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Introduction

∙ U large finite population of size N.

∙ y1, . . . , yN variable of interest for the population units.

∙ Target quantity: population total

Y =
N∑

k=1

yk .

∙ s ⊂ U sample drawn from the population.

∙ r = U − s non-sample units.
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Basic direct estimator

∙ �k probability of inclusion of unit k in the sample.

∙ dk = 1/�k sampling weight for unit k .

∙ Basic direct estimator of Y :

Ŷ =
∑
k∈s

yk
�k

=
∑
k∈s

dkyk

∙ It is design-unbiased:
E (Ŷ ) = Y
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Variance of direct estimator

∙ Design-unbiased estimator of the variance:

v(Ŷ ) =
∑
k∈s

∑
ℓ∈s

�k,ℓ − �k�ℓ
�k,ℓ

yk
�k

yℓ
�ℓ
,

�k,ℓ joint inclusion probability for units k and ℓ.

✓ Särndal, Swensson and Wretman (1992), equation (5.8.5)

∙ Under the approximation �k,ℓ ∼= �k�ℓ, k ∕= ℓ,

v(Ŷ ) ∼=
∑
k∈s

(
1− �k
�2k

)
y2
k =

∑
k∈s

dk(dk − 1)y2
k .
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FGT poverty indicators

∙ Ek welfare measure for individual k: for instance, normalized
annual net income.

∙ z poverty line: Spanish Statistical Institute (INE) uses:

z = 0.6×Median(Ek).

∙ FGT Family of poverty indicators

F� =
1

N

N∑
k=1

(
z − Ek

z

)�
I (Ek < z), � = 0, 1, 2.

∙ � = 0⇒ Poverty incidence

∙ � = 1⇒ Poverty gap

∙ � = 2⇒ Poverty severity

✓ Foster, Greer & Thornbecke (1984)
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Direct estimators of FGT poverty indicators

∙ Poverty indicator:

F� =
1

N

N∑
k=1

F�k , F�k =

(
z − Ek

z

)�
I (Ek < z), � = 0, 1, 2.

∙ Basic direct estimator:

F̂� =
1

N

∑
k∈s

dkF�k , � = 0, 1, 2.

∙ Estimator of the variance:

v(F̂�) =
1

N2

∑
k∈s

dk(dk − 1)F 2
�k , � = 0, 1, 2.
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Adjustments to direct estimators

∙ gk adjustment factor for design weights, k ∈ s.

∙ wk = dkgk final weight, k ∈ s.

∙ New direct estimator:

Ŷ DIR =
∑
k∈s

wkyk
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Post-stratified direct estimator

∙ J large population subgroups (post-strata) with homogeneous
units: for instance, age-sex groups.

∙ N+j (projected) census count in post-stratum j .

∙ s+j sample in post-stratum j .

∙ N̂+j =
∑

k∈s+j
dk basic direct estimator of N+j .

∙ Adjustment factor: gk = N+j/N̂+j , k ∈ s+j .
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Ratio estimator

∙ X known total of auxiliary variable x .

∙ X̂ =
∑

k∈s dkxk basic direct estimator of X .

∙ Adjustment factor: gk = X/X̂ for k ∈ s.

∙ Ratio direct estimator:

Ŷ DIR = (Ŷ /X̂ ) X
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Calibration estimator

∙ p auxiliary variables with known population totals
Xl , l = 1, . . . , p.

∙ Idea: Find weights wk , k ∈ s, which minimize the distance

min
∑
k∈s

(
wk − dk

)2
/dk

s.t.
∑
k∈s

wkxkl = Xl , l = 1, . . . , p.

∙ Solution: wk = dkgk , where gk = 1 + xTk T̂−1(X− X̂),

xk = (xk1, . . . , xkp)T , X = (X1, . . . ,Xp)T , T̂ =
∑
k∈s

dkxkxTk

✓ Deville and Särndal (1992)
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Calibration estimator

Special case: Post-stratified direct estimator

∙ Post-stratified direct estimator is a calibration estimator when
the auxiliary variables are post-stratum indicators:

xkj =

{
1, if unit k belongs to post-stratum j , for j = 1, . . . , J
0, otherwise

∙ Note:
J∑

j=1

xkj = 1 for each unit k.

