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Abstract. Several techniques for resampling dependent data have already been
proposed. In this paper we use missing values techniques to modify the moving
blocks jackknife and bootstrap. More specifically, we consider the blocks of deleted
observations in the blockwise jackknife as missing data which are recovered by miss-
ing values estimates incorporating the observation dependence structure. Thus, we
estimate the variance of a statistic as a weighted sample variance of the statistic
evaluated in a “complete” series. Consistency of the variance and the distribution
estimators of the sample mean are established. Also, we apply the missing values
approach to the blockwise bootstrap by including some missing observations among
two consecutive blocks and we demonstrate the consistency of the variance and the
distribution estimators of the sample mean. Finally, we present the results of an
extensive Monte Carlo study to evaluate the performance of these methods for finite
sample sizes, showing that our proposal provides variance estimates for several time
series statistics with smaller mean squared error than previous procedures.
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1. Introduction

The classical jackknife and bootstrap, as proposed by Quenouille (1949), Tukey
(1958) and Efron (1979), are inconsistent in the case of dependent observations. During
recent years these methods have been modified in order to account for the dependence
structure of the data. The main existing procedures could be broadly classified as model
based and model free. Model based procedures fit a model to the data and resample the
residuals which mimic the i.i.d. errors of the model (see, e.g., Freedman (1984), Efron and
Tibshirani (1986), Bose (1990) and Kreiss and Franke (1992)). Model free procedures
consider blocks of consecutive observations and resample from these blocks as in the
independent case (see, e.g. Carlstein (1986), Kiinsch (1989) and Liu and Singh (1992)).
Sherman (1998) compares these approaches in terms of efficiency and robustness and
concludes that for moderate sample sizes the model based variance estimators provide a
small gain under the correct model and, under mild misspecification, have bias similar
to model free estimators while being more variable.

In this paper we are interested in the moving blocks jackknife (MBJ) and the moving
blocks bootstrap (MBB) introduced in Kiinsch (1989) and also in Liu and Singh (1992).
These methods allow us to estimate the variance of statistics defined by functionals of
finite dimensional marginal distributions, which include robust estimators of location and
scale, least-squares estimators of the parameters of an AR model and certain versions of
the sample correlations.
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As is usual in jackknife methods, the variance estimator is obtained by a weighted
sample variance of the statistic evaluated in a sample where some observations (blocks
of consecutive observations, in this case) are deleted or downweighted. Kiinsch (1989)
showed that the MBJ which smoothes transitions between observations left out and ob-
servations with full weight, reduces the bias. Other bias reducing resampling methods
are: linear combinations of block bootstrap estimators with different block sizes, pro-
posed by Politis and Romano (1995), and the matched-block bootstrap of Carlstein et
al. (1998) that suggests using some block joining rule favoring blocks that are more likely
to be close.

When the time series has strong dependence structure, computing autocovariance
by deleting blocks of observations is likely to produce bias. An alternative procedure
is to assume that the block of observations is missing. For independent data, delet-
ing observations is equivalent to assuming that these observations are missing, but for
autocorrelated data, as shown in Pefia (1990), the two procedures are very different.
Deleting a block of data effectively means replacing the observations in the block with
their marginal expectation. Treating the block as missing is equivalent to substituting
the observations in the block by their conditional expectations given the rest of the data.
This is the procedure we propose in this paper. In our case, the observations left out
in the MBJ are considered as missing data and they are replaced with a missing value
estimate which takes into account the data dependence structure. Thus, the variance
estimator is a weighted sample variance of the statistic evaluated in a “complete” series.
This procedure could be interpreted as smooth transition between the two parts with
full weight in the blockwise jackknife.

Also, we extend this idea to the blockwise bootstrap, defining a block of missing val-
ues between the blocks that form the bootstrap resample. Thus, the procedure resembles
a block joining engine. In some sense, the matched-block bootstrap has a common point
with the procedure that we propose in this paper, in particular with their autoregressive
matching.

In Section 2 we define the MBJ with missing values techniques (M?BJ) and the
moving block bootstrap with missing values techniques (M2BB). In Section 3 we present
the missing values estimation procedures. In Section 4 the results of consistency of both
methods as variance and distribution estimators for the sample mean are presented.
Finally, the results of a simulation study comparing the MBJ and the M?BJ, and the
MBB and the M2BB are presented in Section 5. All proofs are given in an Appendix.

2. Resampling algorithms

2.1 Moving missing block jackknife

Let X1,...,Xn be observations from a stationary process {X};}:cz with joint dis-
tribution p. Let us suppose that the statistic Ty, whose variance or distribution we
want to estimate, is defined by Ty = T (p"), where p" is the empirical measure of
X1,...,Xn. As noted by Kiinsch (1989), it is impossible to estimate p without as-
suming some structure for the stationary processes. Thus, we suppose that Tn can be
written as a functional of empirical m-dimensional distributions, i.e. Ty = T'(p’}), where
PR =n"13%"" | 6y, is an empirical m-dimensional marginal measure, n = N —m + 1,
Y; = (X4, ..., X¢ym—1) are blocks of m consecutive observations and 6, denotes the point
mass at y € R™.
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The MBJ deletes or downweights blocks of m-tuples in the calculation of pj:

n

(2.1) P9 = (n— wal) Z(l—wna—j»&y“

where |[wn|j1 = 22:1 wn(i) and j = 0,1,...,n —I. The weights satisfy 0 < w, (i) <1
for i € Z, and w,(i) > 0iff 1 < i <[, and [ is the length of the downweighted block.
Note that w,(i) = 1 for 1 < i < [ corresponds to the deletion of blocks, in such a
case the optimal order of I = I(n) is O(n!/?). Bithimann and Kiinsch (1994) propose a
method for selecting the block length in blockwise bootstrap which can be modified for
blockwise jackknife. Kiinsch (1989) suggests using w, () = h((i — 1)/2) where function
h:(0,1) — (0,1) is symmetric about z = 1/2.
The MBJ variance estimator of Ty is defined as

n—l
(22) e = (0= Juwall)?n 7 (n — L+ 1) Hlwa 172 ST - T,
3=0
where TI(\,j ) = T (p;(}’(j )) is the j-th jackknife pseundo-value, TI(\}) =(n-1+1)7! E;:é TI(Vj )

l ,
and |lw,||3 = >im1 wn (i)?.
In our approach we will use the following expression to calculate pR}:

2.3 @ =nt (Zu ~wn(t = )8y, + Y wnlt - j>6n,,-> !

where }/}t,j is an estimate of Y; supposing that Y} is a missing value in the j-th sample, and
then calculate TI(@) =Ty (ﬁTNn’(])), for j=0,1,...,n—1. ?t,j is a missing value estimate
which takes into account the data dependence structure. In Section 3, we present in
detail a method for obtaining Y; ; for stationary and invertible linear processes. Note
that in (2.3), instead of eliminating the blocks indexed by 7 + 1,...,j + I, we consider
those { + m — 1 consecutive observations as missing in the time series sequence. The
M?2BJ and variance estimator is defined by

2.4 72 =nn—-101+1) “aw, 2 T(J) T()
Jack 2

Also, we are interested in the distribution of Ty. We define the following jackknife-
histograms, as in the subsampling method of Politis and Romano (1994):

n—I

(2.5) Hy(z)=(n—1+ 1) Yl n - 1)(TY - Tn) < 2},
7=0

for the MBJ, and
n—l

(2.6) Hy(z)= -1+ Hnl (- )(TY - Tn) < 2},
7=0

for the M2BJ, where 7; is an appropriate normalizing constant (typically 7, = \/Z), and
1{E'} denotes the indicator of the event E.
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2.2  Mowing missing block bootstrap

In the case of bootstrap, we will use the circular block bootstrap (CBB) of Politis
and Romano (1992) and Shao and Yu (1993) which can be described as follows. First,
the sample is “extended” with [ — 1 observations:

X; if iE{l,...,n}
(2.7) Xin =
Xion if ie{n+1,...,n+1-1}
Second, blocks of [ consecutive observations Z; , = (Xin,.-.,Xs41-1,n) are defined.

Then {Z; o }7_, is used for obtaining resamples (Z7, ..., Z;) such that Pr*{Z} = Z; .} =
1/n, and this implies that Pr*{X = X;} = 1/n. The number s of blocks in the bootstrap
resample is selected such that n = sl. Then, the bootstrap estimator is T3 = Tn{(px),
where piy =n"1Y 1 6 z:. The bootstrap variance and distribution of T},

(2.8) Var*(Ty) = E*[(Tx, — E*[Tx])?]
and
(2.9) Pr{(sl)'/*(T} - E*[T}]) < z}

are used as variance and distribution estimators of Ty .

Other blockwise bootstraps have been proposed; for instance, the moving blocks
bootstrap (MBB) of Kiinsch (1989) and Liu and Singh (1992), the non-overlapping block
bootstrap (NBB) based on Carlstein (1986), and the stationary bootstrap (SB) of Politis
and Romano (1994b).

The method that we propose can be described as follows: given a CBB resample
(Yr,...,Yr), ie, s blocks of | consecutive observations, the idea of moving missing
blocks bootstrap (M2BB) is to introduce a block }A’j" of k “observations” between two
consecutive blocks. For simplicity, we will use a fixed block size k for the blocks included
and we will always introduce a final block in order to have ks missing observations. Thus,
the M2BB resample is (Y;*, Y, Yy, ..., Y |, Y* Y7). Notice that the M2BB resample
has s(I + k) observations, meanwhile the CBB resample has sl observations.

