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SUMMARY

The clustering problem has attracted much attention from both statisticians and computer scientists in
the past fifty years. Methods such as hierarchical clustering and the K-means method are convenient and
competitive first choices off the shelf for the scientist. Gaussian mixture modeling is another popular
but computationally expensive clustering strategy, especially when the data is of high-dimensional. We
propose to first conduct a principal component analysis (PCA) or correspondence analysis (CA) for
dimension reduction, and then fit Gaussian mixtures to the data projected to the several major PCA
or CA directions. Two technical difficulties of this approach are: (a) the selection of a subset of the
PCA factors that are informative for clustering, and (b) the selection of a proper transformation for each
factor. We propose a Bayesian formulation and Markov chain Monte Carlo strategies that overcome the
two difficulties and examine the performances of the new method by both simulation studies and real
applications in molecular imaging analysis and DNA microarray analysis.
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1. INTRODUCTION
Clustering objects into homogeneous groups is an important step in many scientific investiga-
tions. Recently, good clustering techniques are of special interest to biologists because of the
availability of large amounts of high dimensional data resulting from the biotechnology revolu-
tion. These data include, for example, measurements of mRNA levels in the cell by microarray
experiments, single-particle electron micrographs of macromolecules, high-throughput biolog-
ical sequences of many species, protein-protein interaction data, etc. Although techniques for
clustering high-dimensional observations have been subjected to active research for many years,
traditional methods such as hierarchical clustering and K-means clustering are still top choices
for scientists despite their various limitations in the analysis of complex data.

Due to the recent advances in Markov chain Monte Carlo (MCMC; see Liu (2001) for
a recent overview), the Bayesian clustering approach via mixture models has been shown
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attractive in many applications (Celeux and Govaert 1995, Fraley and Raftery 1999, Ghosh
and Chinnaiyan 2002, Ishwaran et al. 2001, Kim et al. 2002, McLachlan et al. 2002, Moss et
al. 1999, Richardson and Green 1997, Samsó et al. 2002, Yeung et al. 2001, etc.). However,
the use of Bayesian clustering methods in high-dimensional data has been hindered by the
very high computational cost and instability of the generic Gaussian mixture models. To
overcome this difficulty, Banfield and Raftery (1993) proposed a general framework for directly
modeling/constraining the covariance matrices of the mixture components. Here we recommend
to first conduct a principal component analysis (PCA) or correspondence analysis (CA) for data
reduction and then fit a mixture model to the factors resulting from these analyses. Indeed,
if the original data come from a mixture Gaussian distribution and the estimated PCA or CA
directions can be treated as known, then the new data vectors resulting from the projection of
the original data onto these directions still follow a mixture Gaussian distribution. A similar
approach has been applied to a character recognition problem (Kim et al. 2002).

When PCA is used in clustering problems, it can select classification-related directions if
these directions are associated with the differneces in the locations of the means of different
clusters. It can also pick up some artificial directions resulting from certain unusually noisy
components or highly correlated components. Consequently, a potential problem with the
PCA-Gaussian-mixture approach is the determination of an appropriate set of the PCA or CA
factors useful for clustering. A common practice is to choose the factors corresponding to the
few large principal components. But it is not clear where to stop and whether some of these
eigen-directions are caused by some artefact or noises in the data unrelated to the clustering
task.

In this article, we propose a novel procedure called Bayesian clustering with variable selec-
tion (BCVS), which can simultaneously cluster the objects and select “informative” variables,
or factors, for the clustering analysis. Since many real data do not fit the multivariate Gaussian
or mixture Gaussian models well, it is a common practice to first transform certain variables
(using logarithm or some power functions) and then do the model fitting. These transformation
steps are often carried out by the investigator based on a certain exploratory pre-processing of
the data. We note that if the transformations are indexed as in Box and Cox (1964), each factor
can be associated with a transformation variable and a full Bayesian model can be set up to
include all the variables. Consequently, the BCVS procedure can be automated to select both
informative factors and proper transformations for these factors. The advantage of this type of
full Bayesian models is its ability to treat all involved variables in a coherent framework, to
combine different sources of information, and to reveal subtle patterns by properly averaging
out noise.