∙ Extension: two or more post-stratification variables with
known marginal population counts.
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Introduction to small domain estimation

∙ U partitioned into m domains Ui , i = 1, . . . ,m.

∙ Terminology: Domain, Area, Sub-population.

∙ Ni size of domain i .

∙ si ⊂ Ui sample within domain i , ri = Ui − si non-sample.

∙ Total of domain i :
Yi =

∑
k∈Ui

yk

∙ Direct estimators: Use only area-specific sample data.

∙ Basic direct estimator of Yi and variance estimator:

Ŷi =
∑
k∈si

dkyk , v(Ŷi ) =
∑
k∈si

dk(dk − 1)y2
k .
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Introduction to small domain estimation

Examples of Domains

∙ Geographic: county, school district, even a state, municipality,
census tract, “tehsil”: group of villages in India.

US survey: n = 10, 000 persons (self-weighting sample)

Expected state sample sizes:

California state 1207 Washington DC 22
New York state 698 Wyoming 18

∙ Socio-economic: age × sex × race × poverty status
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Indirect estimation

∙ Sample is not planned to give accurate direct estimators for
the domains: there are domains with few sample observations.

∙ Small domain: domain for which cv(Ŷi ) > 20%.

∙ Indirect or small area estimators: Borrow strength from
sample observations of related areas to increase “effective”
sample size.
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Properties of direct estimators

∙ Additivity:
∑m

i=1 Ŷ DIR
i = Ŷ DIR

∙ Measure of accuracy of Ŷ DIR
i :

MSE(Ŷ DIR
i ) = V(Ŷ DIR

i ) +
[
B(Ŷ DIR

i )
]2

=: (a) + (b),

(a) is of the order of the i-th area sample size.
(b) negligible for large overall sample size n.

∙ CV =
√

V(Ŷ DIR
i )/Yi = SE(Ŷ DIR

i )/Yi

∙ CV< 20− 25% considered adequate for small areas.
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Design issues to improve efficiency

Design issues that help to improve efficiency of direct estimators
for planned small domains:

∙ Clustering reduces efficiency: better to use list frames.

∙ Use many strata so that all domains are well covered.

∙ Optimal allocation for large domains may lead to small
domains poorly represented: compromise sample allocation
between large and small domains.
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Design issues to improve efficiency

Example: Canadian Labor Force Survey

∙ Monthly sample of 59,000 households optimized at the
provincial level: CV as high as 17.7% for Unemployment
Insurance (UI) regions.

∙ Compromise two-step sample allocation:
42,000 for province level, 17,000 for UI level.

(i) For UI regions, maximum CV reduced from 17.7% to 9.4%.
(ii) For provinces and Canada, small increase of CV:

Ontario: from 2.8% to 3.2%
Canada: from 1.4% to 1.5%

✓ Singh, Gambino and Mantel (1994)
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Design issues to improve efficiency

∙ Other suggestions to “reduce” the use of indirect estimators:

(i) Integration (or harmonization) of surveys.

(ii) Use of multiple frame surveys.

(iii) Rolling samples: In the American Community Survey (ACS),
independent samples are drawn each month from each county.

✓ Marker (2001); ✓ Kish (1999).

∙ Planned domains: sample allocation:

Minimize a weighted sum of variances of direct estimators
subject to fixed overall sample size. Weights are called
“inferential priorities”. ✓ Longford (2006)

Problem: Difficult to specify the weights.
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Design issues to improve efficiency

∙ Alternative solution: Minimize total sample size subject to
desired tolerances on the area sampling variances and on the
aggregate sampling variance. ✓ Choudhry and Rao (2009)

∙ “Client will always require more than is specified at the design
stage” ✓ Fuller (1999).

∙ So we cannot avoid unplanned small domains.
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First application of indirect estimation

Example: 1945 Radio Listening Survey

∙ Target: to estimate the median num. of radio stations heard
during the day in 500 U.S. counties.

∙ Mail survey: From each of 500 counties, 1000 families
sampled and sent mailed questionaire.

∙ Response rate only 20% and incomplete coverage.

