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SUMMARY

This note shows that the dimension reduction method proposed by Li & Shedden (2002) is equivalent
to the dynamic factor model introduced by Peña & Box (1987).
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1. INTRODUCTION

Dimension reduction is important in modelling vector time series because the number of parameters
in the model grows very fast with the dimension m of the vector of time series. Linear models usually
have a number of parameters which grow with m2; for instance, a vector autoregressive moving average
model of orders p and q contains m2(p + q) parameters. For such models, dimension reduction was
analyzed by Box & Tiao (1977), Tiao & Tsay (1989), Velu et al. (1986), Ahn & Reinsel (1990), Ahn
(1997) and Reinsel & Velu (1998). A second approach to dimension reduction is through using dynamic
factor models; see Peña & Box (1987), Stock & Watson (1988), Forni et al. (2000), Hu & Chou (2004)
and Peña & Poncela (2006b), among others. The relationship between these methods has been studied by
Peña & Poncela (2006a).

A different approach for dimension reduction in time series was proposed by Li & Shedden (2002),
whose proposal seems to work well in a large dataset. In this note we show that this procedure is equivalent
to the model proposed by Peña & Box (1987) for stationary time series. This relationship increases our
understanding of alternative representations of time series models.

2. THE DYNAMIC FACTOR MODEL AND THE LI–SHEDDEN MODEL

Let yt be an m-dimensional vector of observed stationary time series, assumed to have mean zero in
order to simplify the presentation. The dynamic factor model is defined by two equations. The first equation
explains the relationship between the data and the factors, yt = P ft + et , where ft is the r -dimensional
vector of common factors, P is an m × r factor-loading matrix and et is normally distributed with zero-
mean and full-rank diagonal covariance matrix �e. The second equation gives the model for the vector
of common factors, �(B) ft = �(B)at , where �(B)=I − �1 B − · · · − �p B p and �(B) = I − �1 B
− · · · − �q Bq are r × r polynomial matrices, B is the backshift operator satisfying Byt = yt−1, the roots
of the determinantal equations |�(B)| = 0 and |�(B)| = 0 are outside the unit circle, and at ∼ Nr (0, �a)
with rank(�a) � 0 and E(at aT

t−h) = 0, for h � 0. The factors have mean zero, an identity covariance
matrix and follow a stationary vector autoregressive moving average, VARMA(p, q), model. We assume
that E(at eT

t−h) = 0, for all h = 0,±1,±2, . . .. For identification we will use PT P = I . See Peña & Box
(1987) for further details.

Let �y(k) = E(yt−k yT
t ) denote the m × m lagged k covariance matrix of the observed variables and

� f (k) = E( ft−k f T
t ) denote the r × r lagged k covariance matrix of the common stationary factors. Then
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an important property of the model is that

�y(k) = P� f (k)PT, k � 0, (1)

and the observed covariance matrices �y(k) have rank r for k < 0. As the factors can be assumed to be
uncorrelated, the matrices � f (k) can be assumed to be diagonal, and all the data covariance matrices have
as eigenvectors the columns of the loading matrix. If we first standardize the series so that each component
has mean zero and unit standard deviation, then (1) applies to the relationship between the autocorrelation
matrices of the data and the factors.

In the model proposed by Li & Shedden (2002) each component of the vector of time series, yit (i =
1, . . . , m) is generated by

yit =
r∑

j=1

λi j Z ji (t), (2)

where the λi j are unknown scalar values and the components, Z ji (t) ( j = 1, . . . , r ), are independent.
Also, for each source component the values Z ji (t) (i = 1, . . . , m) are assumed to follow a common
stationary distribution. Assuming that the series are standardized, writing (2) as yit = λT

i Zi (t), where
λT

i = (λi1, . . . , λir ) and Zi (t) = {Z1i (t), . . . , Zri (t)}, and setting ρi (k) = E(yit yit+k)/E(y2
i t ), we have that

ρi (k) = λT
i C(k)λi/(λT

i C(0)λi ), where C(k) is the autocorrelation matrix of lag k for the unobserved
components Z (t). As these components are standardized and uncorrelated, the matrix C(0) is the identity
matrix and the matrices C(k) for k > 0 are diagonal. Letting r j (k) = E{Zi j (t)Zi j (t + k)} denote the
diagonal terms of these matrices, which represent the autocorrelations of the process Z (t), we have

ρi (k) =
∑r

j=1 λ2
i j r j (k)∑r

j=1 λ2
i j

.

Let ρi = {ρi (1), . . . , ρi (k)}T be the vector of autocorrelations for the i th observed series and let R j =
{r j (1), . . . , r j (k)}T be the same vector for the j th unobserved component. We have that ρi = ∑r

j=1 wi j R j ,
where wi j = λ2

i j/
∑r

j=1 λ2
i j are weights and satisfy

∑r
i=1wi j = 1.

We now show that both models imply the same relationship for the observed autocorrelation matrices
and therefore are equivalent. Assuming that the series are standardized, the factor model equation (1)
implies that

ρi (k) =
r∑

j=1

p2
i j r j (k),

where r j (k) are now the autocorrelations of the factors, and for the identification condition PT P = I
we have

∑r
j=1 p2

i j = 1. Thus, both models have the same empirical implications and are equivalent. In
their procedure, Li & Shedden (2002) did not use the fact that their formulation implies that, letting
ρih(k) = E(yit yht+k)/{E(y2

i t )E(y2
ht )}1/2, we have

ρih(k) = λT
i C(k)λ j(

λT
i λi

) 1
2
(
λT

jλ j

) 1
2

,

which can also be obtained from (2).

3. DISCUSSION

The equivalence of both formulations has several important implications for multiple time series analysis.
First, in some applications of multivariate time series, as in signal processing problems, the time series
are truly generated as linear combinations of r common components, which are generated by some
stationary common distribution. In these models the components are not usually considered of interest
and estimated because of their random nature. Understanding the equivalence shown in this note allows
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us to obtain factors which can be interpreted as average components, leading to a better understanding
of their structure. Second, the comparison of both models has shown some properties of the observed
autocorrelations which were not evident from either approach. Third, there are other multiple time series
models that suppose that the series have been generated exactly by some components, such as independent
component analysis (Hyvärinen et al., 2001). The equivalence shown in this note suggests that there is a
close relationship between these models and non-Gaussian dynamic factor models. Fourth, the stationary
dynamic factor model has been generalized to the nonstationary case by Peña & Poncela (2006b), thus
enlarging the field of application of our results.
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PEÑA, D. & PONCELA, P. (2006a). Dimension reduction in multivariate time series. In Advances on Distribution Theory,

Order Statistics and Inference, in Honor of B. C. Arnold, Ed. N. Balakrishnan, E. Castillo and J. M. Sarabia. Boston:
Birkhauser.
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