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Abstract

The statistical discrimination and clustering literature has studied the problem of identifying sim-
ilarities in time series data. Some studies use non-parametric approaches for splitting a set of time
series into clusters by looking at their Euclidean distances in the space of points. A new measure of
distance between time series based on the normalized periodogram is proposed. Simulation results
comparing this measure with others parametric and non-parametric metrics are provided. In partic-
ular, the classification of time series as stationary or as non-stationary is discussed. The use of both
hierarchical and non-hierarchical clustering algorithms is considered. An illustrative example with
economic time series data is also presented.
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1. Introduction

Classification and clustering time series is becoming an important area of research in
several fields, such as economics, marketing, business, finance, medicine, biology, physics,
psychology, zoology, and many others. For example, in Economics we may be interested in
classifying the economic situation of a country by looking at some time series indicators,
such as Gross National Product, investment expenditure, disposable income, unemployment
rate or inflation rate. In Medicine, a patient may be classified in different classes using the
information from the electrocardiogram time series.

The problem of identifying similarities or dissimilarities in time series data has been
studied in the discrimination and clustering literature (see for instance Jonhson and Wichern,
1992). Some studies use non-parametric approaches for splitting a set of time series into
clusters by looking at their Euclidean distances in the space of points. As pointed out by
Galeano and Peña (2000), this metric has the important limitation of being invariant to
transformations that modify the order of observations over time, and, therefore, it does not
take into account the correlation structure of the time series. Piccolo (1990) introduced
a metric for ARIMA models based on the autoregressive representation and applied this
measure to the identification of similarities between industrial production series. Tong and
Dabas (1990) investigated the affinity among some linear and non-linear fitted models by
applying classical clustering techniques to the estimated residuals. Diggle and Fisher (1991)
introduced a non-parametric approach to compare the spectrum of two time series based on
the underlying cumulative periodograms. Diggle and al Wasel (1997) developed inference
methods in spectral analysis based in the likelihood ratio to compare replicated time series
data. Kakizawa et al. (1998) proposed parametric models for discriminating and clustering
multivariate time series, with applications to environmental data (for discriminant analysis
for time series, see also Shumway and Unger, 1974; Shumway, 1982; Dargahi-Noubary
and Laycock, 1981; Dargahi-Noubary, 1992; Zhang and Taniguchi, 1994). Maharaj (2000)
used a test of hypothesis in the comparison of two stationary time series based on the
autoregressive parameters and proposed a classification method using the p-value of this
test as a measure of similarity. Maharaj (2002) compared two non-stationary time series
using the evolutionary spectra approach in order to take into account the structural changes
over time. Other related works on clustering of time series are by Bohte et al. (1980), Kosmelj
and Batagelj (1990), Shaw and King (1992), Maharaj (1999) and Xiong and Yeung (2004).

In this paper, we propose a metric based on the normalized periodogram and we use it
for time series classification. We provide simulation results comparing this metric to the
one by Piccolo (1990) and the ones based on autocorrelation, partial autocorrelation and
inverse autocorrelation coefficients. In particular, we discuss the classification of time series
as stationary or as non-stationary.

The remainder of the paper is organized as follows. In Section 2 we discuss briefly
previous related methods on clustering time series and present our periodogram-based
metrics. In Section 3 we discuss the methodology used for empirical classification ofARMA
and ARIMA models and in Section 4 we present results from various approaches. In Section
5 we present an illustrative example with economic time series data to identify similarities
among industrial production index series in United States, and in Section 6, we summarize
the paper and discuss possible future research.
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2. Time series metrics

A fundamental problem in classification analysis of time series is the choice of a relevant
metric. Let Xt = (

x1,t , . . . , xk,t

)′ be a vector time series with components represented by
autoregressive integrated moving average or ARIMA(p, d, q) models,

�i (B)(1 − B)dxi,t = �i (B)�i,t , i = 1, . . . , k, (1)

where �i (B) is the autoregressive operator of order p and �i (B) is the moving average
operator of order q; B is the back-shift operator and (1 − B)d is the differencing operator
of order d. The autoregressive and moving average polynomials in model (1) are assumed
to have all roots outside the unit circle, so that each process Xi,t = (1 − B)dxi,t is causal
and invertible.