Section 2 presents two examples that motivated our development of the method: image
clustering and microarray analysis. Section 3 first describes the full Bayesian Gaussian mixture
model with variable selection. After the illustration in Section 3.1 of a standard Gibbs sampler for
the model, Section 3.2 prescribes a more efficient predictive updating strategy for simultaneous
clustering and variable selection. Section 3.3 details a tempering strategy for improving the
convergence of the BCVS sampler. Section 4 formulates the transformation selection problem
based on the framework of Box and Cox (1964). Section 5 tests the BCVS method on a series
of simulated data sets, a micrograph image clustering problem and two microarray studies for
cancer patient clustering. Section 6 concludes with a brief discussion.

2. MOTIVATING EXAMPLES

2.1. Image Analysis for Electron Micrographs

In single-particle electron micrograph imaging, each macromolecule lies randomly on the
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specimen support in a limited number of ways (e.g., onto a few different “faces” of the molecule).
A large number of images of the identical molecule are observed, and these images should fall
into a few classes corresponding to the different characteristic orientations ( Samsó et al. 2002).
Because particles within a class are still randomly rotated in the plane, they must also be aligned.
We focus here only on the classification of previously aligned images. The goals are to identify
classes and to infer average images using differences in the appearance of particles. Figure 3
(a) shows images of E. Coli ribosome with four different tilting angles (high-tilt), and (b) shows
that with four low-tilt angles. It is seen that after adding noises, the four classes of images are
difficult to distinguish. Our goal here is to use a model-based method to automatically cluster
these images into different classes.

In most single particle classification techniques, the images are first subject to CA or PCA
(Frank and van Heel 1982). The factors produced by CA or PCA are prioritized according to the
eigenvalue weights that account for the variance contribution of each factor. Not all factors carry
meaningful or signal-related information, since noise or artifacts that are unrelated to the shape
of the macromolecule can also contribute to the variance associated with a factor. Although
there are some previous researches that address this issue (Frank 1996), these time-consuming
methods necessitate an extensive knowledge of the system, are somewhat subjective, and tend to
break down when the signal to noise ratio (SNR) is low. It is thus desirable to develop a method
that can automatically select the factors to be used in clustering and improve the clustering of
the images with low SNR.

2.2. Patients Clustering Based on Gene Expression Microarrays

The recent developments in gene chip or microarray technologies allow the scientist to observe
simultaneously the expression levels of many genes in a cell at a given time, condition, or
developmental stage (Schena et al. 1995). Because genes with similar or related functions often
behave similarly under various conditions, biologists can discover novel gene-gene relationships
and transcriptional regulatory signals by analyzing genes clustered based on the similarities of
their expression patterns (Roth et al. 1998). It has also been reported that the gene expression
profiles can be used to discriminate different cell types and predict patients’ responses to certain
drug treatment. It is also possible and important to cluster different cell types (or patients)
based on their global gene expressions since the resulting gene clusters often correspond to
clinically important subgroups. In this latter task, each cell type or patient is associated with
the measurements of mRNA levels for thousands to tens of thousands of genes, a very high-
dimensional vector, whereas the total number of patients is only in the range of hundreds or
fewer. Alizadeh et al. (2000) used hierarchical clustering to divide the 96 lymphoma patients
into two homogeneous groups based on 4026 expression values of each individual. These two
groups correspond to two subgroups of patients who respond differently to the current therapy.
Golub et al. (1999) used the self-organizing map (SOM) to cluster 38 leukemia samples into two
groups based on the microarray values of 6817 genes for each individual. These two clusters
again coincide well with the two important subtypes of the leukemia, ALL and AML. We show
in the application section that BCVS can be successfully applied to these data to produce as
good or better clustering results.

