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Abstract

A finite sample modification of a test by Peña and Rodríguez is proposed. The new modified test
is asymptotically equivalent but it has a more intuitive explanation and it can be 25% more powerful
for small sample size than the previous one. The test statistic is the log of the determinant of the
mth autocorrelation matrix. We propose two approximations by using the Gamma and the Normal
distributions to the asymptotic distribution of the test statistic. It is shown that, depending on the
model and sample size, the proposed test can be up to 50% more powerful than the Ljung and Box,
Monti and Hong tests, and for finite sample size is always better than the previous Peña–Rodríguez
test. This modified test is applied to the detection of several types of nonlinearity by using either
the autocorrelation matrix of the squared or the absolute values of the residuals. It is shown that, in
general, the new test is more powerful than the one by McLeod and Li.
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1. Introduction

Let Xt be a zero mean process generated by the ARMA(p, q) model �(B) = �(B)�t ,
where B is the backshift operator, �(B) is a polynomial of order p, �(B) is a polynomial
of order q and �t is a white noise process. Let �̂1, . . . , �̂T be the residuals obtained after
estimating the model in a sample of size T , and let

r̂j =
T∑

t=j+1

�̂t �̂t−j

/
T∑

t=1

�̂2
t for j = 1, 2, . . . , (1)

be the estimated residual autocorrelation coefficients. A family of portmanteau goodness
of fit tests for the analysis of the independence of the residuals can be obtained by the
expression

Q = T

{
�

m∑
i=1

wig(r̂2
i ) + (1 − �)

m∑
i=1

�ig( �̂2
i )

}
, (2)

where �̂i are the estimated residual partial autocorrelation coefficients (see Box and Jenkins,
1976, pp. 64–65), 0���1, m < T , wi�0, �i�0, and g is a nondecreasing smooth function
with g(0) = 0. The partial correlation coefficient �̂i measures the correlation between �̂t
and �̂t+i given the values �̂t+1, . . . , �̂t+i−1. Some well-known members of this class when
g(x) = x are the tests proposed by Box and Pierce (1970), where � = 1 and wi = 1,
Ljung and Box (1978), where � = 1 and wi = (T + 2)/(T − i), and Monti (1994), where
� = 0 and �i = (T + 2)/(T − i). This family includes also many tests obtained in the
frequency domain by measuring the distance between the spectral density estimator and
the one corresponding to a white noise process. The test proposed by Anderson (1993), is
a member of this class where � = 1, wi = 1/(�i2) and m = T − 1, and it was improved
by Velilla (1994),who replaced the vector of autocorrelations with a vector of modified
autocorrelation which is free of unknown parameters. Finally, Hong (1996) proposed a
general class of these statistics where � = 1 and wi = k2(j/m), k is a symmetric function,
k : R → [−1, 1], that is continuous at zero and at all but a finite number of points, with
k(0)=1 and

∫ ∞
−∞ k2(z) dz < ∞. Hong shows that within a suitable class of kernel functions,

the Daniell kernel, (k(z) = sin (�z)/�z, z ∈ (−∞, ∞)) maximizes the power of the test
under both local and global alternatives.

Peña and Rodríguez (2002), based on a general measure of multivariate dependence,
the Effective Dependence, see Peña and Rodríguez (2003), proposed a portmanteau test by
applying this measure to the autocorrelation matrix, leading to the statistic

D̂m = T [1 − |R̂m|1/m], (3)

where R̂m is

R̂m =

⎡⎢⎢⎣
1 r̂1 · · · r̂m
r̂1 1 · · · r̂m−1
...

...
. . .

...

r̂m r̂m−1 · · · 1

⎤⎥⎥⎦ . (4)
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and r̂j is estimated by (1). They show that this test is more powerful than the ones proposed
by Ljung and Box (1978) and Monti (1994). This test is highly asymmetric with respect
to the autocorrelation coefficients and large weights are assigned to lower order lags and
smaller weights to higher lags.