∙ xi median no. of stations heard during day (mail survey) in
the i-th county, for i = 1, . . . , 500.

∙ Intensive interview survey of 85 counties: Probability sample
of 85 counties subsampled and subject to personal interviews.

✓ Hansen, Hurwitz & Madow, 1953, p. 483; ✓ Rao, 2003, p. 36
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First application of indirect estimation

Example: 1945 Radio Listening Survey

∙ yi median no. of stations heard during day (interview) in the
i-th sample county, for i = 1, . . . , 85.

∙ corr(y , x) = 0.70

∙ Linear Regression:

yi = � + � xi + ei , i = 1, . . . , 85.

∙ Predicted values: For non-sampled counties, predicted values
ŷSYN
i = 0.52 + 0.74xi used as indirect (synthetic) estimators.

∙ This is an example of explicit linking model
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Definition of synthetic estimator
Synthetic estimator:

An unbiased estimator is obtained from a sample survey for a large
area; when this estimate is used to derive estimates for subareas
under the assumption that the small areas have the same
characteristics as the large area, we identify these estimates as
synthetic estimates. ✓ González (1973)

Example: Simplest possible model

∙ Total: Yi = Ni Ȳi , where Ȳi = Yi/Ni is area mean.

∙ Ni , N known.

∙ Implicit model: Ȳi = Ȳ , i = 1, . . . ,m.

∙ Ŷ , N̂ reliable direct estimators of Y , N

∙ Synthetic estimator: Ŷ SYN
i = Ni (Ŷ /N̂)
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Post-stratified synthetic estimator

∙ J post-strata (j = 1, . . . , J) which cut across the areas.

∙ Nij count in the intersection
of domain i and
post-stratum j (known).

∙ Total of domain i :

Yi =
J∑

j=1

Nij Ȳij .

∙ Implicit model:

Ȳij = Ȳ+j = Y+j/N+j

stratum 1 stratum 2 stratum 3 stratum 4

area i

Ni=Ni1+Ni2+Ni3+Ni4

Ni1 Ni2 Ni3 Ni4
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Post-stratified synthetic estimator

∙ Post-stratified synthetic estimator:

Ŷ SYN
i =

J∑
j=1

Nij(Ŷ+j/N̂+j)

∙ Ŷ+j , N̂+j reliable direct estimators of Y+j , N+j .

∙ Need homogeneity only within post-strata.

∙ Special case: When y ∈ {0, 1}, interest is in the proportion
Pi = Yi/Ni . Synthetic estimator of Pi :

P̂SYN
i =

1

Ni

J∑
j=1

Nij P̂+j , Ni =
J∑

j=1

Nij
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Example: 1980 U.S. National Natality Survey (NNS)

∙ Target: state estimates of percent jaundiced live births.

∙ Data from n = 9941 live births collected from birth
certificates, questionnaires and hospitals.

∙ 25 post-strata: mother’s race and age group, live birth order.

∙ P̂+j direct national est. for post-stratum j .

∙ Nij no. of hospital births (from State Vital Registration data)

Pennsylvania:
J∑

j=1

Nij P̂+j = 33, 806,
J∑

j=1

Nij = 156, 799

∙ Synthetic est. of percent jaundiced live birth:

Pennsylvania: P̂SYN
i =

33, 806

156, 799
= 21.6

✓ González, Placek and Scott (1996)
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Evaluation of synthetic estimates:

∙ Compare estimates to true values for five states and for
selected health characteristics:

% low birth weight
% late or no prenatal care
% low 1-minute Apgar score

∙ True values from the State Vital Registration data.

∙ est. MSE=(syn. estimate-true value)2

∙ SE (direct est.) using balanced repeated replication.

∙ Synthetic estimate better especially for smaller states (e.g.,
Montana).