Another way of interpreting the M2BB resample is to put [ + & as the block size in
the CBB, and then to consider the last k observations in each block as missing values.
Notice that it is possible to implement M?BB using other blockwise bootstraps as the
above mentioned procedures. _ R

The M?BB estimator is T = T (P} ), where gy =n~' 31, dy., and ¥,* = V" if

te{l,. Li+k+1,.. . 2+k. .., (s—1)(+k)+1,...,(s=)({+k)+1} and ¥} is
properly an estimate, otherwise. Then the bootstrap variance and distribution of T}y,

(2.10) Var*(T) = B*[(T} — E*[T}])?]
and
(2.11) Pr*{(s(l + k))}/*(T% — E*[T%]) < z),

are used as variance and distribution estimators of Ty.
3. Missing values techniques

There are a number of alternatives which can be used to obtain ?t for stationary
and invertible linear processes, see e.g. Harvey and Pierse (1984), Pefia and Maravall
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(1991), and Beveridge (1992), and for some nonlinear processes as in Abraham and
Thavaneswaran (1991). In this paper we will use the generalized least squares method
presented in Pefla and Maravall (1991).

If {X:}:ez is a stationary process that admits an AR(oco) representation: ®(B){(X;—
) = e, where ®(B) =372, #;B?, B is the backshift operator and E[X;] = p, let z; =
X, — p, and assume that the finite series 2z, has m missing values at times 71,75, ..., Ty,
with T; < T;. We fill the holes in the series with arbitrary numbers vz, and construct
an “observed” series Z; by:

(3.1)

Zy + Wy, if tE{Tl,TQ,...,Tm}
t =
Zt, otherwise

where v; = 2z; + wy and w; is an unknown parameter. In matrix notation, we have
(3.2) Z =2+ Huw,

where Z and z are the series expressed as a N x 1 vector, H is N x m matrix such that
Hr,; = 1and H; ; = 0 otherwise, and w is a m x 1 vector of unknown parameters. Let ¥
be the N x N autocovariance matrix of the series z;, then the generalized least squares
estimator of w is

(3.3) O=HET'H)'H'E 1 Z,
and the missing values estimates are obtained by
(3.4) Z=Z-Ho=7Z-HHL'H 'HE 'z

Note that Z obtained in (3.4) does not depend on the “arbitrary” value of w. On
the other hand, expression (3.4) assumes that u and ¥ are known. In order to make the
above estimation method feasible we propose to replace them with the sample mean X
and with an autoregressive estimator X, respectively (see, Lemmas 4.3 and 4.4).

When we apply this method to the j-th jackknife resample, the observations
Xj+1,--.,Xj41 are considered as m = [ consecutive missing values and the matrix
H = H; takes the form

ijl
(3.5) H; = Iixi
ON— (i) xt | pus

In the case of the bootstrap, we have m = k[n/(l + k)| missing observations, where
[ is the length of the block in the bootstrap resample and & is the number of missing
observations between two consecutive blocks. The matrix H is fixed and has the following
expression

[ Oixke Otk -+ Orxk Oixk |
sk Okxk - Ogpxk Oixi
(3.6) H=

Oix Oixk -+ Oixk Oixk

| Okxk Okxk = Okxk Jexk
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We will use vy = z; (then w; = 0) in expression (3.4), in such a case
(3.7) z-Z=HHT'H) 'Hx 'z
and since z = X — p and defining Z=X- 1, we have
(3.8) X-X=HHYT'H)'HE X - p),

which is a more tractable expression. For the bootstrap, the X in (3.8) is replaced with
the X™* forming the bootstrap resample.

Instead of expression (3.4), we could use the following nonparametric interpolator
proposed by Bosq (1996):

5 _ Yieo, ZiIK(Zrs — Z15))

2ico, K((Zrs = Z1,s))
where K is a strictly positive s-dimensional kernel, Z, ; denotes the s observed values
near to Z, and O, = {t : Z; and Z, ; are observed}. Expression (3.9) may be interpreted

as an approximation of E[Z, | Z, ¢]. The implementation of M2BJ and M?BB using (3.9)
as an interpolator will be subject of future research.

(3.9)

4. Consistency results

We now study consistency for the sample mean of the proposed missing values
approaches for jackknife and bootstrap. This case corresponds to m = 1, T(F!) =
[ zdFY(z) = E[X;] = u. We will show that both procedures provide consistent esti-
mators of the variance and the distribution of the sample mean. Theorems 4.1 and 4.3
present the fundamental results for the jackknife and Theorems 4.4 and 4.5 for the boot-
strap. Also in Theorem 4.2 we establish the consistency of the MBJ of Kiinsch (1989) as
a distribution estimator of linear statistics. Notice that Theorems 4.1, 4.2 and 4.3 can
be extended to statistics with linear influence function.

Starting with the MBJ with missing values replacement we have that, according to
(2.3), the statistic evaluated in the j-th completed resample is

(4.1) TG = pt (Zn:(l ~ wp(t — 7)) Xt + iwn(t - j)@j)

=1 t=1
n
=Ty =07 walt — (X, — Ko ),
t=1

where Ty =n~! 37 | X,. First, we will consider the expression Z;:é (i(\? ) Twn)?. The

use of Ty as a central measure seems more natural than TI(V) because T = T(Fy) (see
Liu and Singh (1992)). We have that

n

(42) TP - Tw) == wnlt = X ~ Xy) = ~wp (X = X),
t=1

where w, ; = (wn(1 —7),...,wp{n —j)) and )/(\'j = (Xl,ja . ,)’(:n,j)', with

- X, if wa(t—j)=0
Xt,j:{ ' )

(4.3) _
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In order to prove the consistency of jackknife variance estimator we will use the
following proposition established in Berk (1974):

PROPOSITION 4.1. Suppose that {Xilicz is a linear process such that
Yoo ®ii—i = ey, where {e;}rcz are independent and identically distributed r.v.’s with
Ele:] = 0 and E[ef] = 02, and ¢o = 1. Assume also that ®(z) = Y o, ¢:2* is bounded
away from zero for |z| < 1. Then, there are constants Fy and F», 0 < F} < Fy, such
that

(4.4)  27F) <||Z|lspec <20Fy  and  (27F) 7' < |27 spee < (27 Fy)7E,

where ¥ is the autocovariance matriz of { X, }icz and ||E||spec = max{v/X : ) is eigenvalue
of ¥'2} denotes the spectral norm.

Condition (4.4) allows us to establish the asymptotical unbiasedness of 63,.,. We

replace in (2.4) Tz(v) with T and under standard assumptions we prove in Corollary 4.1
that the effect of this substitution is negligible.

LeEMMA 4.1. If the conditions of Proposition 4.1 hold, and assuming that w, (i) = 1
if and only if 1 <i <1, 1 =1(n) — oo, and Y 07, m|ym| < 0o, then E[ng? .| — 02 =
+o0

m=—00 A/m-
Now, we must prove that Var(ng?,_,) — 0. We have that

(4.5) Var(n&%ack)

n—I n—1
= (= 1+ 1) 2wal7* 3 cov(n? (T — Tw)?, n*(T ~ Tn)?).
j=0i=0

Note that nz(ﬁs,’) —Tn)? = Wy, (X — p)(X — p)'@y,;, where @n; = L7 H;
(H;x"'H;)~'Hjwy, j; thus the only difference with Theorem 3.3 of Kiinsch (1989) is
replacing wy, ; with wy, ;. A crucial aspect in his proof is the number of non zero el-
ements (I = o(n)) in the vector w, ;. The following lemma establishes that W, ; =
Wy, ; + o(171/2), where W, ; has at most [ + 4[I'/2] non zero elements.

LeMMA 4.2. Under the conditions of Lemma 4.1, and assuming that
S o1 M2 Ym| < 00, we have that Wy, j = Wy, ; +o(171/2) uniformly in j = 0,1,...,n—1.

The next result follows by combining the previous Lemmas 4.1 and 4.2 and Theorem
3.3 of Kiinsch (1989).

THEOREM 4.1. Under the conditions of Lemma 4.2, and assuming that

E[| X5+ < oo with § > 0, Y.°°_, m2a8!®*® < oo where ay, are the strong mizing

2

coefficients, and | = o(n), it follows that ng3_, LM .
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COROLLARY 4.1. Under the conditions of Theorem 4.1, and assuming that | =
o(n/?), we have that

n—I|
153 e = 12(n — 1+ 1) Hwallz? S (T — Tn)? + 0p(17Y).
=0

The previous results assume that the matrix X is known; the next lemma shows that
the consistency result obtained in Theorem 4.1 holds if we replace ¥ with an autoregres-
sive estimator 3, i.e., the nxn autocovariance matrix of an AR(p) process, with p = p(n).
We will use the matrix column-sum norm [|A||co; = max{} ;" lai;| : 5 =1,...,n}, and
the vector maximum norm || X||e = max{z; :i=1,...,n}.

LEMMA 4.3. Under the conditions of Theorem 4.1, and assuming that |7 |cor <
M < 00, p = o{(n/logn)/8), and | = o((n/logn)?/?), it follows that

~ =2
(46) no%ack — N0 jack = OP(I)’
where
=2 = = vl o) )
(4.7) G raek = n(n =1+ 1) w52 (T —Tn)?,
7=0

=~

and Ty = wy; Hy(HIE " H;) ' HIE- (X - X).

The condition |71 |cot < M < oo is satisfied by stationary and invertible ARMA
processes. This is a direct consequence of the representation of ¥~! in Galbraith and
Galbraith (1974). Note that the proof is still valid if |27 !||co = O(I}/4~%) for some o
such that 0 < a < 1/4.