Piccolo (1990) defined a metric for the class of invertibleARIMA models as the Euclidean
distance between their autoregressive expansions. Let xt be a zero mean stochastic process
following an invertibleARIMA(p, 0, q) model: �(B)xt =�(B)�t . Then it can be represented
by the AR(∞) operator �(B)=�−1(B)�(B)=1−�1B −�2B

2 −· · ·, and the � coefficients
contain all the information about the stochastic dependence structure of a time series. Piccolo
(1990) introduced a metric by comparing the respective � sequences, defined by the distance

dPIC(x, y) =
√√√√ ∞∑

j=1

(
�j,x − �j,y

)2. (2)

An alternative metric suggested by Galeano and Peña (2000) is based on the estimated au-
tocorrelation function (ACF). Suppose that we have a set of time series X=(x1,t , . . . , xk,t

)′
and �̂i = (

�̂i,1, . . . , �̂i,m

)
is the vector of the estimated autocorrelation coefficients of the

time series i for some m such that �̂j�0 for j > m. This distance between the time series
x e y is defined by

dACF(x, y) =
√(

�̂x − �̂y

)′� (�̂x − �̂y

)
, (3)

where � is some matrix of weights. When � = I (identity matrix), one obtains the Eu-
clidean distance between the autocorrelation coefficients of time series x and y. When
� = [

cov
(
�̂
)]−1 is the inverse covariance matrix of the autocorrelations, one obtains the

Mahalanobis distance between the autocorrelations. It is also common to use weights that
decrease with the autocorrelation lag.

Others possible distances that do not seem to have yet been applied in the clustering
literature are the ones based on the partial autocorrelation function (PACF) and on the
inverse autocorrelation function (IACF) introduced by Cleveland (1972) and developed by
Chatfield (1979). For instance, a distance between the inverse autocorrelations can be given
by

dIACF(x, y) =
√(

�̂(I )
x − �̂(I )

y

)′
�
(
�̂(I )

x − �̂(I )
y

)
, (4)
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where the sample inverse autocorrelation functions �̂(I )
x and �̂(I )

y can be estimated by meth-
ods presented by Bhansali (1980, 1983), Battaglia (1983, 1986, 1988), Kanto (1987), and
Subba Rao and Gabr (1989).

We now introduce a new distance based on the normalized periodogram. Let Px

(
wj

)=
(1/n)|∑n

t=1 xte−itwj |2 and Py

(
wj

)= (1/n)|∑n
t=1 yte−itwj |2 be the periodograms of time

series x and y, respectively, at frequencies wj = 2�j/n, j = 1, . . . , [n/2] in the range 0 to
� (where [n/2] is the largest integer less or equal to n/2). A distance between x and y can
be defined by

dP(x, y) =

√√√√√[n/2]∑
j=1

[
Px

(
wj

)− Py

(
wj

)]2. (5)

If we are not interested in the process scale, but only on its correlation structure, it is better
to use the normalized periodogram (or rescaled periodogram) by replacing P

(
wj

)
in (5)

by NP
(
wj

)= P
(
wj

)
/�̂0, where �̂0 is the sample variance of the time series, that is

dNP(x, y) =

√√√√√[n/2]∑
j=1

[
NPx

(
wj

)− NPy

(
wj

)]2. (6)

Since the variance of periodogram ordinates is proportional to the spectrum value at the cor-
responding frequencies, it makes sense to use the logarithm of the normalized periodogram,

dLNP(x, y) =

√√√√√[n/2]∑
j=1

[
log NPx

(
wj

)− log NPy

(
wj

)]2. (7)

It is straightforward to show that distances (6) and (7) satisfy the usual properties of
a metric: d(x, y) = d(y, x) (symmetry); d(x, y) > 0, with x �= y (non-negativity); and
d(x, y)�d(x, z) + d(z, y) (triangle inequality).

As can be expected, measures based on the autocorrelations and measures based on the
periodogram are related. It is well known that the periodogram has the equivalent repre-

sentation P
(
wj

) = 2
[
�̂0 + 2

∑n−1
k=1 �̂k cos

(
wjk

)]
, where �̂k is the sample autocovariance

function (for details, see Brockwell and Davis, 1991; Wei, 1990), and dividing P
(
wj

)
by

�̂0, we obtain the normalized periodogram given by

NP
(
wj

)= 2

[
1 + 2

n−1∑
k=1

�̂k cos
(
wjk

)]
, (8)

which is the transform of the sample autocorrelation function and vice versa. The re-
lation between the normalized periodogram metric (6) and the ACF metric (3) can be
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expressed by

dNP(x, y) =

√√√√√[n/2]∑
j=1

[
NPx

(
wj

)− NPy

(
wj

)]2

=

√√√√√[n/2]∑
j=1

[(
2 + 4

n−1∑
k=1

�̂k,x cos
(
wjk

))−
(

2 + 4
n−1∑
k=1

�̂k,y cos
(
wjk

))]2

=

√√√√√[n/2]∑
j=1

[
4

n−1∑
k=1

cos
(
wjk

) (
�̂k,x − �̂k,y

)]2

. (9)

By the orthogonality properties of the cosine functions,
∑[n/2]

j=1 cos2
(
wjk

) = n/4 (if n is

even) and
∑[n/2]

j=1 cos
(
wjk

)
cos

(
wjs

)= 0 (for k �= s), we get

dNP(x, y) =
√

16
[n

4

(
�̂1,x − �̂1,y

)2 + · · · + n

4

(
�̂n−1,x − �̂n−1,y

)2]

= 2
√

n

√√√√n−1∑
k=1

(
�̂k,x − �̂k,y

)2, (10)

or, using matrix notation,

dNP(x, y) = (
2
√

n
)√(

�̂x − �̂y

)′
I
(
�̂x − �̂y

)
= (

2
√

n
)
dACF(x, y). (11)

These two measures are thus equivalent. However, their application with a truncated number
of autocorrelations or a truncated number of periodogram ordinates could yield different
results.