∙ Relative root mean squared error (RRMSE):
Dir. est: 14% (Penn.) to 62% (Montana)
Syn. est: 0% (Penn.) to 24% (Indiana)

Exception: 32% (Kansas) exceeds 25%

✓ Gonzalez, Placek and Scott (1996)
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Table 1: RRMSE of Direct and Synthetic Estimates

Characteristic Estate True Direct est. Syn. est.
(%) Est. RRMSE Est. RMSE

(%) (%) (%) (%)

Low birth: Pennsylvania 6.5 6.6 15 6.5 0
Indiana 6.3 6.8 22 6.5 3
Tennessee 8.0 8.5 23 7.2 10
Kansas 5.8 6.8 36 6.4 10
Montana 5.6 9.2 71 6.3 13

Prenatal care: Pennsylvania 3.9 4.3 21 4.3 10
Indiana 3.8 2.0 21 4.7 24
Tennessee 5.4 4.7 26 5.0 7
Kansas 3.4 2.1 35 4.5 32
Montana 3.7 3.0 62 4.3 16

Apgar score: Pennsylvania 7.9 7.7 14 9.4 19
Indiana 10.9 9.5 16 9.4 14
Tennessee 9.6 7.3 18 9.7 1
Kansas 11.1 12.3 25 9.4 15
Montana 11.6 12.9 40 9.4 19
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MSE of synthetic estimator

∙ Synt. est. depends on direct estimators for large domains.
Hence, design variance of synt. est. small in comparison with
that of the direct est. for small domain.

∙ But synt. est. are biased because they depend on strong
assumptions.

∙ Hence, full MSE (accounting for bias and var.) is relevant.
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MSE of synthetic estimator
∙ Approximate MSE:

MSE(Ŷ SYN
i ) = E (Ŷ SYN

i − Yi )
2

= E (Ŷ SYN
i − Ŷ DIR

i )2 + 2Cov(Ŷ SYN
i , Ŷ DIR

i )− V (Ŷ DIR
i )

≈ E (Ŷ SYN
i − Ŷ DIR

i )2 − V (Ŷ DIR
i )

∙ Estimated MSE:

mse(Ŷ SYN
i ) = (Ŷ SYN

i − Ŷ DIR
i )2 − v(Ŷ DIR

i ).

∙ mse(Ŷ SYN
i ) is approximately unbiased but unstable.

∙ Average over domains: (✓ González and Wakesberg, 1973)

msea( ˆ̄Y SYN
i ) =

1

m

m∑
ℓ=1

1

N2
ℓ

(Ŷ SYN
ℓ −Ŷ DIR

ℓ )2− 1

m

m∑
ℓ=1

1

N2
ℓ

v(Ŷ DIR
ℓ )

∙ Limitation: msea( ˆ̄Y SYN
i ) is stable but not area-specific.



Finite population inference Small domain estimation Traditional Indirect Estimators

MSE of synthetic estimator

∙ Assumption:

b2( ˆ̄Y SYN
i ) ≈ 1

m

m∑
ℓ=1

b2( ˆ̄Y SYN
ℓ )

∙ Estimator of average bias:

b2
a( ˆ̄Y SYN

i ) = msea( ˆ̄Y SYN
i )− 1

m

m∑
ℓ=1

v( ˆ̄Y SYN
ℓ )

∙ Area-specific MSE estimator: (✓ Marker, 1995)

mseM(Ŷ SYN
i ) = v(Ŷ SYN

i ) + N2
i b2

a( ˆ̄Y SYN
i )

∙ Assumption not satisfied for areas exhibiting strong individual
effects.
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SPREE (Structure Preserving Estimation)

Example: Estimation of counts in a contingency table

∙ Available data: Census counts in a three-way table {Niab}:
i area index,
a categories of y (employed/unemployed),
b categories of auxiliary variable (white/nonwhite)

∙ Reliable survey estimates of margins {M̂+ab}, {M̂i++}
∙ Target: Find current counts {Miab}, as close as possible to
{Niab}, that confirm to margins {M̂+ab} and {M̂i++}, and
preserves association structure in {Niab} as much as possible.
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SPREE (Structure Preserving Estimation)
Example: Estimation of counts in a contingency table

∙ One-way SPREE: Minimize w.r.t. {xiab} a distance measure:

min D(Niab, xiab) =
∑
iab

Niablog{Niab/xiab}

s.t.
∑
i

xiab = M̂+ab

∙ Solution: Rake census counts Niab:

M̄iab = Niab
M̂+ab

N+ab

∙ Two-way SPREE: Add the restriction
∑

ab xiab = M̂i++.
Solution: IPF (Iterative Proportional Fitting)



Finite population inference Small domain estimation Traditional Indirect Estimators

Evaluation of SPREE

∙ Comparison of SPREE estimates with true mortality counts
from Vital Registration System.