3. VARIABLE SELECTION IN MIXTURE MODELING

It is noticed that if we project a random Gaussian vector to a particular direction v, then
the resulting random variable also has a Gaussian distribution. Consequently, if we project
observations from a mixture Gaussian distribution, the projected vectors should also follow
mixture Gaussian. Although the PCA or CA directions need to be estimated from the data in
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all applications, it does not seem to make any material difference by treating these directions as
given, as long as the number of factors extracted from the data is substantially smaller than the
original dimension of the data. Thus, in practice we obtain the first k0 principal vectors ordered
as V = (vT1 , . . . ,v

T
k0

), and project the data onto these directions so as to form n vectors of k0

dimensions. The data vectors that will be subject to BCVS analysis are xi = (xi1, . . . , xik0),
i = 1, . . . , n, where eachxi is generated by multiplying the ith original data vector by projection
matrix V . Each of the (x1j, x2j, . . . , xnj)T will be called a factor throughout the paper.

It is reasonable to assume that each observation follows a mixture Gaussian distribution,
of which each Gaussian component has the mean vector µj and the covariance matrix Σj for
j = 1, . . . , J . The fractions of each component are (p1, . . . , pJ). Notation-wise, we can write

xi ∼ p1N(µ1,Σ1) + · · ·+ pJN(µJ ,ΣJ), i = 1, . . . , n.

Without having any constraints, each µj is a k0-dimensional vector and Σj a k0 × k0 positive-
definite matrix. A membership labeling variable Ji for each observation can be introduced so
that

xi |Ji = j ∼ N(µj,Σj).

For the most part of this article, we assume that J is known in advance. There is a whole body
of literature discussing how to choose a proper J in practice, and we will defer this issue to the
discussion section.

We further assume that only a subset of the k0 factors are informative for clustering. In
the anchor mode model, we assume that this subset consists of the first K factors, where K
is a random variable with a prior distribution K ∼ f(k). Thus, the data xi has its first k
components to follow a mixture Gaussian and its remaining components to follow a simple
Gaussian distribution. Thus,

xi |Ji = j, µ, K = k, Σ ∼ N(µj,Σj)×N(µ0,Σ0),

where µj is a vector of length k and Σj is a k × k matrix, both are specific to cluster j; µ0 is a
vector of length k0 − k and Σ0 is a (k0 − k)× (k0 − k) covariance matrix, common to all the
observations.

LetX = (xT1 , . . . ,x
T
n )T , and let J = (J1, . . . , Jn). Then

P (X |J = j,µ,K = k) =
n∏
i=1

N(xi[1:k] |µji,Σji
)

n∏
i=1

N(xi[k+1:k0] |µ0,Σ0),

where N(x |µ,Σ) is the multivariate Gaussian density. The joint posterior distribution is then

P (J ,K = k,µ,Σ |X) ∝ f(k)π(µ,Σ)
n∏
i=1

{pji N(xi[1:k] |µji,Σji
) N(xi[k+1:k0] |µ0,Σ0)}.

Note that the dimensionality of µj , Σj , µ0, and Σ0 will change when k changes.
We first give some detailed calculation for the derivation of a MCMC algorithm for the

anchor mode BCVS. The procedure can be easily generalized to the non-anchor mode, in which
BCVS can select any combination of any number of the k0 factors for the clustering.

3.1. A Gibbs Sampling Algorithm

Markov chain Monte Carlo algorithms for the estimation in mixture models have been an active
topic in statistical research. Some of the recent articles include Brooks (2001), Diebolt and
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Robert (1994), Ishwaran et al. (2001), Neal (2000), Richardson and Green (1997), just to start
a list. The new feature in our algorithm is its variable/factor selection step.