In this paper, we propose a modification of this test statistic that has the same asymptotic
distribution but better performance for finite samples. Also the new test can be written as a
particular case of Eq. (2), whereas D̂m does not fit exactly into this formulation. The article
is organized as follows. Section 2 presents the test as an approximation to the likelihood ratio
test and shows that it is a member of the class of tests defined by (2). Section 3 obtains its
asymptotic distribution and shows how to approximate it, first, by a gamma distribution and,
second, by a normal distribution. Section 4 includes a Monte Carlo study of the properties
of the test, both for linear models, by using the residual autocorrelations, and for nonlinear
models, by using the autocorrelations of the squared or absolute values of the residuals.
For linear models the test is shown to be more powerful than the ones proposed by Ljung
and Box (1978), Monti (1994), Peña and Rodríguez (2002) and Hong (1996), whereas for
detecting nonlinearity the test is shown to be also more powerful than those proposed by
McLeod and Li (1983) and Peña and Rodríguez (2002). In both situations the test is also
shown to be more robust to the value of m than other tests considered in the Monte Carlo
study.

2. A pseudo-likelihood test

The estimated residuals can be considered as a sample of multivariate data from a distribu-
tion, (�̂1, . . . , �̂T ) ∼ NT (0, VT ). We are interested in testing whether or not the covariance
matrix of the distribution of these residuals is diagonal. In multivariate analysis, see for
instance Mardia et al. (1979, pp. 137–138), the likelihood ratio test for checking if a set
of p random variables has a diagonal covariance matrix is given in terms of the correlation
matrix, Rp, by the statistic

−2 log � = −T log |Rp|, (5)

which has an asymptotic �2 distribution under H0 with p(p + 1)/2 degrees of freedom.
The problem when trying to generalize this statistic for goodness of fit in time series is

that p = T and thus the likelihood ratio test diverges. In order to find a test based on this
criterion for time series we note that

|RT | =
T −1∏
i=1

(1 − R2
i ),

whereR2
i =̂r′

iR
−1
i−1r̂i is the squared correlation coefficient in the linear fit, �̂t=∑i

j=1 bj �̂t−j+
ut . Assuming that the maximum number of nonzero regression coefficients in these regres-
sions is m, and that R2

m = R2
m+1 = · · · = R2

T −1, we can decompose the likelihood ratio
statistic as

−T log |RT | = −T log |Rm| − T (T − m − 1) log(1 − R2
m).
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In this equation, the first term converges to a random variable, as we show in Section 3,
whereas the second term diverges with T. Thus it seems reasonable to explore a test based
on the first component. This leads to the test statistic

D∗
m = − T

m + 1
log |R̂m|, (6)

where we have standardized the estimated correlation matrix (4) by its dimension. This
statistic can be considered as a modification of Dm as given by (3). We prefer to standardize
by the dimension of the matrix instead of using the number of autocorrelation coefficients
in order to obtain the following interpretations of this statistic: (i) D∗

m = −T log �, where
�=∏m+1

i=1 (�i )
1/(m+1) is the geometric mean of the eigenvalues of R̂m. (ii)As the eigenvalues

of the covariance matrix are approximately equal to the power spectrum ordinates at the
frequencies �i = 2�i/m, (see Hannan, 1970), the statistic is also approximately D∗

m ≈
−T (m+1)−1 ∑

log f (�i ) where f (�i ) is the spectral density. (iii) D∗
m =−T log(1−R

2
),

where (1 − R
2
) = ∏m

i=1 (1 − R2
i )

1/(m+1). (iv) This statistic is a member of the class (2), as
shown in Ramsey (1974),

|R̂m| =
m∏

i=1

(1 − �̂2
i )

((m+1−i)),

and thus we have

D∗
m = −T

m∑
i=1

(m + 1 − i)

(m + 1)
log(1 − �̂2

i ), (7)

which is in form (2) with g(x) = − log(1 − x), � = 0 and �i = (m + 1 − i)/(m + 1). Thus
this statistic belongs to class (2), and it is proportional to a weighted average of the squared
partial autocorrelation coefficients with larger weights given to low order coefficients and
smaller weights to high-order coefficients.

3. Asymptotic distribution

In this section, we obtain the asymptotic distribution of the D∗
m statistic, and propose two

approximations of this distribution. The asymptotic distribution is obtained by a straightfor-
ward extension of the one obtained in Peña and Rodríguez (2002). The first approximation
is similar to the one presented in that paper, whereas the second one is new.