∙ Four difference causes of death (a)
State (i)
36 age-sex-race groups (b)

∙ Niab 1960 census counts.

∙ M̂+ab = M+ab, M̂i++ = Mi++ known current margins.

∙ ARE = ∣est.− true∣/true.

∙ Two-step SPREE significantly better than one-step SPREE in
terms of ARE.

✓ Purcell & Kish (1980)
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Table 2: Median of Percent ARE of SPREE Estimates

Cause of death Year One-step Two-step

Malignant 1961 1.97 1.85
Neoplasms 1964 3.50 2.21

1967 5.58 3.22
1970 8.18 2.75

Major CVR 1961 1.47 0.73
Diseases 1964 1.98 1.03

1967 3.47 1.20
1970 4.72 2.22

Suicides 1961 5.56 6.49
1964 8.98 8.64
1967 7.76 6.32
1970 13.41 8.52

Total others 1961 1.92 1.39
1964 3.28 2.20
1967 4.89 3.36
1970 6.65 3.85
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Off-the-Shelf Methods

∙ Customary calibration weights {wk , k ∈ s} satisfy the
calibration constraint

∑
k∈s wkxk = X .

∙ Objective: To produce weights wik for each sample unit k
and each small area i such that:

(i)
∑

i wik = wk ,
(ii)

∑
k∈s wikxk = Xi (known area total)

∙ No unique solution ⇒ Assume a multiplicative model on the
weights:

wik = 
ik exp(�
′
i xk + �k)


ik =

⎧⎨⎩
1 if area i is allowed to borrow strength from the

area in which unit k belongs,
0 otherwise.

✓ Schirm and Zaslavsky (1997)
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Off-the-Shelf method

∙ Solution: Iterative algorithm:

Step 1: Constraint (i) gives �k in terms of �i .

Step 2: Replacing the expression for �k in terms of �i in
constraint (ii), then (ii) can be written as g(�i ) = 0. Use
Newton-Raphson iterations to find �i .

Step 3: Go back to step 1 and so on until convergence.

∙ Final estimator for area i :

Ŷ SYN
i =

∑
k∈s

wikyk



Finite population inference Small domain estimation Traditional Indirect Estimators

Composite estimators

To balance the bias of a synthetic estimator and the instability of a
direct estimator for a domain, take:

Ŷ C
i = �i Ŷ

DIR
i + (1− �i )Ŷ SYN

i , 0 ≤ �i ≤ 1.

∙ Sample-size dependent estimator: For a given � > 0,

�i =

{
1, if N̂i ≥ �Ni ;

N̂i/(�Ni ), if N̂i < �Ni .



Finite population inference Small domain estimation Traditional Indirect Estimators

Sample-size dependent estimator

∙ Under SRS, N̂i = Nni/n and then

�i =

{
1 if ni ≥ �E (ni );

ni/(�E (ni )) if ni < �E (ni )

∙ Canadian LFS: � = 2/3. For most areas, 1− �i = 0; for other
areas weight attached to Ŷ SYN

i is about 0.1 but never larger
than 0.2. (✓ Drew et al., 1982)

∙ All characteristics y get the same weight �i regardless of their
differences w.r.t. between area homogeneity.

∙ N̂i =
∑

k∈si wk increases with the size of si . SSD uses direct

estimator Ŷ DIR
i if N̂i ≥ �Ni even when the expected sample

size of the area is small.
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Optimal composite estimator

∙ Find �i that minimizes MSE(Ŷ C
i ) ⇒ �∗i

∙ Optimal weight depends on true MSEs of Ŷ SYN
i and Ŷ DIR

i .

∙ Estimated optimal weight:

�̂∗i = mse(Ŷ SYN
i )/(Ŷ SYN

i − Ŷ DIR
i )2

∙ Limitation: �̂∗i is unstable. Average over variables y or areas
or both, but then �∗i is not area-specific or y -specific.