Another useful measure in the time domain, based in the Kullback–Leibler information
distance (KLTD measure), is defined by

dKLTD(x, y) = tr
(
RxR

−1
y

)
− log

(|Rx |/|Ry |
)− n, (12)

where Rx and Ry are the L×L autocorrelation matrices of time series x and y, respectively,
made at L successive times. The Kullback–Leibler information distance in the frequency
domain (KLFD measure) is asymptotically equivalent to (12), and much easier to compute.
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It is given by

dKLFD(x, y) =
[n/2]∑
j=1

[
NPx

(
wj

)
NPy

(
wj

) − log
NPx

(
wj

)
NPy

(
wj

) − 1

]
. (13)

This measure is greater or equal to zero, with equality if and only if NPx

(
wj

)= NPy

(
wj

)
almost everywhere. Its potentially success should by related with metric (7). The likelihood
ratio statistic for testing equality of spectra is given by,

log L =
[n/2]∑
j=1

log

[
NPx

(
wj

)
NPy

(
wj

)]1/2

1
2

[
NPx

(
wj

)+ NPx

(
wj

)] , (14)

and it is distributed proportionally to a chi-square random variable and it could also be
used for measuring distances between spectra. This statistic can also be expressed equiva-
lently as the sum of differences between the average log spectra and the log of the spectra
average.

3. Methodology of time series classification

In this section we will use the following previously discussed distances for time series
classification:

Step 1: Find similarities or dissimilarities between every pair of time series in the data
set. For each data we compute a distance matrix with k(k − 1)/2 different pairs using the
following metrics:

(i) Classical Euclidean (EUCL) distance, dEUCL(x, y) =
√∑n

t=1(xt − yt )
2.

(ii) Piccolo’s distance,dPIC(x, y)=
√∑∞

j=1

(
�j,x − �j,y

)2. The application of this distance
requires the fitting of an ARIMA model to the time series. This has been done by fitting
ARMA(p, d, q) models to the series with d = 0, 1, p = 0, 1, 2, 3 and q = 0, 1, 2, 3,
and selecting the order by three possible model selection criteria. The first is the AIC,
the second the AICC and the third the BIC criterion. These criteria have been applied
as recommended by Beran et al. (1998). Then the �i weights are obtained and used to
compute the distance matrices.

(iii) ACF distance. We implemented three possible ways of computing a distance by using
the autocorrelation coefficients. The first uses a uniform weighting and is equivalent to
the Euclidean distance between autocorrelations coefficient vectors,

dACF(x, y) =
√∑L

i=1

(
�̂i,x − �̂i,y

)2. The second uses a geometric decay,

dACFG(x, y) =
√∑L

i=1 mi

(
�̂i,x − �̂i,y

)2,where L is the number of autocorrelations,

mi = pqi for i = 1, . . . , L, p = 1 − q and 0 < p < 1. The third uses the Mahalanobis

distance, dACFM(x, y) =
√(

�̂x − �̂y

)′�−1 (�̂x − �̂y

)
, where � is the sample covari-

ance matrix of the autocorrelation coefficients with elements given by the truncated
Bartlett’s formula (Brockwell and Davis, 1991, p. 222). That is, assuming that time
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series x and y are independent, and denoting wij =∑L
k=1

[(
�̂(k+i)�̂(k−i) − 2�̂(i)�̂(k)

)(
�̂(k+j) �̂(k−j) −2�̂(j)�̂(k)

)]
,then the variances and covariances in � are given by

var
(
�̂x − �̂y

)= var
(
�̂x

)+ var
(
�̂y

)= wii,x + wii,y ,

cov
(
�̂i,x−�̂i,y, �̂j,x−�̂j,y

)=cov
(
�̂i,x, �̂j,x

)+cov
(
�̂i,y, �̂j,y

)=wij,x+wij,y .

(iv) PACF Euclidean distance, dPACF(x, y) =
√∑L

i=1

(
�̂ii,x − �̂ii,y

)2
, where �̂ii are the

sample partial autocorrelations. We also explored weighting these coefficients, but as
the results were similar to the uniform weighting we do not report them here.

(v) IACF Euclidean distance, dIACF(x, y)=
√∑L

i=1

(
�̂(I )

i,x − �̂(I )
i,y

)2
, where �̂(I ) are inverse

autocorrelation estimates calculated from the autocorrelation function using approxi-
mation Kanto’s formula (Kanto, 1987) for ARMA processes, that is

�̂(I ) = (A + B)−1�̂,

where �̂(I )=
(
�̂(I )

1 , . . . , �̂(I )
L

)
, �̂=(�̂1, . . . , �̂L

)
, A={�̂L−1

}
L×L

, and B={�̂L+1
}
L×L

.