Theorem 1. If the model is correctly identified, D̂∗
m is asymptotically distributed as∑m

i=1 �i�2
1,i , where �2

1,i (i = 1, . . . , m) are independent �2
1 random variables and �i (i =

1, . . . , m) are the eigenvalues of (Im − Qm)Wm, where Qm = XmV−1X′
m, V is the infor-

mation matrix for the parameters � and �, Xm is an m × (p + q) matrix, with elements �′
and �′ defined by 1/�(B) = ∑∞

i=0 �′
iB

i and 1/�(B) = ∑∞
i=0 �′

iB
i , and Wm is a diagonal

matrix with elementswi = (m − i + 1)/(m + 1), (i = 1, . . . , m).
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The proof of Theorem 1 is given in the Appendix.
For a general ARMA model the expression for the eigenvalues of (Im − Qm)Wm is

complicated. Box and Pierce (1970) assumed that m=O(T 1/2) when T → ∞ and obtained
that the matrix Qm can be approximated by the projection matrix Qm = Xm(X′

mXm)−1X′
m

when m is moderately high. Based on this result, we present here two approximations of
the percentiles of the distribution

∑m
i=1 �i�2

1,i . The first is the one proposed by Peña and
Rodríguez (2002), where this distribution is approximated by a distribution of the form
a�2

b, a Gamma distribution with mean and variance equal to those of the exact distribution.
This implies a = ∑

�2
i /

∑
�i and b = (

∑
�i )

2/
∑

�2
i . Thus, we can approximate the

distribution of D∗
m by a gamma distribution, G(	 = b/2, 
 = 1/2a) where the parameters

are defined by

	 = 3(m + 1){m − 2(p + q)}2

2{2m(2m + 1) − 12(m + 1)(p + q)} (8)

and


 = 3(m + 1){m − 2(p + q)}
2m(2m + 1) − 12(m + 1)(p + q)

(9)

and the distribution has mean 	/
=m/2−(p+q) and variance, 	/
2 =m(2m+1)/(3(m+
1))−2(p+q). We denote by GD∗

m this first approximation which is distributed as aG(	, 
).
The second approximation is a generalization of the Wilson–Hilferty cube root transfor-

mation of a �2 random variable proposed by Chen and Deo (2004). They suggested a power
transformation which reduces the skewness in order to improve the normal approximation.
In our case this approximation is

ND∗
m = (	/
)−1/�(�/

√
	)

(
(D∗

m)1/� − (	/
)1/�
(

1 − 1

2	

(
� − 1

�2

)))
(10)

and

� =
{

1 − 2(m/2 − (p + q))(m2/(4(m + 1)) − (p + q))

3(m(2m + 1)/(6(m + 1)) − (p + q))2

}−1

,

where for m moderately large � 	 4 and 	 and 
 are the values obtained in (8) and (9). The
statistic ND∗

m is the second approximation which is distributed as a N(0, 1).
We have checked in a Monte Carlo experiment that both approximations to the asymptotic

distribution improve by using the standardized autocorrelation coefficients r̃2
j = r̂2

j (T +
2)/(T − j). Thus we recommend their use instead of r̃2

j , specially for small sample sizes.

4. Monte Carlo study

In this section we present a comparative study of the significance level and power of
the tests based on the two approximations of the statistic (ND∗

m, GD∗
m), and compare

them to other tests. We first present the results for linear models and, second, for non-
linear models. The Matlab codes that implement the tests, as described in this article, are
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Table 1
Significance levels of ND∗

m, GD∗
m, Dm and QLB under an AR(1) Model when 	 = 0.05

T � m = 10 m = 20 m = 30

ND∗
m GD∗

m Dm QLB ND∗
m GD∗

m Dm QLB ND∗
m GD∗

m Dm QLB

100 0.1 0.060 0.062 0.050 0.051 0.062 0.063 0.040 0.061 0.061 0.062 0.031 0.072
0.5 0.060 0.062 0.052 0.055 0.060 0.062 0.040 0.064 0.061 0.062 0.029 0.075
0.9 0.065 0.067 0.054 0.055 0.055 0.057 0.036 0.063 0.051 0.052 0.024 0.072

500 0.1 0.050 0.052 0.049 0.049 0.052 0.054 0.049 0.053 0.053 0.054 0.046 0.056
0.5 0.053 0.055 0.052 0.050 0.054 0.055 0.049 0.055 0.053 0.054 0.046 0.057
0.9 0.066 0.068 0.065 0.052 0.056 0.057 0.051 0.054 0.053 0.054 0.046 0.057

available for download at http://www.etsii.upm.es/ingor/estadistica/
investigacion/pubpuerta.htm