Now, we prove that the moving block jackknife (MBJ) of Kiinsch (1989) could be
used as an estimator of the distribution of a linear statistic. We will use the analogy
between the subsampling method of Politis and Romano (1994a) and the blockwise
jackknife. First, we introduce some notation: T ; = Tp(X4, ..., X¢+5-1) is the estimator
of T(p) based on the block or subsample (X¢,...,X;—p+1). Let Jo(p) be the sampling
distribution of

(4.8) (Tng — T(p)),

where T is the normalizing constant. Also define the corresponding cumulative distri-
bution function

(4.9) Jo(z, p) = Prp{re(Tn1 — T(p)) < z},

and denote Jy(p) the sampling distribution of 7,,(Ty — T'(p)). The approximation of
Jn(p) proposed by subsampling is

N-b+1
(4.10) Ln(@) =N —=b+1)7" Y 1{n(Tw: —Tw) < z}.

t=1
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The only essential assumption in Politis and Romano’s approach is that there exists
a limiting law J(p) such that Jn(p) converges weakly to a limit law J{(p), as n — oo.

For simplicity, we only prove the consistency of MBJ for linear statistics, as the
sample mean

(4.11) Ty =n"' ) f(YY),
t=1
where YV; = (X4,..., Xt4m-1), =N —m+1 and f is a continuous function on R™.

In the MBJ we have ! deleted blocks (Yj41,-..,Yj4:) which corresponds to b =
{ 4+ m — 1 consecutive observations. Using (2.1), we have

(4.12) T = (-7 (1 —walt - (V)
t=1 i
= (n— l)_lnTN —(n— l)_l Z f(%2)
t=7+1

= (n - l)_lnTN — (n — l)_lTN’j+1.

Assuming without loss of generality that m =1,

(4.13) T — Ty = =l(n — )" (T j41 — Tw),

(4.14) ~nl™ (n = (TG’ ~ Twv) = (T j+1 — Tn),

and
n—1 )

(4.15) Ly(z) = (n -1+ 1) Hnl o - 1)(Ty - TY) < 2.
j=0

The MBJ analogous to Ly (x) is

n—I
(4.16) Hy(z)=(n—1+ 1)) Ynl Y (n - )T - Tw) < 2}

=0
We obtain consistency under the following assumption:

AssUMPTION 4.1. There exists a symmetric limiting law J(p) such that J,(p)
converges weakly to a limit law J(p), as n — oo.

The following theorem shows that moving blocks jackknife-histograms are consistent
estimators of the distribution.

THEOREM 4.2. Suppose that Assumption 4.1 holds and that 7/, — 0, l/n — 0
and | — 0o asn — oco. Also assume that the a-mizing sequence satisfies that ax (k) — 0
as k — oo.

1. If z is a continuity point of J(-, p), then Hn(z) — J(z, p) in probability.

2. If J(-,p) is continuous, then sup, |Hn(z) — J(z, p)| — 0 in probability.
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Also, we could use the M2BJ method as distribution estimator. We establish con-
sistency for the sample mean. The MBJ and the M2BJ statistics satisfy

(4.17) T — Ty = —(n—l)_liwn(t—j)(Xt—TN),
and . -
(4.18) TP — T = =07y walt — 5)(Xe — Xej)-
t=1
Therefore,
(4.19) 72 (T —Tw) = 172 (n = )T - Tw)
+171/2 iwn(t - ) Xe; — Tn).
t=1

The following proposition proves that the second term in the right hand side of
(4.19) is op(1).

PROPOSITION 4.2. Suppose that w,(i) =1 ¢ff 1 < i <1, 377, k|| < o0, and
1IZ7 Yt < M < oo. Also assume that I/n — 0 and l — oo as n — oo. Then

|=1/2 Yo walt — j)()?t,j — Tn) = op(1) uniformly in j.

Consistency follows now from Theorem 2.1 in Politis and Romano (1994a), Propo-
sition 4.2, and the asymptotic equivalence lemma (cf. Lemma 4.7 of White (1984)), i.e.

having two random sequences satisfying A, — B,, = op(1) and B, 2 B then we conclude
that A, 4 B

THEOREM 4.3. Under the conditions in Proposition 4.2, for all x

n—I
(4200  Hy(z)= -1+ 1) S Hnl Y - )T — Tn) < 2} — J(z,p)
3=0

in probability.
) ~() =(7)
Remark 4.1. 1In the proof of Lemma 4.3 we obtained that n(Ty’ — Ty) —n(Ty —
Tw) is op(1%/2 max(l,p)'/%(n/logn)~1/3), thus (4.20) holds if we replace ¥ with ¥, and
1 = o((n/logn)*).

Now, we prove that the M2BB give consistent estimators of the variance and the
distribution of the sample mean. We have the following CBB and M2BB statistics:

s 1
(4.21) Xns=(s)™ Z Z > SRS

i=1 j=1
and
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. s l I+k R
(4.22) X = (U+RNT D D Xonaripes + 2 Kiicnyawnys | »
i=1 \j=1 j=1+1

where )?f is an estimate of the “missing observation” X}, that takes into account the
dependence structure on the original process {X;}. B
We could write the M?BB analogous to (sl)}/2(X; , — X,) as follows:

(4.23) (sl + k) 2(X,, , — Xo)

s l

= (s@+ RN N (X nyarmy ey — Xn)

i=1 j=1
s I+k R _
+ Z Z (XG-1)a+my+i — Xn)
i=1 j=l+1

= U+ RN (DX~ Xn)

s I+k

+ s+ RIS (X _yaanyes — Xn)-
i=1j=1+1

Notice that if k/l — 0 as n — oo we have that [/(l + k) — 1 and thus the first
term in (4.23) satisfies the conditions in Theorem 1 in Politis and Romano (1992). The
following proposition establishes that the second term in (4.23) is op(1).

PROPOSITION 4.3. Suppose that Y o mlym| < 00, Yoo, m2a8/6+9 < o,
where a,, are the strong miring coefficients, and ||L 7 cot < M < +00. Also assume

that I/n — 0, 1 — oo, and k/l — 0 asn — oo. Then (s(l +k))"Y/23°7_, Eéi’fﬁ

(Xfionyaenyes — Xn) = 0p(1).

The previous results assume that the matrix ¥ is known; the next lemma is the
analogous to Lemma, 4.3. Notice that in M?BJ the number of missing values is ! and in
M?BB is sk.

LEMMA 4.4. Under the conditions of Proposition 4.3, and assuming that
127 leot < M < 00, p = o((n/logn)/®), and sk = o((n/logn)?/®), it follows that

*

(4.24) (sl + k)X, — Xn) = (s + E)Y2(X,, o — Kn) = 0p(1),

1

~ %

~ _ ! N Itk o* =
where X, o = (s(l + k)) ' Zf:l(Zj:l X(i-])(l+k;)+j + ZjiH—l X(i—l)(H—k)—{—j): and X s
obtained replacing ¥ with its autoregressive estimator X1 in (3.4).

Now, using the statement (1) of Theorem 1 in Politis and Romano (1992), Propo-
sition 4.3 and the Cauchy-Schwarz inequality we have that

THEOREM 4.4. Under the conditions in Proposition 4.3, for all x

(4.25) Var*((s(L + k) V2(X,, , — X)) D o2,
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And from statement (2) of Theorem 1 in Politis and Romano (1992), Proposition
4.3 and the asymptotic equivalence lemma, we obtain the consistency result.

THEOREM 4.5. Under the conditions in Proposition 4.3, for all x

(426) PI'*{(S(Z + k))1/2()zn,s - Xn) <z l Xla s ,Xn}
—Pr{n**(X, —p) <z} — 0,
for almost all sample sequences X,,...,XnN.

In the next section we present an extensive simulation comparing the proposed
moving missing blocks procedures with the MBJ and MBB methods. The theoretical
comparison and confirmation of the superiority of the proposed methods, even in the case
of linear processes, involves some unmanageable expressions that made those comparisons
difficult. On the other hand, notice that using the nonparametric approach mentioned at
end of Section 3 it is possible to implement the moving missing blocks methods without
the linearity assumption.

5. Simulations

In this section, we compare the performance of the moving blocks jackknife (MBJ)
and the moving blocks jackknife with missing values replacement (M2BJ), and the

Table 1. MBJ and M2BJ to estimate ¢% in the case of the sample mean. (+) denotes cases
where the MBJ outperforms the M2BJ. (*) denotes cases where the M2BJ outperforms the
MBJ.

Model N log 012\, Eq SDy Ly MSEy Ey SD, Lo MSE>
M1 480  3.21 295 025 35 0.130(0.011) 290 0.24 45 0.152 (0.011)
M1 120 3.8 257 036 15 0.502(0.030) 2.51 0.34 20 0.568 (0.032)
M2 480 168 161 0.09 2 0.012(0.001) 165 0.09 7 0.009 (0.001)*
M2 120 170 1.57 018 2 0.050 (0.004) 155 0.18 7 0.056 (0.006)
M3 480 1.82 167 0.4 15 0.045(0.003) 1.64 0.16 20 0.056 (0.004)
M3 120 183 152 017 4 0.119(0.006) 138 023 10 0.251 (0.020)+
M4 480 -1.16 -1.09 016 25 0.030(0.003) —1.13 0.12 10 0.017 (0.002)x
M4 120 -1.13 -1.09 0.22 15 0.050(0.005) —1.07 0.16 4 0.029 (0.003)x
M5 480 -3.14 -3.04 022 85 0.057 (0.005) —3.09 0.22 35 0.048 (0.005)
M5 120 -293 ~257 0.18 30 0.166 (0.008) —2.89 031 15 0.100 (0.012)*
M6 480 —3.05 -2.96 0.21 60 0.054(0.004) -3.03 0.10 5 0.011 (0.001)x
M6 120 -292 -285 0.21 30 0.051(0.006) —2.88 0.19 2 0.038 (0.004)*
M7 480 —1.81 —1.72 0.19 40 0.043 (0.004) —1.71 0.15 15 0.032 (0.003)*
M7 120 -1.76 -1.64 0.24 20 0.073(0.007) -1.67 025 8 0.073 (0.007)
M8 480 118  1.09 011 8 0.020(0.001) 1.05 0.11 10 0.030 (0.002)+
M8 120 117 099 0.16 4 0.058(0.005) 090 022 7 0.118 (0.011)+