As in the PACF metric, we only give the results for uniform weighting of these coef-
ficients.

(vi) Distance based on the log-normalized periodogram (LNP metric),

dLNP(x, y) =
√∑[n/2]

j=1

[
log NPx

(
wj

)− log NPy

(
wj

)]2.

(vii) KL information distance, dKL(x, y) =∑[n/2]
j=1

[NPx(wj )
NPy(wj )

− log
NPx(wj )
NPy(wj )

− 1
]
.

We also investigated the performance of the likelihood ratio statistic (14) to compare the
spectrum of the stationary and non-stationary time series, but the results are not included
as it did not work well.

Step 2: Group the time series into two clusters (stationary and non-stationary) using an
appropriate agglomerative hierarchical clustering algorithm as the single linkage (which
maximizes the minimum distance between objects in the same group), the complete link-
age (which minimizes the maximum distance between objects in the same group) or the
average linkage (which averages the distances between objects in different groups). These
linkages algorithms are concerned with the partition of a set of objects into groups or clus-
ters, in such a way that objects in the same group are similar to one another and objects in
different clusters are as distinct as possible. For more details, see for instance, Jonhson
and Wichern (1992) and Gordon (1996). Alternatively, we may use a non-hierarchical
clustering procedure such as the k-means algorithm, where one determines a preliminary
set of k clusters, move each time series to the cluster whose centroid is closest in Eu-
clidean distance, recalculate the cluster centroid and repeat the reassignment procedure
until no time series is reassigned. The implementation of the k-means clustering algo-
rithm in our approach is based on Euclidean distances among standardized observations,
autoregressive weights, autocorrelation coefficients, partial autocorrelation coefficients, in-
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verse autocorrelation coefficients, and normalized periodogram ordinates in the logarithm
scale.

The autocorrelation coefficients and the spectrum are usually defined for stationary pro-
cesses but their definition can be extended for integrated processes (see Peña and Poncela,
2005). With the usual definition for stationary time series (S), �̂S

k → 0 as k → ∞ and
n → ∞, and for non-stationary time series (NS), for any fixed k, �̂NS

k → 1 as n → ∞.

Hence,
∑m

k=1

(
�̂NS

k − �̂S
k

)2 → ∞ as m → ∞ and n → ∞ with m < n. Consequently, by

(10) it follows that
∑(

NPNS(wj ) − NPS(wj )
)2

also diverges. Thus, the estimated ACF
and the normalized periodogram should be able to discriminate between stationary and
non-stationary time series.

4. Simulation results

We simulated one thousand time series replications of each of the following six stationary
[(a)–(f)] and six non-stationary [(g)–(l)] models. All the series have zero mean and unit
variance white noise. The samples sizes were taken equal to 50, 100, 200, 500, 1000 and
10000 observations:

Model (a): AR(1), with �1 = 0.9;
Model (b): AR(2), with �1 = 0.95 and �2 = −0.1;
Model (c): ARMA(1,1), with �1 = 0.95 and �1 = 0.1;
Model (d): ARMA(1,1),with �1 = −0.1 and �1 = −0.95;
Model (e): MA(1), with �1 = −0.9;
Model (f): MA(2), with �1 = −0.95 and �2 = −0.1.
Model (g): ARIMA(1,1,0), with �1 = −0.1;
Model (h): ARIMA(0,1,0);
Model (i): ARIMA(0,1,1), with �1 = 0.1;
Model (j): ARIMA(0,1,1), with �1 = −0.1;
Model (k): ARIMA(1,1,1), with �1 = 0.1 and �1 = −0.1;
Model (l): ARIMA(1,1,1), with �1 = 0.05 and �1 = −0.05.

We have chosen all the models with parameter values close to the random walk in order
to make it not easy to classify time series into stationary and non-stationary. Fig. 1 shows
the typical shape of each series. We group the series into two clusters (stationary and non-
stationary) and we obtain the percentage of successes in the classification. Table 1 gives
the simulated results by using the complete linkage hierarchical clustering algorithm. In
Table 2, we present the k-means clustering method. All simulations were obtained by using
MATLAB 6.

From Table 1, it can be seen that both the Euclidean distance and Piccolo’s metric are
unable to distinguish successfully between stationary and non-stationary time series, since
the percentages of successes obtained with those measures did not exceed 68%, even with
large samples. In fact, the metric of Piccolo cannot discriminate between the ARMA models
with large autoregressive coefficients [models (a), (b) and (c)] and the ARIMA models
(g)–(l). This can be easily understood by noting that the autoregressive weights �i of both
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Fig. 1. Stationary and non-stationary simulated time series.

these two classes of models are similar for the first lags.
The ACFU metric, the ACFG metric, the KL metric and the LNP metric produced high

percentages of success that increase with the sample size. Both ACF metrics seem to work
better when using L = n/10 autocorrelations, when n is the sample size. The LNP metric
works quite well in all cases (low, high and all frequencies). For time series with 10 000
observations, it can be seen that the ACF metrics (uniform and geometric decay), the KL
metric and the LNP metric can distinguish perfectly (with percentages of success of 100%)
between stationary and non-stationary time series. The ACF with uniform weighting works
worse for L=1000, 2500 and 5000. This may be due to the noise pattern of the correlogram
of stationary time series for large lags. For all the samples, the LNP and KL metrics provide
slightly better results than the ACF metrics, and the KL metric works very well for high
frequency components. The ACF Mahalanobis, the PACF and the IACF distance-based
methods seem to be poor metrics in this comparison.