4.1. Linear models

The significance level of the two approximations are compared with those of the previous
test (Dm), and of the Ljung–Box statistic (QLB) for several values of the AR(1) parameters
when the nominal level 	 is 0.05 (Table 1). In each case 50,000 Gaussian time series of
sample sizes T = 100 and 500 were generated. Three values for m, 10, 20 and 30 were
considered. The new tests for sample size 100 and 500 have reasonable size at the 5% level
and do not seem to be affected by the value of m. The statistics Dm and QLB have a good
size performance but they are clearly much more sensitive to the value of m. This robustness
to the value of m is an advantage of this statistic compared to previous proposals.

Power of the tests are analyzed for the models proposed by Monti (1994). Table 2 presents
the power study for 24 ARMA(2,2) models when AR(1) or MA(1) are fitted, for sample
size T =100. In each case 1000 series were generated and the power is computed for m=10
and 20. We have included the tests proposed by Hong (1996) in this Monte Carlo study,
with the Daniell kernel, Hn, and the test proposed by Monti (1994), QMT. The modified
test D∗

m proposed in this article is almost always the most powerful (with the exception of
the models 5, 14, 19 and 21 for m=20, where the decrease in power with respect to Hong’s
statistic is as an average of only 0.6%). The differences in power of the test Dm and GD∗

m

or ND∗
m are small: the average increase in power over the 24 models considered are 2.7%

for m = 10 and 9.1%, for m = 20, respectively. However, the two implementations of the
modified statistics are always more powerful than Dm and in some particular models (see
models 1, 9, 11, 13, 23 for m=20) the power increase is over 20%. The increase in power of
the modified statistics with respect to QLB, QMT and Hn tests are as an average of 34.2%,
23.6% and 16.1% for m = 10 and 41.2%, 23.6% and 13.7% for m = 20.

Table 3 presents the results for m = 5 and 10 of the same tests for small sample size
(n = 30). The proposed tests are always the most powerful in all models. The increase in
power with respect to Dm, QLB, QMT and Hn tests is in average 26.1%, 82.6%, 48.5% and
414.7% for m = 5 and 26.1%, 78.9%, 73.9% and 133.8% for m = 10. We conclude that

http://www.etsii.upm.es/ingor/estadistica/investigacion/pubpuerta.htm
http://www.etsii.upm.es/ingor/estadistica/investigacion/pubpuerta.htm
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the performance of both approximations, GD∗
m or ND∗

m, for checking for goodness of fit in
linear models is similar, and that the new test seems to be more powerful than the previous
one.

4.2. Checking the linearity assumption

McLeod and Li (1983) proposed detecting nonlinearity in time series data by replacing
the auto-correlation coefficients in the statistic QLB by the autocorrelation coefficients of
the squared residuals. The asymptotic distribution of this statistic does not depend on the
order of the ARMA model fitted to the data. This fact makes it different from the Ljung–Box
statistic. Peña and Rodríguez (2002) used a similar idea in generalizing Dm for testing for
nonlinearity and Pérez and Ruiz (2003) compared the size and power of the QLB and Dm

tests when they are applied by using squared residuals, the absolute values of residuals
and the log of one minus the squared residuals. They obtained that the test based on the
absolute values of the residuals is more powerful in finding nonlinearity in heteroscedastic
models (as GARCH and Stochastic Volatility models). An additional advantage when using
the absolute values of the residuals is that in order to obtain the asymptotic distribution we
need to assume only that the fourth order moments of |�̂t | exist, whereas for the squared
residuals we required the existence of the eighth order moments of �̂2

t , see Hannan (1970).
The test applied to the absolute value of the residuals is

D̂∗
m(|�̂t |) = − T

m + 1
log |R̃m(|�̂t |)|,

where R̃m(|�̂t |) is the autocorrelation matrix (4) which is now built using the standardized
autocorrelation coefficients r̃k(|�̂t |), given by

rk(|�̂t |) = T + 2

T − k

∑n
t=k+1 (|�̂t | − |�̂|)(|�̂t−k| − |�̂|)∑n

t=1 (|�̂t | − |�̂|)2 (k = 1, 2, . . . , m),

where |�̂| = ∑ |�̂t |/T . The asymptotic distribution of D̂∗
m(|�̂t |) is similar to the one shown

in Theorem 1, the weights are �i = wi , and the asymptotic distribution does not depend
on the population parameters. We can approximate this distribution, in a similar way to the
D̂∗

m, by either a Gamma or a Normal distribution where now the degrees of freedom do not
depend on the order of the ARMA model fitted and therefore both p and q are equal to zero
in expressions (8), (9) and (10).