Ei, SD; and MSE; denotes the average, standard deviation and the mean square error of the
statistic log N2, in the 1000 replications using MBJ method. Ey, SD2 and M SEj are the corresponding
statistics using M2BJ method.
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Table 2. MBJ and M?BJ to estimate o?\, in the case of the median. (x) denotes cases where
the M2BJ outperforms the MBJ.
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Model N log O'IQV E1 SDl L1 MSE'l E2 SD2 L2 MSE2
M1 480 3.31 3.04 036 35 0.202 (0.022) 337 031 15 0.101 (0.010)«
M1 120 3.29 2,67 0.52 20 0.654 (0.054) 2.81 0.48 15 0.458 (0.054)*
M2 480 2.04 2.02 043 35 0.183(0.023) 1.93 042 20 0.187 (0.024)
M2 120 2.056 1.97 056 15 0.315 (0.035) 1.98 0.52 10 0.273 (0.033)
M3 480 2.05 1.91 042 20 0.194 (0.024) 1.90 0.39 15 0.177 (0.022)
M3 120 2.03 1.71 050 10 0.356 (0.038) 1.77 0.52 6 0.337 (0.036)
M4 480 0.33 0.24 0.56 40 0.329 (0.049) 0.28 049 30 0.243 (0.045)x
M4 120 0.34 0.29 0.65 15 0.426 (0.070) 0.18 0.57 15 0.352 (0.050)
M5 480 —-0.10 —-0.20 0.53 40 0.295 (0.037) —0.15 0.42 20 0.180 (0.024)=
M5 120 —0.10 —0.22 0.72 15 0.528 (0.056) —0.05 0.56 10 0.317 (0.035)%
M6 480 —0.28 —-045 0.57 50 0.349 (0.036) —-0.36 0.53 20 0.288 (0.029)
M6 120 -0.28 —-0.35 0.70 15 0.501 (0.060) —0.12 0.54 10 0.321 (0.034)*
M7 480  0.18 006 0.52 55 0.285(0.042) 0.17 0.45 25 0.201 (0.025)*
M7 120 0.19 —-0.01 068 20 0.497 (0.071) 0.09 058 15 0.342 (0.062)=
M8 480 1.45 1.33 044 30 0.208 (0.026) 1.38 0.44 15 0.200 (0.023)
M8 120 1.43 1.25 0.57 10 0.360 (0.039) 1.24 047 8 0.263 (0.030)*

Ey, SD; and MSE; denotes the average, standard deviation and the mean square error of the
statistic log N 612\, in the 1000 replications using MBJ method. E2, SD3 and MSE> are the corresponding
statistics using M?BJ method.

Table 3. MBJ and M2BJ to estimate afv in the case of the variance.

Model N loge2, Ei SD1 I MSE; Ey SD; Lo MSE,
M1 480 422 391 033 20 0.209(0.016) 394 0.34 30 0.197 (0.017)
MI 120 411 331 055 9 0.941(0.050) 3.43 0.59 15 0.810 (0.052)
M2 480 398 3.73 026 15 0.134(0.010) 3.71 0.28 25 0.151 (0.011)
M2 120 398 338 046 9 0.576(0.035) 3.35 0.47 15 0.616 (0.040)
M3 480 304 286 019 10 0.069 (0.005) 2.8 0.20 15 0.072 (0.006)
M3 120 3.02 258 036 7 0.327(0.021) 259 0.37 10 0.327 (0.026)
M4 480 425 395 0.36 20 0.217(0.016) 3.94 036 30 0.220 (0.018)
M4 120 425 351 058 10 0.883(0.049) 3.50 0.56 15 0.891 (0.050)
M5 480 207 194 0.16 6 0.043(0.003) 193 0.16 0.047 (0.003)
M5 120 208 182 029 4 0.49(0.011) 179 0.31 0.178 (0.013)
M6 480 239 224 020 7 0.059(0.005) 222 021 15 0.073 (0.006)
M6 120 240 210 034 5 0.205(0.018) 2.05 0.37 8 0.255(0.020)
M7 480 3.47 328 0.28 20 0.112(0.009) 3.26 0.27 20 0.116 (0.009)
M7 120 348 3.04 047 9 0.423(0.030) 297 043 0.447 (0.030)
M8 480 208 1.95 017 7 0.046(0.004) 1.95 0.18 0.049 (0.004)
M8 120 206 1.83 033 4 0.162(0011) 182 0.33 0.168 (0.012)

Ey, SD; and MSE; denotes the average, standard deviation and the mean square error of the
statistic log N 8?\, in the 1000 replications using MBJ method. Fa2, SDj and M SFE; are the corresponding
statistics using M2BJ method.
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Table 4. MBJ and M?BJ to estimate 0% in the case of the autocovariance of order 1. (*)
denotes cases where the M2BJ outperforms the MBJ.

Model N logo% Ei SDi L MSE; E; SDy Lo MSEs
M1 480 417 3.85 034 20 0.216 (0.018) 3.85 032 20 0.205 (0.016)
M1 120 404 324 058 9 0.960(0.056) 3.31 0.53 10 0.808 (0.050)
M2 480 3.69 345 026 15 0.124 (0.010) 343 028 25 0.147 (0.011)
M2 120 367 3.08 046 8 0.553 (0.034) 3.06 047 15 0.579 (0.040)
M3 480 266 251 021 9 0.067(0.006) 249 0.19 10 0.066 (0.005)
M3 120 262 221 038 5 0.317(0.022) 222 039 8 0.317 (0.025)
M4 480 420 391 038 25 0232(0.018) 3.90 037 30 0.229 (0.018)
M4 120 419 343 058 10 0914 (0.052) 3.38 0.52 10 0.927 (0.049)
M5 480 1.52 140 0.19 6 0.054 (0.004) 1.40 0.14 2 0.035 (0.003)x
M5 120 151 125 029 2 0.150 (0.012) 1.29 028 2 0.124 (0.011)
M6 480 205 191 021 9 0064 (0.006) 1.88 021 10 0.074 (0.006)
M6 120 2.04 169 036 3 0250 (0.020) 1.70 041 8 0.290 (0.025)
M7 480 3.3¢ 313 029 20 0.125(0.011) 3.12 028 20 0.127 (0.010)
M7 120 3.33 285 052 9 0.501(0.035) 2.83 049 7 0.484 (0.035)
M8 480 152 139 0.8 4 0050 (0.004) 146 0.17 3 0.032 (0.003)*
M8 120 148 121 032 2 0.173(0.014) 1.26 029 2 0.135 (0.012)*

E1, SD1 and MSE; denotes the average, standard deviation and the mean square error of the
statistic log N 612\, in the 1000 replications using MBJ method. E3, SD2 and M SE; are the corresponding
statistics using M?BJ method.

moving blocks bootstrap (MBB) and the moving blocks bootstrap with missing values
replacement (M2BB). We consider the following autoregressive models X; =
Z?:l D Xy_; + ey

e (M1) AR(1) ¢1 = 0.8, e, i.i.d. N(0,1).

e (M2) AR(2) ¢1 = 1.372, ¢ = —0.677, e, i.i.d. N'(0,0.4982).

e (M3) AR(5) ¢ = 0.9, ¢o = —0.4, ¢3 = 0.3, ¢4 = —0.5, ¢5 = 0.3, e; i.i.d. N(0,1).

e (M4) AR(1) ¢1 = —0.8, e, i.i.d. N(0,1).

Models M1-M3 are the same as in Bithlmann (1996) and Bithlmann and Kiinsch
(1994). In all of them the largest root is around 0.8. M4 is included because it presents a
considerable amount of repulsion, and Carlstein et al. (1998) show that this feature causes
problems for the matching block bootstrap. The models M2-M4 exhibit a “damped-
periodic” autocorrelation function, where the correlations can be negative. In M1 all
the autocorrelations are positive. We also consider the following “dual” moving average
models X; = e; + Y i, Oies—i:

(M5) MA(1) 6; = —0.8, e; i.i.d. N(0,1).

(M6) MA(2) 6, = —1.372, 6, = 0.677, e; i.i.d. N'(0,0.4909).

(M7) MA(5) (91 = —0.9, 92 = 0.4, 93 = ——0.3, 04 = 0‘5, 95 = —-0.3, (3 Lid. N(O, 1)
(M8) MA(1) 6; = 0.8, e; i.i.d. N(0,1).

For M?BJ and M?BB, we use an autoregressive estimator for the autocovariance
matrix ¥, choosing the order p of the approximating autoregressive process by minimizing
the BIC (cf. Schwarz (1978)) in a range 0 < p < 10log,on. As in Bithlmann and Kiinsch
{1994) we choose the sample size N = 480 and N = 120. Our results are based on
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Table 5. MBJ and M?BJ to estimate o3 in the case of the autocovariance of order 5. (*)
denotes cases where the M2BJ outperforms the MBJ.

Model N logo%, Ei SDi Ly MSE, Es SDy Lo MSE,
M1 480 379 3.39 040 25 0.319(0.022) 352 033 15 0.176 (0.014)+
M1 120 355 272 059 7 1.041 (0.055) 297 049 9 0.578 (0.042)«
M2 480 350 322 029 20 0.157 (0.012) 3.30 024 15 0.097 (0.008)%
M2 120 343 278 048 8 0.651 (0.039) 2.91 044 10 0.469 (0.031)x
M3 480 239 220 020 10 0.078(0.006) 242 017 5 0.029 (0.003)*
M3 120 230 192 038 6 0.278(0.022) 222 037 6 0.144 (0.016)«
M4 480 384 346 041 20 0.311(0.019) 356 034 15 0.198 (0.013)«

M4 120 3.79 292 058 7 1.109(0.053) 3.18 055 10 0.684 (0.042)%
M5 480 1.37 125 0.14 4 0.031(0.003) 146 012 2 0.023 (0.002)%
M5 120 1.33 114 029 3 0.121(0.009) 133 027 2 0.072 (0.007)*
M6 480 169 1.55 018 6 0.050(0.004) 177 015 4 0.029 (0.003)
M6 120 165 140 035 5 0.185(0.016) 1.61 032 4 0.102 (0.010)*
M7 480 278 254 027 10 0.133(0.009) 2.74 022 7 0.048 (0.005)«
M7 120 273 228 044 6 0.399 (0.029) 253 039 6 0.193 (0.021)*
M8 480 1.36 1.26 0.5 5 0.033(0.003) 145 013 2 0.025 (0.002)«
M8 120 1.28 112 031 3 0122(0.011) 127 027 2 0.073 (0.008)*

E1, SD; and MSE; denotes the average, standard deviation and the mean square error of the
statistic log N 6‘]2\, in the 1000 replications using MBJ method. E3, SD2 and M SE5 are the corresponding
statistics using M?BJ method.