From Table 2, it can be seen that the k-means clustering algorithm gives similar results
to the ones obtained by the hierarchical clustering procedure. This shows the robustness of
the proposed approaches.



J. Caiado et al. / Computational Statistics & Data Analysis 50 (2006) 2668–2684 2677

Ta
bl

e
1

Pe
rc

en
ta

ge
s

of
su

cc
es

s
on

tim
e

se
ri

es
cl

as
si

fic
at

io
n

by
hi

er
ar

ch
ic

al
m

et
ho

d

n
E

U
C

L
L

�
w

ei
gh

ts
A

ut
oc

or
re

la
tio

ns
,p

ar
tia

la
nd

in
ve

rs
e

au
to

c.
Pe

ri
od

og
ra

m
or

di
na

te
s

A
IC

A
IC

C
B

IC
A

C
FU

A
C

FG
A

C
FM

PA
C

F
IA

C
F

Fr
eq

L
N

P
K

L

50
67

.4
4

5
66

.0
1

66
.1

2
66

.9
5

76
.4

3
76

.4
1

73
.5

1
68

.9
2

66
.1

9
10

66
.1

7
66

.6
7

66
.9

2
76

.7
3

78
.0

8
73

.9
2

70
.3

3
65

.2
6

L
ow

76
.6

1
70

.5
8

15
66

.7
5

67
.0

3
66

.9
7

76
.5

8
76

.1
2

73
.6

7
67

.8
3

64
.6

1
H

ig
h

77
.7

5
80

.1
7

25
66

.6
8

66
.9

2
67

.0
2

73
.5

7
75

.3
8

75
.0

0
58

.9
2

N
A

A
ll

78
.8

8
74

.4
2

10
0

66
.6

7
5

65
.6

7
65

.8
7

66
.8

7
77

.0
4

76
.6

8
73

.3
3

72
.5

0
66

.2
0

10
65

.7
3

66
.0

0
67

.0
1

81
.4

9
80

.8
8

73
.8

3
72

.0
8

66
.7

6
L

ow
82

.5
7

76
.8

2
25

66
.0

7
66

.1
3

67
.1

0
80

.6
7

80
.6

2
74

.7
2

72
.5

8
65

.1
7

H
ig

h
83

.0
4

91
.5

8
50

65
.8

7
66

.0
7

67
.0

8
79

.8
7

81
.3

1
75

.0
8

58
.3

3
N

A
A

ll
83

.3
3

84
.7

5

20
0

67
.2

4
5

65
.6

0
65

.7
3

66
.9

4
75

.8
1

75
.5

1
74

.5
0

73
.0

1
66

.5
7

10
66

.3
3

65
.8

0
67

.1
1

82
.8

3
81

.3
0

75
.0

8
71

.8
3

66
.4

8
L

ow
88

.3
2

83
.8

4
20

66
.2

7
66

.5
3

67
.0

7
88

.4
2

87
.5

0
75

.1
5

72
.8

3
66

.3
9

H
ig

h
89

.2
1

96
.4

2
50

65
.8

7
65

.9
3

66
.9

9
84

.7
5

87
.4

3
75

.2
1

73
.3

3
66

.5
1

A
ll

90
.0

8
88

.9
6

10
0

66
.1

9
66

.3
9

66
.9

8
83

.3
3

87
.1

7
N

A
57

.9
2

N
A

50
0

67
.3

8
5

65
.8

7
65

.6
0

66
.8

9
75

.1
8

75
.0

5
74

.8
8

73
.4

8
66

.6
7

10
66

.0
0

65
.6

7
66

.9
2

81
.4

2
79

.1
8

75
.0

0
74

.0
2

66
.6

7
L

ow
92

.8
3

92
.2

5
25

66
.1

3
65

.8
7

66
.7

5
95

.1
5

94
.1

4
75

.0
8

73
.5

1
66

.5
7

H
ig

h
98

.0
1

98
.8

7
50

65
.3

3
66

.4
7

66
.6

7
95

.3
7

95
.3

3
75

.2
2

75
.0

1
65

.9
2

A
ll

97
.7

3
96

.7
4

12
5

65
.8

7
66

.1
3

67
.0

3
88

.6
6

95
.2

9
N

A
73

.3
3

64
.6

1
25

0
66

.9
2

66
.0

7
67

.0
1

87
.4

2
94

.6