In the next Monte Carlo study, we compare the power of the statistics D∗
m, Dm, QLB and

QMT for testing for linearity for the six nonlinear models indicated in Table 4. The first
four models were analyzed by Keenan (1985), whereas the last two models have changing
conditional variance. In M5 the parameters are taken from real financial time series (see
Carnero et al., 2001), whereas in M6 they correspond to environmental data (see Tol, 1996).
The et ’s in the six models are independent N(0, 1).

Table 5 summarizes the power results. For each model 1000 replications of sample size
T = 204 were generated. An AR(p) model was fitted to the data, where p was selected by
the AIC criterion (Akaike, 1974) with p ∈ {1, 2, 3, 4}. The power of the proposed test D∗

m

when using both approximations, GD∗
m and ND∗

m, is slightly better than the Dm test and



D. Peña, J. Rodríguez / Journal of Statistical Planning and Inference 136 (2006) 2706–2718 2715

Table 4
Six nonlinear models: the first four models were proposed by Keenan and the last two are models with changing
conditional variance

M1: Yt = et − 0 · 4et−1 + 0 · 3et−2 + 0 · 5et et−2@
M2: Yt = et − 0 · 3et−1 + 0 · 2et−2 + 0 · 4et−1et−2 − 0 · 25e2

t−2
M3: Yt = 0 · 4Yt−1 − 0 · 3Yt−2 + 0 · 5Yt−1et−1 + et

M4: Yt = 0 · 4Yt−1 − 0 · 3Yt−2 + 0 · 5Yt−1et−1 + 0 · 8et−1 + et

M5: yt = et�t , �2
t = 1 · 21 + 0 · 404y2

t−1 + 0 · 153�2
t−1

M6: yt = 0 · 025et�t , log �2
t = 0 · 9 log �2

t−1 + �t , �t ∼ N(0, 0 · 363)

Table 5
Powers of the tests based on ND∗

m, GD∗
m, Dm, QLB and QMT when the data are generated by four nonlinear

models, and the fitted model is an AR(p) and 	 = 0.05

m = 7 m = 12 m = 24

ND∗
m GD∗

m Dm QLB QMT ND∗
m GD∗

m Dm QLB QMT ND∗
m GD∗

m Dm QLB QMT

M1
�2 0.143 0.145 0.140 0.124 0.128 0.142 0.143 0.134 0.099 0.101 0.119 0.120 0.100 0.084 0.066
|�| 0.076 0.078 0.071 0.068 0.057 0.074 0.076 0.068 0.067 0.058 0.066 0.066 0.051 0.077 0.059

M2
�2 0.615 0.616 0.611 0.517 0.506 0.567 0.572 0.543 0.416 0.419 0.469 0.472 0.425 0.315 0.276
|�| 0.451 0.456 0.442 0.350 0.340 0.414 0.416 0.391 0.318 0.292 0.333 0.334 0.296 0.252 0.214

M3
�2 0.965 0.966 0.963 0.933 0.921 0.952 0.953 0.949 0.879 0.872 0.906 0.908 0.885 0.775 0.727
|�| 0.938 0.939 0.936 0.896 0.883 0.919 0.920 0.907 0.820 0.797 0.857 0.858 0.836 0.723 0.664

M4
�2 0.930 0.932 0.928 0.867 0.852 0.888 0.889 0.880 0.796 0.761 0.812 0.814 0.794 0.677 0.612
|�| 0.963 0.964 0.963 0.928 0.914 0.943 0.946 0.940 0.898 0.865 0.900 0.903 0.888 0.831 0.768

M5
�2 0.864 0.865 0.860 0.792 0.781 0.823 0.825 0.816 0.731 0.708 0.748 0.750 0.731 0.638 0.574
|�| 0.856 0.858 0.853 0.798 0.780 0.834 0.836 0.822 0.745 0.713 0.770 0.772 0.743 0.666 0.587