1000 simulations, and block size range from | = 1 to [ = 95 for N = 480, and from
I =1to!l =30 for N = 120. The statistics Ty included in the simulation study are
the sample mean, median, variance, and autocovariance of order 1 and 5. Notice that in
the case of h-th autocovariance, a block size ! corresponds to ! blocks of size h in MBJ,
and I + h — 1 missing observations in M2BJ. We report the estimates for the variance of
these statistics and, as recommended in Carlstein et al. (1998), we measure the accuracy
using the mean square error (MSE) of the logarithm of the variance.

The simulations have been carried out as follows. First, for each model Mi (i =
1,...,8), Ny = 1000 replications have been generated. In each replication the value
of the statistic T is computed and the “true” value of the variance of this statistic is
calculated by
YT - Tw)?

0% =N N

where Ty = ZiVT TJ(\;) /Nr. The log of this value, log o3, is reported in all the tables
for each model and sample size N.

Second, in the jackknife simulations (Tables 1 to 5) an estimate of the variance is
computed by the following steps: (1) For each model Mi (i = 1,...,8) generate a sample
of size N; (2) Select the length [, build the N —{ + 1 jackknifed series and compute in
each series the value of the statistic Tv; (3) Compute the estimated jackknife variance by
(2.2) and (2.4), multiply by the sample size N and call them 5%, and 5% respectively; and
(4) Repeat the steps (1) to (3) 1000 times for each possible value [. The statistics given
are Ey, SD, the average and standard deviation of the statistic log No'% in the 1000
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Table 6. MBB and M2BB to estimate "12\1 in the case of the sample mean. (x) denotes cases
where the M2BB outperforms the MBB.

Model N log 012\] Ey SD; Ly MSE, E> SDy Lo MSE;
M1 480 3.21 293 0.24 30 0.135 (0.010) 3.00 0.19 515 0.079 (0.006)*
M1 120 3.18 256 0.36 15 0.521 (0.031) 276 031 59 0.275 (0.018)#
M2 480 1.68 1.60 0.11 2 0.018 (0.001) 1.70 010 11 0.011 (0.001)=
M2 120 1.70 1.83 0.20 3 0.055 (0.005) 1.65 019 11 0.040 (0.004)*
M3 480 1.82 166 0.16 15 0.052 (0.004) 1.87 0.11 35 0.014 (0.001)*
M3 120 1.83 1.51 0.18 4 0.130 (0.007) 1.86 017 23 0.028 (0.003)=*
M4 480 -—1.16 -1.08 0.16 25 0.033(0.003) —-1.09 0.16 115 0.029 (0.003)
M4 120 -1.13 -1.10 0.24 15 0.057 (0.005) —1.03 0.20 18 0.049 (0.004)
M5 480 -3.14 -—-2.84 0.17 60 0.117(0.006) -3.12 0.22 155 0.050 (0.005)*
M5 120 -293 -2.57 0.19 30 0.167 (0.008) —290 0.24 230 0.056 (0.007)%
M6 480 —3.056 —2.96 0.22 60 0.056(0.005) —296 0.11 110 0.020 (0.002)*
M6 120 —292 -285 0.21 30 0.049 (0.006) -2.94 0.22 115 0.047 (0.004)
M7 480 -1.81 —-1.74 020 40 0.045(0.004) -1.76 0.18 125 0.035 (0.004)«
M7 120 -1.76 —1.79 0.27 25 0.072(0.007) -1.72 0.26 115 0.068 (0.007)
M8 480 1.18 1.09 0.13 9 0.025 (0.002) 1.17 0.08 11 0.006 (0.001)x*
M8 120 117 098 0.17 4 0.064 (0.005) 115 012 11 0.015 (0.002)%

Ey, 5D, and M SE; denotes the average, standard deviation and the mean square error of the statistic
log Na]%, in the 1000 replications using MBB method. FE, SD2 and MSE; are the corresponding
statistics using M?BB method.

replications, and M SE; = (log 0% — E(log 5%))?+SD(log 5% )2, the mean squared error.
The value of I given in L; is the block size producing the minimum MSE. The values E3,
SDgy, MSEs, Ly have the same interpretation and are computed for the proposed method
based on ¢%. The results with the relative mean square error RMSE = MSE(6%)/0%
are similar and therefore are omitted from the tables.

Third, in the bootstrap simulations (Tables 6 to 10) the estimate of the variance
of the statistic is computed as follows: (1) For each model Mi (i = 1,...,8) generate
a sample of size N; (2) Choose the block length [ (I and k in M2BB), build B = 250
bootstrap samples by randomly selecting blocks with replacement among the blocks of
observations and compute in each bootstrap sample the value of the statistic T; (3)
Obtain the estimated bootstrap variance by (2.8) and (2.10), multiply by the sample
size N and call them G% and 6%, respectively; and (4) Repeat the steps (1) to (3) 1000
times. The values reported in the tables have the same interpretation as the jackknife
ones. The only difference is that for the method M?BB in the column corresponding to
Lo, we also report the value of k, the optimal length of the missing value block (k takes
values in {1,...,5}). Note that the MBB is equivalent to M2BB with k = 0.

Due to the large number of simulations, we find a significant difference between the
two methods in almost all cases. However, we are interested in large differences, e.g.
MSE(5%)/MSE(5%) > 1.25, i.e., gain of at least a 25 percent. Additionally, we could
use a smaller number of simulations, as in Biithimann and Kiinsch (1994) and Biihlmann
(1997); in such a case, the results are similar to those of the previous approach.

Our main conclusions for jackknife methods are as follows: (a) In the cases where



RESAMPLING USING MISSING VALUES TECHNIQUES 781

Table 7. MBB and M?BB to estimate o2 in the case of the median. (x) denotes cases where
the M2BB outperforms the MBB.

Model N loge2, Ei SDi L MSE; Ex SDy Lo MSE;
M1 480 331  3.06 029 30 0.147 (0.013) 3.10 0.19 59 0.084 (0.006)*
Ml 120 329 276 0.44 15 0.471(0.035) 290 036 510 0.277 (0.021)*
M2 480 204 208 024 15 0.058(0.007) 198 014 11 0.023 (0.002)+
M2 120 205 207 033 9 0.111(0013) 194 023 11 0.066 (0.006)*
M3 480 205 1.89 023 15 0.075(0.008) 206 014 35 0.021 (0.003)*
M3 120 203 1.80 029 4 0.137(0.013) 206 022 23 0.051 (0.006)*
M4 480 033 044 029 8 0.097(0.009) 026 018 35 0.037 (0.004)%
M4 120 034 045 038 4 0.156(0.016) 026 027 35 0.077 (0.009)+
M5 480 -0.10 —0.04 030 15 0.093(0.009) —022 0.6 35 0.038 (0.003)+
M5 120 —0.10 005 037 7 0.162(0.016) —0.12 023 35 0.054 (0.005)*
M6 480 -028 —023 030 15 0.092(0.009) —025 021 25 0.046 (0.004)+
M6 120 —028 —0.18 040 9 0.168(0.019) —037 027 35 0.084 (0.007)*
M7 480 018 020 029 20 0.085(0.011) 014 018 35 0.033 (0.003)«
M7 120 019 027 040 9 0.167(0.019) 015 024 35 0.061 (0.007)*
M8 480 145 136 021 6 0.053(0.005) 139 012 11 0.017 (0.001)«
M8 120 143 127 028 3 0.105(0.010) 139 016 11 0.028 (0.003)x

FE1, 8D, and M SE; denotes the average, standard deviation and the mean square error of the statistic
log N 6%, in the 1000 replications using MBB method. FE2, SDy and MSE> are the corresponding
statistics using M2BB method.

Table 8. MBB and M2BB to estimate U?V in the case of the variance.

Model N log a%, E, SDiy L MSE; Ey; SDy Lo MSE,
M1 480  4.22 3.88 0.33 20 0.219 (0.017) 3.86 0.33 320 0.233(0.018)
M1 120 411 3.28 0.53 8 0.970 (0.050) 324 051 37 1.026 (0.054)
M2 480 3.98 3.73 027 15 0.139(0.011) 3.74 0.29 320 0.139(0.011)
M2 120 3.98 334 047 10 0.622 (0.036) 3.38 047 310 0.581 (0.037)
M3 480 3.04 2.83 0.20 9 0.082(0.006) 2.83 020 110 0.081 (0.006)
M3 120 3.02 2.55 0.37 0.353 (0.023) 2.55 036 17 0.350 (0.022)
M4 480  4.25 394 035 20 0.222(0.017) 3.92 036 425 0.238 (0.019)
M4 120 4.25 3.50 0.56 0.875 (0.050) 346 056 47 0.948 (0.053)
M5 480 2.07 1.95 0.17 0.044 (0.004) 195 0.17 18 0.043 (0.004)
M5 120 2.08 1.81 0.28 0.152 (0.012) 180 026 12 0.146 (0.011)
M6 480 2.39 2.24 0.20 0.062 (0.005) 2.25 0.18 24 0.050 (0.005)
Mé6 120 2.40 2.09 0.36 0.225 (0.019) 2.10 033 24 0.199 (0.017)
M7 480 347 326 0.27 15 0.118(0.009) 3.26 0.27 115 0.115 (0.009)
M7 120 3.48 3.01 0.46 0.438 (0.030) 298 046 17 0.464 (0.029)
M8 480 2.08 1.93 0.18 5 0.052 (0.004) 195 0.18 15 0.048 (0.004)
M8 120 2.06 1.80 0.31 3 0168 (0.012) 179 030 14 0.163 (0.012)

N WO © [e 2]

[e 2]

E,, SD1 and M SE1 denotes the average, standard deviation and the mean square error of the statistic
log Na?\, in the 1000 replications using MBB method. E3, SD; and MSE; are the corresponding
statistics using M2BB method.
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Table 9. MBB and M?BB to estimate oi, in the case of the autocovariance of order 1. (*)
denotes cases where M?BB outperforms the MBB.