7

N
A

57
.8

5
N

A



2678 J. Caiado et al. / Computational Statistics & Data Analysis 50 (2006) 2668–2684

10
00

67
.0

5
5

65
.2

7
65

.6
7

66
.9

3
75

.0
0

75
.0

1
74

.7
2

74
.6

7
66

.6
7

10
65

.8
7

66
.1

3
66

.9
9

80
.3

4
78

.0
8

74
.9

2
74

.3
3

66
.6

7
L

ow
95

.0
8

96
.4

9
25

66
.0

0
67

.0
0

66
.9

8
97

.2
8

96
.0

0
75

.0
8

74
.0

3
66

.6
7

H
ig

h
99

.5
8

99
.5

8
50

66
.3

3
66

.6
6

67
.0

2
98

.8
5

98
.4

3
75

.0
8

75
.0

0
66

.1
0

A
ll

99
.8

3
99

.2
3

10
0

66
.4

0
66

.6
7

67
.0

1
97

.9
8

98
.6

7
N

A
75

.0
1

64
.9

8
25

0
66

.0
7

66
.0

0
66

.9
8

90
.3

5
98

.5
7

N
A

74
.3

8
64

.6
8

50
0

66
.0

2
66

.1
3

66
.9

7
89

.5
8

98
.1

7
N

A
58

.9
1

N
A

10
00

0
67

.6
5

50
66

.6
7

65
.8

3
66

.7
1

10
0.

0
10

0.
0

75
.0

0
74

.9
7

66
.6

7
10

0
66

.2
7

66
.0

7
66

.8
9

10
0.

0
10

0.
0

N
A

75
.4

9
66

.6
7

L
ow

97
.8

3
99

.1
7

25
0

65
.8

3
65

.5
3

66
.9

7
10

0.
0

10
0.

0
N

A
76

.3
0

66
.6

7
H

ig
h

10
0.

0
10

0.
0

50
0

65
.9

7
65

.8
9

66
.9

5
10

0.
0

10
0.

0
N

A
75

.7
8

65
.8

3
A

ll
10

0.
0

10
0.

0
10

00
66

.3
3

66
.1

3
66

.9
9

98
.0

8
10

0.
0

N
A

75
.4

3
64

.9
2

25
00

66
.0

7
66

.5
7

67
.0

1
91

.0
2

10
0.

0
N

A
73

.8
5

N
A

50
00

66
.0

1
66

.7
2

66
.9

8
88

.0
1

10
0.

0
N

A
59

.4
5

N
A

N
ot

es
:n

is
th

e
sa

m
pl

e
si

ze
;E

U
C

L
is

th
e

E
uc

lid
ea

n
m

et
ri

c;
L

is
th

e
nu

m
be

r
of

au
to

re
gr

es
si

ve
w

ei
gh

ts
(P

ic
co

lo
’s

m
et

ri
c

w
ith

m
od

el
se

le
ct

io
n

cr
ite

ri
a

A
IC

,A
IC

C
an

d
B

IC
),

au
to

co
rr

el
at

io
ns

(A
C

F
un

if
or

m
m

et
ri

c,
A

C
F

ge
om

et
ri

c
de

ca
y

m
et

ri
c

w
ith

p
=0

.0
5,

A
C

F
M

ah
al

an
ob

is
m

et
ri

c)
,p

ar
tia

la
ut

oc
or

re
la

tio
ns

(P
A

C
F

m
et

ri
c)

an
d

in
ve

rs
e

au
to

co
rr

el
at

io
ns

(I
A

C
F

m
et

ri
c)

;
“l

ow
”

fr
eq

ue
nc

ie
s

of
th

e
L

N
P

an
d

K
L

m
et

ri
cs

co
rr

es
po

nd
to

or
di

na
te

s
1

to
[√ n

]a
nd

“h
ig

h”
fr

eq
ue

nc
ie

s
to

or
di

na
te

s
[√ n

+
1]

to
n
/
2.

T
he

hi
gh

er
pe

rc
en

ta
ge

s
ar

e
in

di
ca

te
d

in
bo

ld
.T

he
re

su
lts

w
er

e
ba

se
d

on
10

00
si

m
ul

at
io

ns
of

ea
ch

tim
e

se
ri

es
,e

xc
ep

tf
or

Pi
cc

ol
o’

s
m

et
ri

c,
A

C
FM

,I
A

C
F

an
d

fo
r

n
=

10
00

0,
w

hi
ch

w
er

e
ba

se
d

on
10

0
si

m
ul

at
io

ns
.