M6
�2 0.781 0.784 0.777 0.775 0.738 0.766 0.766 0.756 0.730 0.693 0.712 0.715 0.694 0.625 0.573
|�| 0.966 0.966 0.963 0.959 0.940 0.955 0.956 0.953 0.945 0.908 0.927 0.929 0.916 0.915 0.826

the advantage increases with m. The limited experience presented in this study shows that
the most convenient transformation for the residuals depends on the model: the squared
residuals lead to more powerful tests for M1, M2 and M3, whereas the absolute values of
the residuals leads to more powerful tests for M4, M5 and M6.
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Table 6
Average decrease in power of the tests compared when m is increased from m = 10 to 20 in the models of Table 2

ND∗
m GD∗

m Dm QLB QMT Hn

Models 1–12 10.2 10.0 15.1 14.5 19.0 9.0
Models 13–24 6.8 6.8 10.8 11.8 16.0 4.8

Table 7
Average decrease in power of the tests compared when m is increased

m ND∗
m GD∗

m Dm QLB QMT

7–12 �2 4.297 4.005 4.884 9.404 9.728
7–12 |�| 3.396 3.252 4.147 5.792 8.242
12–24 �2 9.858 9.278 10.882 15.633 21.316
12–24 |�| 8.873 8.295 9.652 10.765 16.263

In the first two rows m is increased from m = 7 to 12, and in the last two rows from m = 12 to 24. The models
considered are the ones in Table 4.

4.3. The effect of m

In the derivation of the asymptotic results about the distribution of the test statistic it is
assumed that m is of order T 1/2 and this is the usual value for m recommended in applica-
tions. If the value for m is chosen too large the power of the test of the form (2) is expected
to decrease. See Battaglia (1990) for a study of the effect of m on the Ljung–Box–Pierce
statistics. Table 6 shows the average decrease in power when going from m = 10 to 20 for
the models in Table 2. It can be seen that all the tests suffered a decrease in power but the
two tests which are more robust to the value of m are the one by Hong and the test proposed
in this article. The small sensitivity of Hong’s test appears because in this test larger auto-
correlations have a very small weight and thus the test statistic changes very little with the
increase of m. However, this structure makes this test less powerful when the information
is not concentrated in the low lags (see for instance models 11, 17 and 22 in Table 2). The
sensitivity to the value of m of the proposed test with respect to Dm, QLB, and QMT is much
smaller.

Table 7 shows that the average decrease in power of the proposed test in the nonlinear
case is also smaller than for the other test compared. Thus we conclude that the proposed
test is less sensitive to the value of m than its competitors.
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Appendix

Proof of Theorem 1. Suppose that under the null hypothesis, D̂∗
m is asymptotically dis-

tributed as the random variable X. To find the distribution of (7), suppose that (T �̂2
1,

T �̂2
2, . . . , T �̂2

m) is asymptotically distributed asY . Then, applying the multivariate�-method

(v.g. in Arnold, 1990) to g(�̂2
1, . . . , �̂

2
m) = −∑m

i=1

(
m−i+1
m+1

)
ln(1 − �̂2

i ), it follows that

−T

m∑
i=1

(
m − i + 1

m + 1

)
ln(1 − �̂2

i ) →
(

m

m + 1
,
m − 1

m + 1
, . . . ,

1

m + 1

)
Y, (A.1)

where → stands for convergence in distribution. From the Cramer–Wold theorem (v.g. in
Arnold, 1990), it follows that(

m

m + 1
,
m − 1

m + 1
, . . . ,

1

m + 1

)
(T �̂2

1, T �̂2
2, . . . , T �̂2

m)′

→
(

m

m + 1
,
m − 1

m + 1
, . . . ,

1

m + 1

)
Y. (A.2)

Using the fact that T 1/2�̂(m) is asymptotically distributed as N(0, Im − Qm), see Monti
(1994), and from the theorem on quadratic forms given by Box (1954), it follows that(

m

m + 1
,
m − 1

m + 1
, . . . ,

1

m + 1

)
(T �̂2

1, T �̂2
2, . . . , T �̂2

m)′

= T �̂′
(m)W�̂(m) →

m∑
i=1

�i�
2
1,i . (A.3)

Finally, from (A.2) and (A.3), ( m
m+1 , m−1

m+1 , . . . , 1
m+1 )Y → ∑m

i=1 �i�2
1,i , and from (A.1),

D̂∗
m → ∑m

i=1 �i�2
1,i . �
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