Model N logo, E SDi L MSE; E; SDy Lo MSE;
M1 480 417 379 035 25 0.268(0.019) 3.80 0.32 320 0.245 (0.019)
M1 120 4.04 313 061 15 1.195(0.065) 3.14 053 37 1081 (0.059)
M2 480 3.69 341 027 20 0.153(0.011) 3.43 024 39 0.125 (0.009)
M2 120 3.67 299 046 10 0.678(0.036) 3.11 045 37 0.519 (0.034)x
M3 480 266 245 023 20 0.098 (0.007) 248 0.22 210 0.080 (0.006)
M3 120 262 211 039 8 0414 (0.025) 218 037 25 0.336 (0.025)
M4 480 4.20 3.84 037 20 0263 (0.019) 3.86 037 425 0.247 (0.019)
M4 120 419 335 062 15 1.081(0.058) 3.37 0.57 47 1.002 (0.056)
M5 480 152 136 019 9 0.065 (0.005) 1.39 0.18 15 0.049 (0.004)x
M5 120 151 120 032 5 0.194(0.013) 124 030 13 0.159 (0.012)
M6 480 205 1.88 0.24 15 0.086(0.008) 1.90 0.19 24 0.057 (0.005)«
M6 120 2.04 165 040 8 0.315(0.025) 1.73 035 23 0.217 (0.020)«
M7 480 3.34 3.09 030 20 0.151(0.011) 3.10 028 215 0.133(0.010)
M7 120 333 277 050 10 0564 (0.037) 281 053 210 0.544 (0.037)
M8 480 152 134 020 8 0.073(0.005) 1.41 0.20 18 0.051 (0.005)«
M8 120 148 1.09 029 3 0.231(0.014) 1.16 028 11 0.179 (0.013)x

E1, $D; and M SE; denotes the average, standard deviation and the mean square error of the statistic
log No%, in the 1000 replications using MBB method. Ej, SD2 and MSE> are the corresponding

statistics using M?BB method.

Table 10. MBB and M2BB to estimate 012\] in the case of the autocovariance of order 5.

Model N logo?, E1 SDi L MSE, E2 SDy Lo MSE;
M1 480 3.79 3.30 039 35 0.389 (0.022) 3.31 0.37 325 0.366 (0.022)
M1 120 355 260 047 5 1.133(0.045) 259 053 210 1.204 (0.054)
M2 480 350 3.16 0.29 30 0.201 (0.013) 3.18 029 425 0.189 (0.012)
M2 120 343 268 038 5 0.702(0.032) 276 044 310 0.643 (0.035)
M3 480 239 215 0.18 15 0.092(0.006) 2.19 020 215 0.081 (0.006)
M3 120 230 194 030 5 02120015 192 031 19 0.241 (0.016)
M4 480 384 340 0.39 30 0.351(0.020) 3.40 039 225 0.337 (0.019)
M4 120 379 289 046 5 1.034(0.045) 292 054 310 1.053 (0.050)
M5 480 137 1.29 014 5 0.025(0.002) 1.29 013 16 0.022 (0.002)
M5 120 133 1.24 025 5 0.070(0.006) 1.22 024 14 0.069 (0.006)
M6 48 169 1.56 0.15 5 0.038(0.003) 1.60 0.17 29 0.034 (0.003)
M6 120 165 1.51 027 5 0.095(0.011) 1.50 028 26 0.100 (0.012)
M7 480 278 252 024 15 0.124 (0.008) 254 0.26 215 0.124 (0.008)
M7 120 273 240 041 5 0.273(0.018) 234 037 14 0.292 (0.019)
M8 480 136 126 013 5 0.027(0.002) 1.28 013 19 0.024 (0.002)
M8 120 128 118 025 5 0073(0.007) 1.17 024 14 0.069 (0.007)

Eh, SD1 and M SE; denotes the average, standard deviation and the mean square error of the statistic
log Na?\, in the 1000 replications using MBB method. F2, SDs and MSE; are the corresponding
statistics using M?BB method.
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Model 2 - Sample Size = 480
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Column 1: MBJ, Column 2: M2BJ, Column 3: MBB and Column 4: M2BB.

Fig. 1. Moving blocks methods to estimate % in the case of the sample mean.

there is a substantial difference between the two methods, the missing values replacement
generally gives the least MSE. In particular, only in the case of the sample mean and
models M3 and M8, the MBJ have a better performance; (b) for the median, and models
M1 and M5-MS8, the M?BJ outperforms the MBJ; (c) the methods are “equivalent”
for the variance, but for the first autocovariance the proposed method gives a large
improvement in three cases; and (d) for the autocovariance of order 5, which is the
statistic that depends on the largest m-dimensional marginal distribution, in all cases
and sample sizes the M?BJ has a significantly smaller MSE than MBJ. We can conclude
that the proposed method works better in general than previous procedures and that
the advantages are especially great for autocovariance, especially for lags greater than 2.
Other simulation studies (not shown here) have confirmed this advantage of the proposed
method in estimating the variance of autocovariance for lags larger than 2. As for the
optimal value of [, it is larger in MBJ than in M?BJ. In Figs. 1-3, columns 1 and 2,
we illustrate the performance of MBJ and M?BJ methods in different scenarios. It is
observed that M2BJ tends to reduce the bias, the variability or both.

In the comparison of bootstrap methods, we observe that: (a) In the cases where
there is a substantial difference between the two methods, the missing values replacement
always gives least MSE; (b) for the mean, in almost all models, and for the median, in
all models, the M2BB outperforms the MBB; (c) the methods are “equivalent” in the
variance and the autocovariance of order 5 (although the M2BB outperforms the MBB
when the sample size is large, 480) but for the first order autocovariance the M%BB
outperforms the MBB in all the cases and the differences are significantly larger for
moving average models. In Figs. 1-3, columns 3 and 4, we illustrate the performance
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Model 6 - Sample Size = 480

2F T T —T T
1 J- L B
—— i ]
o " — —t—
L___r___} | S—
| : z
Ak i —— -4
i — 5
2 1 4
{
__1_?
i< od ¥ T
1 T 1 1
1 2 3 4
Model 6 - Sample Size = 120
— T T
2l .
.
1+ —T—' -
9 — .
————
!
——

o
i

!
4

- Pt

Column 1: MBJ, Column 2: M2BJ, Column 3: MBB and Column 4: M2BB.

Fig. 2. Moving blocks methods to estimate 0% in the case of the median.

Model 5 - Sample Size = 480
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Colurn 1: MBJ, Column 2: M2BJ, Column 3: MBB and Column 4: M?BB.

Fig. 3. Moving blocks methods to estimate 012\, in the case of the autocovariance of order 1.
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of MBB and M?BB methods in different scenarios. It is observed that M?BB tends to
reduce the bias, the variability or both. Similar conclusions are obtained using optimal
order block length | = n!/3 and k = 1 missing value in each block. The empirical
selection of the number of missing values in each block could be solve by cross—validation
or by the jackknife-after-bootstrap method. The jackknife-after-bootstrap appears as
a computationally efficient method for estimating the bias and the variance of block
bootstrap quantities as was illustrated in Lahiri (2002).

6. Conclusions

We have presented a modification of the idea of using blocks for jackknife and
bootstrapping estimation in time series. In the jackknife method, instead of deleting
observations, we propose to assume that these observations are missing values. For
independent data both procedures are equivalent, but for correlated data they are not. It
has been shown, that with this procedure better results can be obtained in the model free
estimation of the variance of the autocovariance of a stationary process. The advantages
are especially important for larger lags. The consistency of the estimation of the variance
and distribution of the sample mean has been established.

In the block bootstrap case we propose to assume that there are missing obser-
vations between two consecutive blocks. In this way, the dependence structure among
observations is better preserved and it has been shown that this procedure leads, in
general, to better estimation than previous procedures, especially for large sample sizes.
Consistency of the estimation of the variance and distribution of the sample mean has
been proved.

One additional advantage of this approach is that we are always dealing with com-
plete series and, therefore, the usual routines for computing statistics in a time series
can be applied to the jackknife or bootstrap samples generated with the missing value
approach. In particular, previous bootstrap procedures can be seen as particular cases
in which the length of the missing values block is equal to zero.
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Appendix A

Proor or LEMMA 4.1. Using (3.8) and (4.2), we obtain:

(A1) DTy~ Tw) = —w), ;H;(H;Z 7 Hy) " HJS ™ (X — p)
and .
(A.2) En?(TY — Tw)?] = wl  H;(H/S 7 Hy) ™ Hiwy, 5.