J. Caiado et al. / Computational Statistics & Data Analysis 50 (2006) 2668–2684 2679

Ta
bl

e
2

Pe
rc

en
ta

ge
s

of
su

cc
es

s
on

tim
e

se
ri

es
cl

as
si

fic
at

io
n

by
k-

m
ea

ns
m

et
ho

d

n
E

U
C

L
L

A
IC

A
IC

C
B

IC
A

C
F

PA
C

F
IA

C
F

Fr
eq

L
N

P

50
67

.6
7

5
67

.8
4

68
.0

0
68

.0
8

76
.7

7
69

.3
3

63
.5

8
10

67
.9

2
68

.5
1

68
.0

8
78

.5
4

66
.7

5
65

.4
2

L
ow

76
.9

3
15

68
.3

3
68

.7
4

68
.1

7
76

.6
7

66
.1

3
64

.4
2

H
ig

h
76

.4
2

25
68

.4
2

68
.1

4
68

.3
3

73
.6

7
59

.3
4

N
A

A
ll

77
.6

1

10
0

69
.7

5
5

67
.9

2
67

.9
2

68
.0

8
78

.4
0

72
.2

1
68

.8
2

10
67

.9
2

68
.0

0
68

.1
7

81
.8

8
71

.5
5

65
.3

3
L

ow
84

.4
3

25
68

.4
2

68
.1

7
68

.6
7

82
.5

0
66

.6
7

64
.7

5
H

ig
h

84
.0

1
50

68
.5

8
68

.5
0

68
.8

3
79

.2
1

59
.5

3
N

A
A

ll
84

.3
9

20
0

71
.3

3
5

67
.8

4
68

.0
8

68
.0

0
77

.0
3

71
.4

6
65

.3
1

10
67

.9
2

68
.2

5
68

.2
5

84
.0

1
72

.7
3

66
.0

1
L

ow
88

.8
3

20
68

.0
0

68
.3

3
68

.6
7

89
.2

9
70

.3
7

65
.7

5
H

ig
h

88
.7

5
50

68
.2

5
68

.3
3

68
.6

7
87

.7
9

68
.3

7
64

.3
3

A
ll

92
.2

5
10

0
68

.1
7

68
.5

0
68

.3
3

85
.7

9
60

.1
1

N
A

50
0

71
.5

0
5

68
.0

0
68

.0
0

67
.9

2
76

.3
0

72
.5

8
65

.6
5

10
68

.0
8

68
.1

7
68

.0
8

84
.7

9
72

.6
4

65
.5

8
L

ow
94

.1
7

25
68

.1
7

68
.3

3
68

. 4
2

94
.0

2
71

.4
7

65
.8

3
H

ig
h

97
.6

3
50

68
.3

3
68

.4
2

68
.4

2
96

.8
8

70
.0

9
66

.5
8

A
ll

97
.6

7
12

5
68

.4
2

68
.6

7
68

.3
3

94
.2

5
66

.8
9

64
.4

2
25

0
68

.4
2

68
.7

5
68

.1
7

92
.1

7
59

.7
4

N
A



2680 J. Caiado et al. / Computational Statistics & Data Analysis 50 (2006) 2668–2684

10
00

70
.4

2
5

67
.8

4
68

.0
8

68
.0

8
75

.6
7

72
.1

3
65

.8
2

10
68

.0
0

68
.0

8
68

.1
7

85
.5

4
72

.0
5

65
.9

2
L

ow
96

.5
2

25
68

.3
3

68
.1

7
68

.3
3

96
.2

9
71

.9
7

65
.9

2
H

ig
h

99
.6

2
50

68
.3

3
68

.3
3

68
.4

2
99

.1
7

72
.6

5
65

.6
7

A
ll

99
.8

8
10

0
68

.4
2

68
.6

7
68

.6
7

98
.7

5
66

.8
3

64
.2

1
25

0
68

.3
3

68
.6

7
68

.3
3

96
.0

8
60

.1
8

64
.0

5
50

0
68

.3
3

68
.3

3
68

.1
7

94
.4

2
58

.3
4

N
A

10
00

0
70

.1
4

50
67

.9
2

68
.0

8
68

.1
7

10
0.

00
72

.9
2

66
.6

7
10

0
68

.0
8

68
.0

0
68

.3
3

10
0.

00
73

.0
8

65
.8

3
L

ow
98

.6
1

25
0

68
.1

7
68

.1
7

68
.4

2
10

0.
00

72
.9

2
65

.0
0

H
ig

h
10

0.
00

50
0

68
.3

3
68

.1
7

68
.6

7
10

0.
00

72
.5

0
64

.5
8

A
ll

10
0.

