
208  4  5  6  5 6 15 0.00462963
209  5  5  6  6 6 16 0.00462963
210  6  5  6  7 6 17 0.00462963
211  1  6  6  1 6 13 0.00462963
212  2  6  6  2 6 14 0.00462963
213  3  6  6  3 6 15 0.00462963
214  4  6  6  4 6 16 0.00462963
215  5  6  6  5 6 17 0.00462963
216  6  6  6  6 6 18 0.00462963


Calculas las respectivas probabilidades de algunos sucesos:


Prob(S, U > 6)
[1] 0.162037
Prob(S, U + W - V > 10)
[1] 0.3472222