Assume a priori that [µj |Σj ] ∼ N(x0,Σj/ρ0) and Σj ∼ Inv-Wν0(S
−1
0 ) (see the Appendix

for its density form). Let N(·) denote the Gaussian density function. Then

P (Ji = j |µ1, . . . ,µJ ,Σ;X) =
pjN(xi[1:k] |µj,Σj)N(xi[k+1:k0] |µ0,Σ0)∑J
l=1 plN(xi[1:k] |µl,Σl)N(xi[k+1:k0] |µ0,Σ0)

=
pjN(xi[1:k] |µj,Σj)∑J
l=1 plN(xi[1:k] |µl,Σl)

and

[µj |Σ,J ,X] ∼ N

(
ρ0x0[1:k] +

∑n
i=1 xi[1:k] × I{Ji=j}

ρ0 +
∑n

i=1 I{Ji=j}
,

Σj

ρ0 +
∑n

i=1 I{Ji=j}

)
;

[µ0 |Σ,X] ∼ N

(
ρ0x0[1:k] +

∑n
i=1 xi[k+1:k0]

ρ0 + n
,

Σ0

ρ0 + n

)
.

The conditional distribution for Σj is then

[Σj |X,µj,J ,K = k] ∝ |Σj |−
ν0+k+nj+1

2 e
−1

2 tr[Σ−1
j

(S0+SSj(µj))],

wherenj is the number of observations in the jth cluster andSSj(µj) =
∑

i:ji=j
(xi−µj)T (xi−

µj) is the mean-corrected sum of squares for the observations in the jth cluster.
A prior Di(a1, . . . , aJ) distribution can be employed for the cluster proportions (p1, . . . , pJ).

Then, given the clustering indicators J , it is straightforward to update the proportion vector by
drawing from Di(n1 + a1, . . . , nJ + aJ), where nj is the size of the jth cluster.

UpdatingK in our model setting is not as trivial as the previous steps because once theµj and
Σj are fixed, the factor number K, which underlies the dimensionality of the mean vectors and
covariance matrices, cannot be moved any more. It is possible to propose a change for all theµj ,
the Σj and K jointly and use the reversible jumping rule to guide for the acceptance/rejection
decision. However, this type of proposals often encounter a high rejection rate, rendering
the algorithm inefficient. Here we adopt a more effective alternative: marginalizing the µj
and Σj analytically. More precisely, using the standard Bayesian Gaussian inference results
summarized in the Appendix, we can derive that

P (X [1:k] |K = k,J) =
J∏
j=1

Z(ν0, S0, k)
Z(nj + ν0, S0 + SSj, k)

(2π)−
njk

2

(
nj + ρ0

ρ0

)−k2
, (1)

where SSj is defined as in (11) for observations in the jth cluster. This calculation indicates
that a more efficient approach, iterative predictive updating (Liu 1994, Chen and Liu 1996), is
possible for our MCMC computation.

3.2. Predictive Updating

Instead of doing the full Gibbs, a convenient alternative is to iteratively draw the label of each
xi from its predictive distribution conditional on the labels of the remaining observations and
then update the component numberK conditional on the labels. This strategy not only saves our



254 J. S. Liu, J. L. Zhang, M. J. Palumbo and C. E. Lawrence

effort in updating the mean vectors and covariance matrices, but also improves the convergence
rate of the sampler (Liu 1994). More precisely, conditional on K and J and with conjugate
priors, we can compute the analytical form of

P (X |K = k,J) = P (X [1:k] |K = k,J)× P (X [k+1:k0]), (2)

which leads to an iterative sampling of Ji = j with probability proportional to the prior fraction
pj times a multivariate-t density function, and an update of K from [K = k |J ,X]. We can
also marginalize pj if a prior Di(a1, . . . , aJ) has been used for the proportions, in which case
we use in the place of pj ,

p̂j = (n′j + aj)/(n+ a1 + · · ·+ aJ − 1),

where n′j is the total number of objects in the jth cluster excluding the ith observation.
In order to compute the Metropolis ratio for changing the variable component number from

k to k + 1, we compute the related Bayes factors (normalizing constants) as in the standard
Bayesian Gaussian inference (see Appendix). Let the normalizing functionZ(ν, S, k) be defined
as in (10). With known clustering information, we can compute (2) in two steps:

• The easier one (the Bayes factor P (X [k+1:k0] |J)) is

P (X [k+1:k0]) =
Z(ν0, S0, k0 − k)

Z(n+ ν0, S0 + SS0, k0 − k)
(2π)−

n(k0−k)
2

(
n+ ρ0

ρ0

)−k0−k2
,

where SS0 is the sum of square matrix (as defined in (11)) computed fromX [k+1:k0]. from
the prior mean x0[k+ 1 : k0] of µ[k+1:k0]. If we model the columns ofX from k+ 1 to k0
as independent, then the above marginal likelihood can be modified as

P (X [k+1:k0]) =
k0∏

j=k+1

Z(ν0, s
2
0, 1)

Z(n+ ν0, s2
0 + s2(xj), 1)

(2π)−n/2
(
n+ ρ0

ρ0

)−1/2

,

where s2(xj) is the modified total sum of squares of the jth column. The prior for the
unknown mean and variance of each independent component takes the same form as in the
multi-dimensional case (see Appendix), but with s2

0 replacing S0.
• Compute the modified sum of square matrix SSj (by formula (11) for observations in the
jth cluster, with data {xi[1:k], i ∈Cluster j}. Here nj is the cluster size. Then

P (X [1:k] |K = k,J) =
J∏
j=1

Z(ν0, S0, k)
Z(nj + ν0, S0 + SSj, k)

(2π)−
njk

2

(
nj + ρ0

ρ0

)−k2
. (3)

The Metropolis ratio for k → k′ is then

r = min
{

1,
f(k′)P (X |K = k′,J)T (k′ → k)
f(k)P (X |K = k,J)T (k → k′)

}
. (4)

If k0 is small, we can draw K from its conditional distribution P (K = k |J ,X) directly.

To summarize, we have the following predictive updating iterations to replace the regular
Gibbs sampler:
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1. Sample the group indicator variable of the ith observation from the t-distribution:

[Ji = j |J [−i],K = k,X] ∝ p̂j ft

(
xi[1:k]; νj, µ̂j,

(n′j + ρ0 + 1)(S0 + SSk)
(n′j + ρ0)(n′j + ν0 − k + 1)

)

where νj = n′j +ν0−k+1, n′j is the current size of cluster j excluding the ith observation,
and µ̂j is a weighted combination of prior mean x0 and the sample mean as in (12). The
weight for the prior is ρ0/(n′j + ρ0) and for the sample mean is n′j/(n

′
j + ρ0).

2. Propose a move for k to k′ according to a transition rule T (k → k′); accept the move with
probability (4).

This algorithm can be easily modified to accommodate the non-anchor mode. Without the
restriction of having to include the first k factors, we can choose a factor at random and ask
whether we should treat it as an informative factor or not, i.e., turn it on or not. Conditional
on each factor’s on-off states, O, we can compute P (X |O,Y ) the same way as in (3). The
Metropolis-ratio similar to (4) can be used to guide the transition fromO to a new vector of the
on-off states,O′.

3.3. Parallel Tempering

It has been observed that the MCMC samplers for fitting a mixture model tend to be very
“sticky”. With the inclusion of the variable selection and transformation indicators, the MCMC
algorithm tends to perform even worse. Parallel tempering (Geyer 1991) seems to be an effective
means to improve the mixing of a MCMC sampler.

To implement a tempering sampler conditional on K = k, we define the target distribution
as

π(J) ∝ P (Y |K = k,J)P (J),

where P (J) is the prior distribution for J . Then π(J) can be evaluated as described in Section
3.2, up to a normalizing constant. In order to carry out the tempering idea, we construct a

temperature ladder, 1 = t1 < t2 < · · · < tL, and define πl(J) ∝ {π(J)}
1
tl .