00
10

00
68

.3
3

68
.6

7
68

.8
3

99
.9

2
66

.6
7

64
.1

2
25

00
68

.6
7

68
.3

3
68

.6
7

99
.6

7
65

.8
3

63
.3

9
50

00
68

.6
7

68
.4

2
68

.6
7

98
.7

5
63

.3
9

N
A

N
ot

es
:n

is
th

e
sa

m
pl

e
si

ze
;E

U
C

L
is

th
e

E
uc

lid
ea

n
m

et
ri

c;
L

is
th

e
nu

m
be

r
of

au
to

re
gr

es
si

ve
w

ei
gh

ts
(P

ic
co

lo
’s

m
et

ri
c

w
ith

m
od

el
se

le
ct

io
n

cr
ite

ri
a

A
IC

,A
IC

C
an

d
B

IC
),

au
to

co
rr

el
at

io
ns

(A
C

F
m

et
ri

c)
,p

ar
tia

la
ut

oc
or

re
la

tio
ns

(P
A

C
F

m
et

ri
c)

an
d

in
ve

rs
e

au
to

co
rr

el
at

io
ns

(I
A

C
F

m
et

ri
c)

;“
lo

w
”

fr
eq

ue
nc

ie
s

of
th

e
L

N
P

an
d

K
L

m
et

ri
cs

co
rr

es
po

nd
to

or
di

na
te

s
1

to
[√ n

]a
nd

“h
ig

h”
fr

eq
ue

nc
ie

s
to

or
di

na
te

s
[√ n

+
1]

to
n
/
2.

T
he

hi
gh

er
pe

rc
en

ta
ge

s
ar

e
in

di
ca

te
d

in
bo

ld
.T

he
re

su
lts

w
er

e
ba

se
d

on
10

00
si

m
ul

at
io

ns
of

ea
ch

tim
e

se
ri

es
,e

xc
ep

tf
or

Pi
cc

ol
o’

s
m

et
ri

c,
IA

C
F

an
d

fo
r
n

=
10

00
0,

w
hi

ch
w

er
e

ba
se

d
on

10
0

si
m

ul
at

io
ns

.



J. Caiado et al. / Computational Statistics & Data Analysis 50 (2006) 2668–2684 2681

Table 3
Industrial production indices series in United States (US)

No. Series No. Series

1 Manufacturing 11 Non-ferrous metals
2 Primary processing 12 Fabricated metal products
3 Advanced processing 13 Industrial machinery and equipment
4 Durable manufacturing 14 Computer and office equipment
5 Lumber and products 15 Electrical machinery
6 Furniture and fixtures 16 Transportation equipment
7 Stone, clay, and glass products 17 Motor vehicles and parts
8 Primary metals 18 Autos and light trucks
9 Iron and steel 19 Aerospace and miscellaneous transp. equip.

10 Raw steel 20 Instruments
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Fig. 2. Plots of industrial production differenced log series in US.



2682 J. Caiado et al. / Computational Statistics & Data Analysis 50 (2006) 2668–2684

5. Application

As an illustrative example we use the Industrial Production (by Market Group) indices in
United States (source: http://www.economagic.com). The 20 time series indices (seasonally
adjusted) with sample sizes of n=309, from January 1977 to September 2002, are reported
in Table 3.

Before carrying out clustering analysis, the series were transformed in differences of the
logarithm, log xt − log xt−1, as shown in Fig. 2, in order to get the percentages increases
from period to period. This gets rid of the low frequency trends, forcing the metrics to work
on the stationary parts of the series. In Fig. 3 we can see the dendrogram of the hierarchical
cluster tree (complete linkage method) of the Industrial Production series by using the LNP
metric with low frequencies.

The choice of the number of clusters in the data is sometimes subjective and depends on the
researcher experience. However, we may find a natural partition in the data set by using the
so-called inconsistency coefficient (see Statistics Toolbox User’s Guide, 2001), which com-
pares the length of each link in a cluster tree with the average length of all the other links. The
LNP metric split the series data into three clusters: C1={1, 2, 3, 4, 6, 7, 12, 13, 14, 19, 20},
C2={8, 9, 10} and C3={5, 11, 16, 17, 18}, and separate from the others the series 15 (Com-
puter and office equipment). Group C1 includes the fast growing sectors, group C2 includes
sectors with some large negative growth in the period, and group D1 includes sectors of
steady growth or with a small decay during the considered period.
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Fig. 3. Dendrogram of industrial production differenced log series in US by using the LNP metric.
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6. Conclusions

In this paper, we have studied metrics based on different dependence measures to classify
time series as stationary or as non-stationary. Simulation results show that the metrics based
on the logarithm of the normalized periodogram and the metric based on the autocorrelation
coefficients can all distinguish empirically with high success ARMA from ARIMA models,
while this does not happen with the classic Euclidean distance nor with the metric based in
the autoregressive weights proposed by Piccolo (1990). The first metrics above have also
an important advantage over the distance-based methods proposed by Piccolo (1990) and
by Tong and Dabas (1990): they do not need to fit previously an ARIMA model in order to
compute the distances.

We have shown that the normalized periodogram metric is closely related to the auto-
correlation function metric. However, the use of the normalized periodogram metric in the
logarithm scale seems to provide better results than the normalized periodogram metric in
levels or, equivalently, the ACF metric with uniform weights.

While we only studied the correlation between stationary and non-stationary processes,
the methods we developed can be used to distinguish other type processes, namely different
classes of stationary time series. One possible extension is the comparison between linear
and non-linear time series processes.
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