Let a;j = {j+1,7+2,...,j +1}. Using the formula for the inverse of a partitioned
matrix,

(A.3) (H;S7 H;) 7' = (871 ey)) ™ = (o) — Doy, of)E(ef) 7 E(a, ),
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where ¥(c;) is the principal submatrix of ¥ with the elements indexed by «;, and
Y(aj, ) is the result of taking the rows indicated by c; and deleting the columns
indicated by a;. X(aj,o;) and ¥X(o}) are defined analogously, cf. Horn and Johnson
(1990). Note that ¥~!{«;) is a submatrix of ¥~ while £(a;)~! is the inverse of a
submatrix of X.

Using (2.4), and (A.2)—(A.3), we get:

n—l
(Ad4)  Endlul = n—1+ 1) U Y ERXTY — Tn)?)
=0
= 3“1w;£}ggwn
n—I
~(n-1+1)71! Zw;E(aj, o) S(a) T E (0, aj)wn,

=0

where w, = (wn(1),...,w,(l)) = Hiwy, j = 1ix1, and E(a;) = Ey is the [ x | autoco-
variance matrix.
We now prove that I w/, % w, — 02. We have that

(A.5) l_lw;)luwn = l—l(l’)’o + 2(l — 1)71 R 2’)’1_1)
= Z Y — 217 lzm'}’ms
m=-1+1

which has limit 62, using that [(n) — co and 3 % m|vn| < co.
Now we prove that the second term in (A.4) goes to 0. First, note that

(A.6) lwn (e, )2 < IIw’ E(aj,a'-)lll

Z Z’Ym+z 1

m=1 [i=1

max{j,n~I1—j}

i

Z Ym+i-1

n—Il—j

>

I}

l

<2 Z Z7m+i—1
m=1 =1
n—-l 1
<233 mrical
m=1i=1

IA

2 mlyml.
m=1

Second, we can write

A B C
YX=|B E(aj) D,
¢ D E
then
, AC
E(aj) = '
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Define
E(Oéj) B’ D
S=| B AC
D C'FE
Note that ¥ is also symmetric and z'Sz = 737, where z' = (z1,22,...,2,) and
T = (Cj41,-- > Tj4, %15 -+ Lj, Tjglg1, - - -1 Ln). Then

’ N _
Amax(Z) :max{xlzx tx# 0} :max{—{,g (T A O} = Amax(X)
'z 'z

and the same is true for Ayin(X). Thus, we have

27TF1 S )\min(i) S Amax(i) S 27TF2
@2rF2) ™! < Amin(E7) < Anax(E7Y) < 270F7) 7L

Since ¥(a;) is a principal symmetric submatrix of 3, we have:

)\min(i) < /\min(E(Of;’)) and /\max(z(a;)) < /\max(i)
Amax(Z() ™) € Amax(E71)  and  Ain(E7Y) < Ain(S(af) 7).

Finally,

w5 (g, 3)E(a) 12(0‘ a;)wn < Hz(a/')_lusz:ecuw, E(aj,a})llg
2
< (2nFy)” (2 Z MY | ) ,

and thus the second term in (A.4) goes to 0 as [ goes to infinity. [J

Proor OF LEMMA 4.2. Let

A, B o
£ = | B Y oy) D1 | ;
Cci Dy E
then, using (3.5),
(A7) Z; =X 'H;(H;2 "H;) " H|
Ojxi  Bi(E"Hay)) ™t Ojxn—i-j
= lej lel leN—l—j 5

On—i—jxj DI(E7H(@)) ™! ON—t—jxN—1-;
and
By (27 Hay)) M lix
(A.S) wn,j - 1l><1
Di(ZHay)) M lixa
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The elements in positions j + 1,...,5 + [ are all 1’s, and the remaining elements
depend on the product 7! (a, ;) (£7!(5)) ", because [g}l] = Z7Y(a}, a;). Using the
expressions for the inverse of a partitioned matrix, we obtain

E_l(a;” aj) = (E(a;’ aj)z(aj)_lz(aj7 a;) - Z(O‘;))_lz(a;v aj)z(aj)_l
(7)™ = (ay) — E(ey, o) 2(ef) 715 (e, o).
Let’s denote Q; = (2(c}, o;)E(a;) 7' B(ay, o) — £(e})) ™5 then
(A9)  =7Y(aj,a)(B7Hay)) ™! = @QB(e, @) — (I +Q55(a))) () 7 B (e, o)
= —%(a}) 7' S(a), a5).

Thus, we can concentrate our attention on —X(c) ' £(aj, ;). We have that

Vi Yitr o o V-1
’Yj—-l ’Y] PR ’)/]+l_2
oo Y2 e Yt
(A.10) Z(aj, ;) =
Tn-2-j Yn=3—j *°" Yn-l-1-j
| Yn—-1-j 771_2“.7' T ’Yn_l_j dn—-Ixl

Let f](a;-,aj)n-l x1 be the matrix obtained by substituting 0 in every position of
matrix (a4, o;) where the index m of v, satisfies m > [1}/2]. The difference between
¥(aj, ;) and i(a;,aj) satisfies

(A.11) (20, @) — Z(0, a))wnlla < (B(ef, 05) — (o), a7) )wnlly
n—1
<2 3 mlym] =07V,
m=[11/2]41 '

since 3.2, m?|yp,| < oo implies 277:1;1[[1/2]+1 M| Y| = o(171/2).
Yj1,5-1 F

On the other hand, :(a}) = [
F Ynl—j-ln-l-j—1

} , where Xp, , is the h x h

autocovariance matrix. Define ¥(o}) = ], as earlier, we

0" Enij-lm-i-j-1
have that

(A12) I15(e)) ™"~ S() ™l spee
= [|1Z(c) 7 (B (0) — 2(e))) () lapec
< B(0) ™ lspeell B(af) — S [lspecll E(@)) ™ lapec
< @rF1) 2 (I2(0)) = S(0f)lleotB(af) — E()llrow)*?
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n-1

S(QWFl)—2 Z [V

m={+1

and Y oo m?|y,| < oo implies Z:;IHI [ym| = 0(I7%). Let £ ,, = [y*]axn be the h x h
covariance matrix of an AR([1'/2]) process such that Stnin ey = 2“1/2],“1/2}.

We can assume that Y ", m?|y%| < oo, see Biihlmann (1995). Define £(a}) =

XF 151 0

’ a
0 En—l—j—l,n—l—j—l

, then we have the following results:

(A.13) IZ(0) ™" = £(0) ™ flspec
= | £(e) 7 (5(e) — E(@)E(05) ™ spe
< 12(05) 7 speelZ(a) = (@)l speclE(@) ™ lspee

n—1

<202rF)7% Y ([l + D),
m=[11/2]41

and Y00, m?|ym| < 0o and >0, m2[v4| < oo imply that 21"7;1“1/2]“ | = o(1™1)
and E::L-:lrll/z]ﬂ Yl =o(71). B

Note that ¥(a})™" is a [I'/?]-diagonal matrix; then £(a})~'E(a), a;)wn has at
most 4[I'/2] non zero elements. Define w, ; replacing in @, ; the matrices %(af) ™t
and %(aj, ;) with £(a)™! and }i(a;,aj), then Wy ; has at most [ + 4{1'/2] non zero
elements.

Finally,

1Bn,; = Bnsllz = 15(a)) 7 50, a5 )wn — T(af) T E(a), az)wall2

< [12(e)) T E(e], ay)wn — B(af) TIE(af, aj)walle
+1£(0f) 7 2(), 0 wn — £(af) T E(af, a5 )wnll2

= [(B(ef) ™" = B(a)) THE(a], ay)wnll2
+112(e) 7 (Bl @) — (o), @5) ywnlla

< IB(a) ™ = Z(af) ™ lspeclB(a], ag)wnllz
+1205) ™ spee (B0, 05) = B(a, a5))wall2,

and using (A.11)-(A.13) we have that ||@y ; — Wn jll2 = o(I71/2). O

Proor OF COROLLARY 4.1. We have
n—l
(A14) 0G50 =nPllunllz® { (n~ 14+ )7 Y TV~ Tw)* — (TN - Tw)* |,
7=0
and it is enough to prove that Sy =nT{ - Tn) = (n—1+1)1 Z;:é Wn;(X — p) is
0p(1). It’s clear that E[Sy] = 0, and

n—I n—~l

(A.15) E[S¥] = (n—1+1)72 N @, i .
j=0i=0
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As in Lemma 4.2, we can concentrate our attention on

n—In-—I

(A.16) (n—1+1)72)Y "N @, S ;-

§=0 i=0

Replace 7, with a 0 in each position of the matrix ¥ where m > I. Let S denote
the resulting matrix. Since ||X — X|[spec = 0(I71), then

3
L
s
L

n—1
(A17)  (n—1+1)72) Wy = (n—1+1)72 @, ;SWn,i + 0(1).
=01 j ;

3

0

©
Y

Il

<]
-

I

=)

On the other hand, note that @/, Z‘wn i is equal to a sum of between 1 and [+4[1'/2]
non zero summands, where the size of the sum depends on the different values of i and
7. Then

n—I

(A.18) > il ;i < 2C(1+2+ -+ (L +4[112])) = O(1%),
=0
and
n—1l n-1
(A.19) (n—-1+1)72 Wy = O((n — 1+ 1)712),
7=0i=0

where C = Y _ | || max{1, (xF})~1 3°%°_, m|yn|}. Finally, if I = o(n'/2), we obtain
that §N f; 0.0

Proor oF LEMMA 4.3. Under these assumptions, we have that (cf. Hannan and
Kavalieris (1986) and Biithlmann (1995))

(A.20) (33X i = Jm| = O((n/logn) ™) as,

and there exists a random variable n; such that:

(A.21) sup Z m?|ym| < 400 as.

n>n, =0

Thus, we have that:

[eS)
(A22) ”E - E”col <2 Z Wm - '7ml
m=0
P 00
=2 (Z I'Iy\m _7m| + Z |:Y\m "7m|>
m=0 m=p+1

=O((n/logn) Y Hp+o(p~?) as.
=o((n/logn)" %)  as.

and
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(A.23) 157 = £ oot < NE ot IZ = ElleotlE leot
=o((n/logn)"/3) as.