∙ Estimated optimal common weight:

�̂∗ =
m∑
ℓ=1

mse( ˆ̄Y SYN
ℓ )/

m∑
ℓ=1

( ˆ̄Y SYN
ℓ − ˆ̄Y DIR

ℓ )2

= 1−

{
m∑
ℓ=1

v( ˆ̄Yℓ)/
m∑
ℓ=1

( ˆ̄Y SYN
ℓ − ˆ̄Y DIR

ℓ )2

}



Finite population inference Small domain estimation Traditional Indirect Estimators

Optimal composite estimator

Evaluation of composite estimators

∙ Target: Comparison of direct, synthetic, SSD (� = 1) and
optimal composite estimators of number of unemployed in
Health Service Areas (HSAs) of Friuli region in Italy.

∙ From the 1981 census data, samples from the Italian Labor
Force Survey (stratified two-stage design) where simulated.

∙ Optimal �i obtained from census.

∙ 14 Health Service Areas (HSA) which cut across design strata

∙ Sample: 13 psu’s (municipalities), 2290 ssu’s (households).
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Optimal composite estimator

Evaluation of composite estimators

∙ Number of Monte Carlo simulations: L = 400

∙ Performance measures:

ARB =

∣∣∣∣∣1L
L∑
ℓ=1

(
Ŷ

C(ℓ)
i

Yi
− 1

)∣∣∣∣∣
RRMSE =

√√√⎷1

L

L∑
ℓ=1

(Ŷ
C(ℓ)
i − Yi )

2/Yi

∙ Averages over 14 HSA’s: ARB, RRMSE
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Optimal composite estimator

Table 3: ARB and RRMSE

Est. ARB(%) RRMSE(%)

Direct 1.75 42.08

Synthetic 8.97 23.80

Composite 6.00 23.57

SSD(� = 1) 2.39 31.08

∙ Synthetic and optimal composite estimators about half
RRMSE of direct estimator.

∙ RRMSE of SSD about 30% higher than synthetic.

✓ Falorsi, Falorsi and Russo (1994)
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James-Stein estimator

∙ Target parameters: Ȳi , i = 1, . . . ,m

∙ Transformation: �i = g(Ȳi ), i = 1, . . . ,m, such that

�̂DIR
i = g( ˆ̄Y DIR

i )
ind∼ N(�i ,  i );  i known

Examples: �i = Ȳi , �i = log Ȳi

∙ �0i guess of �i , i = 1, . . . ,m

∙ James-Stein estimator: ( i =  , i = 1, . . . ,m)

�̂JSi = �̂JS �̂
DIR
i + (1− �̂JS)�0i ,

with weight

�̂JS = 1− [(m − 2) ]/S , m ≥ 3, S =
m∑
i=1

(�̂DIR
i − �0i )2
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James-Stein estimator
∙ Choice of �0i :

(a) Auxiliary information available:

xi p-vector linearly related to �i ,

XT = (x1, . . . , xm),

�̂ = (�̂DIR
1 , . . . , �̂DIR

m )T ,

�0i = xTi �̂LS = xTi (XTX)−1XT �̂

(b) No x-information: xi = 1⇒ �0i =
∑

i �̂
DIR
i /m,

i = 1, . . . ,m

∙ Total MSE over areas: Performance of estimators is
evaluated over all areas. For direct estimator,

Total MSE(�̂) =
m∑
i=1

MSE(�̂DIR
i ) = m 
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James-Stein estimator

Theorem:

i) If guess �0 equals true value �,

Total MSE(�̂JS) =
m∑
i=1

MSE(�̂JSi ) = 2 

ii) JS est. never worse than dir. est. in terms of Total MSE:

Total MSE(�̂JS) ≤ Total MSE(�̂)

✓ James and Stein (1961)
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James-Stein estimator

∙ Compromise JS estimator: (c > 0)

�̂∗JSi =

⎧⎨⎩
�̂JSi , if �̂DIR

i − c
√
 ≤ �̂JSi ≤ �̂DIR

i + c
√
 ;

�̂DIR
i − c

√
 , if �̂JSi < �̂DIR

i − c
√
 ;

�̂DIR
i + c

√
 , if �̂JSi > �̂DIR

i + c
√
 

∙ MSE properties of compromise JS estimator: When c = 1,

i) MSE(�̂∗JSi ) < 2MSE(�̂DIR
i )

ii) �̂∗JSi retains more than 80% of the gain of �̂JSi over �̂DIR
i in

terms of Total MSE.

∙ Final JS estimator of Ȳi :
ˆ̄Y ∗JSi = g−1(�̂∗JSi )

∙ MSE properties of �̂∗JSi are not retained by ˆ̄Y ∗JSi
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James-Stein estimator

Evaluation of JS estimator: Baseball example

∙ Target parameters: batting averages of m = 18 baseball
players during 1970 season: �i = Pi , i = 1, . . . , 18

∙ Direct estimators: batting averages after 45 times at bat in
that season: �̂DIR

i = P̂DIR
i

∙ Guess: �0i = 1
18

∑18
i=1 P̂DIR

i = 0.265 = P̂∙

∙ Sampling variance of dir. est:  = P̂∙(1− P̂∙)/45 = 0.0043

∙ Compromise JS estimator obtained with c = 1.

∙ True batting averages taken from the remainder of season
(about 370 more at bats).
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Table 4: Batting Averages for 18 Baseball Players

Player DIR True JS Compromise JS

1 0.400 0.346 0.293 0.334
2 0.378 0.298 0.289 0.312
3 0.356 0.276 0.284 0.290
4 0.333 0.221 0.279 0.279
5 0.311 0.273 0.275 0.275
6 0.311 0.270 0.275 0.275
7 0.289 0.263 0.270 0.270
8 0.267 0.210 0.265 0.265
9 0.244 0.269 0.261 0.261
10 0.244 0.230 0.261 0.261
11 0.222 0.264 0.256 0.256
12 0.222 0.256 0.256 0.256
13 0.222 0.304 0.256 0.256
14 0.222 0.264 0.256 0.256
15 0.222 0.226 0.256 0.256
16 0.200 0.285 0.251 0.251
17 0.178 0.319 0.247 0.243
18 0.156 0.200 0.242 0.221
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James-Stein estimator
Evaluation of JS estimator: Baseball example

∙ Performance measures: Relative accuracy with respect to
direct est:

R1 =
m∑
i=1

(P̂DIR
i − Pi )

2/

m∑
i=1

(P̂JS
i − Pi )

2

R2 =
m∑
i=1

(P̂DIR
i − Pi )

2/

m∑
i=1

(P∗JSi − Pi )
2

∙ Results: R1 = 3.50, R2 = 4.09

∙ Compromise estimator protects player 1’s P̂DIR
1 = 0.40 from

overshrinking towards P̂∙ = 0.265
✓ Efron (1975)
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MSE of James-Stein estimator
∙ JS estimator can be expressed as

�̂JSi = �̂DIR
i + hi (�̂)

∙ Mean squared error:

MSE(�̂JSi ) = E [�̂DIR
i + hi (�̂)− �i ]2

=  + 2E [(�̂DIR
i − �i )hi (�̂)] + Eh2

i (�̂)

=  + 2 E [∂hi (�̂)/∂�̂DIR
i ] + Eh2

i (�̂)

∙ Unbiased MSE estimator:

mse(�̂JSi ) =  + 2 ∂hi (�̂)/∂�̂DIR
i + [hi (�̂)]2

∙ It is unbiased under normality of the direct estimators �̂DIR
i .

∙ It is highly unstable and can take negative values.
∙ Even if hi (�̂) has no explicit form, derivatives ∂hi/∂�i can be

evaluated numerically.
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Benchmarking

∙ Usually a reliable direct estimator for an aggregate A of areas
Ŷ DIR
A is available.

∙ Indirect estimators of area totals Yi do not necessarily add up
to Ŷ DIR

A .

∙ Ratio adjustment: Ỹi indirect estimator of Yi

Ỹ ∗i =
Ỹi∑

i∈A
Ỹi

Ŷ DIR
A ⇒

∑
i∈A

Ỹ ∗i = Ŷ DIR
A

Example

∙ Ỹi indirect estimator of number of school-age children in
poverty in county i of State A.

∙ Ŷ DIR
A direct estimator of poverty count in State A.
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