Define Bj, A;, Ej and f/l\j by

(A.24) Bj = A2 = (T ~ Tn)?
and )
(A.25) B; = A2 =nX(Ty ~1Tn)%

Note that |B; — B;| = |A; — A\jHAj + Aj|. Next, we find a bound that does not
depend on j.
Using vector wy, ; defined in Lemma 2, we have

(A26) (4] = @ ;(X ~ X)| < [0 (X — K)| + [(@nj — Bay) (X — X)]
= 0p(1/?) + 0p(17/%).

For |A\] |, we can proceed in a similar way. Note that Sisan autoregressive estimator
and then 7! is a (2p + 1)-diagonal matrix. Therefore, w, ; has at most O(max(l, p))

non zero elements.

Lets denote a(p) the indexes of non zero elements in wn J and define a vector w(p )

such that wflp; alp) = w(p; and wff’; ay =0- BY d(iﬁnltlon w has at most O(max(!, p))
non zero elements and ||W,,; — wnJ|]1 = ||\w,, N(p) — Wy ;{1 + Hwn,j - ~£33'”1-
Now,

(A27) (A — 4] = [(@n; — W) (X — X)|
<@ — i ) (X — X)| + |(@in,; — B (X - X)),
(A28)  |ln; — Gnylls = IS H; (S H;) ™ Hjwa,
~ S H(HjS 7 Hy) ™ Hjwa 5
<UE = E Y el H@) " lewr
15 eotll(E 7)™t = (7)) ™ Hleot)

and
(A.29) 15 (ey) ™ = 7 0y)  Hleot < 15(e) = £(0) lcot
+ HE(aj,a;)Z(a;)‘lE(a;,aj)
— By, a5)E(@;) T E (0, @) leo

< 0(11/2)”2 - i\:“col

= oa,s.(ll/z(n/ logn)—l/S).
Then,
(A.30) [Wn,; — wn,J fl1 = 0q.s. (13/2("/103 n)” 1/3
(A.31) |Aj — Aj| = 04.5.(1%/%(n/ logn)~ I/S)OP(maX(l»P)W),

(A.32) |B; — Bj| = (Op(1*/?) + Op(max(l,p)*/?))
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x op(max(l, p)'/*1/(n/ log n) 7'/%)
= op(max(l,p)'/?1%(n/logn)~1/3)
+ op(max(l, p)l*/*(n/ logn)~1/?),
and
(4.33) 1053 ack — 18 sqck} = op(max(l, p)!21(n/ logn) /%)
+ op(max(l, p)I*/2(n/ logn)~1/3).

To finish the proof, we only need to consider the two possible cases | < p and
! > p. In the first case, we need that | = O((n/ logn)1/4) which is trivially satisfied since
! = O(p), and in the second case we need that [ = O((n/logn)?/®). Just rest to impose
that [ = O((n/logn)¥?). O

PRrROOF OF THEOREM 4.2. We extensively use the relation between Hy and Ly
and the symmetry of J(p), i.e. J(z,p) = 1 — J(—z,p) and the following result from
Politis and Romano (1994a):

THEOREM. (Politis and Romano (1994a)) Assume that there exists a limiting law
J(p) such that Jy(p) converges weakly to a limit law J(p), asn — oo, and that /1, — 0,
b/n — 0 and b — 00 as n — oco. Also assume that the a-mizing sequence satisfies that
ax{(m) — 0 as m — oo.

1. If x is a continuity point of J(-, p), then Ly(x) — J(z, p) in probability.

2. If J(:, p) is continuous, then sup, |Ly(z) — J(z, p)| — 0 in probability.

By symmetry, if z is a continuity point of J(-, p), then —z is also a continuity point.
Then, using statement (1) of the theorem, we have

(A.34) Hy(z) =1~ Ly(-2z) > 1 - J(~z,p) = J(z, p) in probability.
Using statement (2) of the theorem, we obtain convergence to 0 in probability, since
(A.35) sup, |Hy(z) — J(2,p)| = sup, |1 - Ln(-z) — (1 - J(-=,p))|
= sup, |Ln(~2) — J(~z, p).

Notice that if 7, = /I, using the fact that [/n — 0, then the coefficient 7! n-1)
is close to y/n(n — I)I~1 which is the standardizing constant of Wu (1990). O

PrOOF OF PROPOSITION 4.2. We have that

(A.36) 23 S w(t = §)(Xe s — Tw)

t=1

=172 “wn(t — §)(Xyy — ) — 12 (T — )
t=1

=172 wn(t = )Xoy — w) + Op (1?0712
t=1

_1—-1/2
=1 Wy, j

(X, — p) + Op(I1/2n71/2),
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where wy, ; = (wn(1 = j), ..., wa(n — j)) and X'J’ = ()?1,]-, . ,)?n,j). Now,

(A37) 17V, (X - p) = V20, (1 — Hy(HLS ™V H) T HSY(X - )
= 1_1/2(%,]‘ = Wn,j)' (X = p).
From the proof of Lemma 4.2 we have that

B(Z ™ ey)) i
(A38) ’L/lv}nyj = 2_1Hj(H}2—lHj)_1H;wn’j = 151
Di(E7Hay)) lixa

and
(A.39) =71 (e, 0) (7 Hay)) M = || — () "' B0, )l
<AM Y mlyml.
m=1

Notice that bound (A.39) does not depend on j. Then,
B(EZ™Hey)) i
D454 o) it ||,
< 1571 (@ 0 (5 (@),

(A.40) lwn ; — Wn ]l =

and for some 0 < ¢ < 1/2,

(a41) U2 w5 = n,3)' (X = 1) = op(I7/2%°).

Therefore,

(A42) T2 wn(t = §)(Xey — Tn) = Op(IY?n71/2) 4 op(I71/2%¢).
t=1

Then, only rest to use that [ = o(n). O

PROOF OF PROPOSITION 4.3. Assuming that n = s(I + k), we have that

s l+k

(A.43) (SU+ENT2I S (X 1yiinysy — Xn)
=1 j=I{+1

= (s(L+ k) "V2W (Iyqyny) — HH'EZT'H) T H'E Y (X* - X),

where Ik is the s(I + k) x s(l + k) identity matrix, X* = (X{,..., X 14)) X =
Xnlnx1, and W is a s(l + k) x 1 vector defined as
W'=(0,...,0,1,...,1,...... ,0,...,0,1,...,1),
N —’ ——
| times k times ! times k times

i.e., W indicates the missing observations positions.
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Analogously to M?BJ, the matrix H(H'S~1H) ' H'~~! have submatrices equal to
the k x k identity matrix in the missing observations positions, and the remaining non-
zero elements are elements of —X(a’)~!3(c/, ), where o = (I +1,...,l + k,2l + k +

L...,2(l+k),...,...,sl+(s—1)k+1,...,s(l + k)). Therefore,
(Ad44) W/ (I -HHZ'H)'H'EL™
= (a1,.-.,01,0,...,0,...,a¢,_ e , Q(s— ,0,...,0),
(a1 ! (s—1)(1+k)+1 (s—1)(1+k)+1 )
k times k times

where the a’s are 0 or are the sum of one column of —X(c/)~1%(c/, a), and they satisfy
30 16,) < AM Y%°_ m|yy|. Then,

[ s(i+k)
(A.45) E* | (s + k)72 D au(X; —Xn)} =0,
and ] )

[ s(l+k) 2
(A.46) E* ((s(l +E)TV2 DT au(X) - Xn))

L t=1

s(I+k) s(I+k)

SR Y S aa BX - K (XD - X))
t=1 r=1
s(l+k) s(I+k)

S(U+E)T DD D laa BT [(X] - Xn)?]
t=1 =1
= (s +k))1O(1)04.5.(1) = 04.5.((s(1 + k)) 1),
for some 0 < e < 1.
Finally, (A.45) and (A.46) imply that (s(l + k))~1/2 f(zl;rk) at(X; — Xp) = op(1)

for almost all sample sequences X;,...,Xn. O

PROOF OF LEMMA 4.4. We have,

(A.47) (s + k)X, — Xy)

s {

= (sl + k)72 (Z Y Xonyeryrs — Xn)
i=1 j=1
s I+k . B
> > Ky —Xn) |
i=1j=I+1

and e
(A.48) (sU+ENV2(X, , — Xn)

i=1 j=1

s 1
= (s(l+ k)12 (Z Z(X(*i—n(uk)ﬂ - X,)
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s l+k .

+3° Y Kacnarw+s — Xa)

i=1 j=I+1

Then,

(Ad9)  (s(l+ B)2(R ey — Kn) — (s(1 4 1) 2K, — Ko)
= (s(l+ k) VW HH'S'H)'H'E!
—~HHYT'H)'H'TS H(X* - X),
(A50)  E((sl+ k)RR, — Xn) — (54 W)X — K)]
s(l+k)
=B |(sU+£)72 Y (@ - a) (X7 - Xn)

s(l+k) _
= (s + k)2 D" (@ - a)E (X7 — Xa] =0,
t=1

and —~x
(A51)  E*((s(+ R)VA(X, , ~ Xn) — (s(L+ K)V2(X,, ~ Xo))?]
s(l+k) s{i+k)

=@U+R)T2 DT D (@ - ar)(@r —ar)

x B (X7 — Xa)(X] — X))

s(i+k) s(l+k) ~
SU+RDT D D 1@ - a)(@ - an)[ET[(X] - Xa)?)
t=1 r=1
= (s(I + k)" 0a.s.((sK)* (s(1 + k) dog(s(l + K))) 7*/*)0a..(1)

= 0g.5.(1).
Finally, (A.50) and (A.51) imply (4.24) for almost all sample sequences X1,...,Xn. O
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