The sample space of the tempering sampler is the product space of the J . In other words,
the new target distribution is

Π(J1, . . . ,JL) = π1(J1)× · · · × πL(JL),

for which our tempering sampler will converge to. Here we let J l = (Jl,1, . . . , Jl,n). The
tempering process can be implemented as follows:

Tempering Sampler

1. Iterative classification (independently) at each level. For levels l = 1, 2, . . . , L:
• For i = 1, . . . , n, compute

[Jl,i = j |J l,[−i]] ∝
{
pj ft

(
yi[1:k]; νj, µ̂

∗
j ,

(nj + ρ0 + 1)(S0 + SSk)
(nj + ρ0)(nj + ν0 − k + 1)

)}1/tk

for all possible j (in our example, j = 1, 2, 3, 4).
• Update Jl,i by a random draw from the above distribution.
2. For every N0 (say, 10) cycles of iterative updating, we conduct one cycle of level exchange,

starting from the highest-temperature configuration. For k = 1, · · · , L− 1:
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• compute the ratio

r =
πL−k(JL−k+1)πL−k+1(JL−k)
πL−k(JL−k)πL−k+1(JL−k+1)

=
{
π(JL−k+1)
π(JL−k)

} 1
tL−k

− 1
tL−k+1

• exchange JL−k and JL−k+1 with probability min{1, r}.
3. Go back to step 1.

4. SELECTING A PROPER TRANSFORMATION
For ease of presentation, we give only the details for deciding whether logarithm transformations
should be applied to certain factors. The formulas for the more general selection from a
continuum of transformations using the Cox-Box formulation is presented with details omitted.
We first consider the univariate case, and then generalize to consider several variables.

Suppose we have a set of univariate observations x1, . . . , xn. Suppose the prior distribution
for µ and Σ is as given in (8) and (9), we have

P (x1, . . . , xn | ν0, s0, x0, ρ0) =
Z(ν0, s0, 1)

Z(n+ ν0, SS + s0, 1)
(2π)−n/2

(
n+ ρ0

ρ0

)−1/2

,

where σ2 ∼ Inv-Wν0(s
−1
0 ), µ |σ2 ∼ N(x0, σ

2/ρ0), and SS is as defined in (11). If the data
needs to be log-transformed, then the likelihood is

Pl(x1, . . . , xn |µ, σ2) =
(

1√
2πσ

)n

exp

{
−

n∑
i=1

(log xi − µ)2

2σ2

}
n∏
i=1

x−1
i .

Thus, under the log-transformation model and a set of different prior parameters (indicated by
“∗”), we have

Pl(x1, . . . , xn | ν∗0 , s∗0, x∗0, ρ∗0) =
Z(ν∗0 , s

∗
0, 1)

Z(n+ ν∗0 , SS
∗ + s∗0, 1)

(2π)−n/2
(
n+ ρ∗0
ρ∗0

)−1/2 n∏
i=1

x−1
i ,

where SS∗ is the corresponding residual sum of squares for the log(xi).
More generally, suppose we haven iid observations,xi = (xi1, . . . , xik), i = 1, . . . , n, from

a k-dimensional distribution. Let X = (xT1 , . . . ,x
T
n )T . We notice what when considering the

logarithm transformation for one of the variables, xl, say, the computation of the data likelihood
is almost unchanged. More precisely, we have

Pl(X | ν∗0 , S∗0 ,x∗0, ρ∗0) =
Z(ν∗0 , S

∗
0 , k)

Z(n+ ν∗0 , SS
∗ + S∗0 , k)

(2π)−nk/2
(
n+ ρ∗0
ρ∗0

)−k/2 n∏
i=1

x−1
il ,

where SS is the sum of square matrix of the original data as defined in (11), and SS∗ is the sum
of square matrix of the transformed data.

It is not very sensible to use the same prior for the original and the transformed data, but it
is also difficult to decide what corresponding priors should be applied to the transformed data.
Thus, noninformative priors seem to be desirable, although they will typically result in improper
(infinite) Bayes factors. We note, however, that if we let ρ0 = ρ∗0, ν0 = ν∗0 , S0 = S∗0 , and let all
of them converge to zero, we still have a proper ratio:

P (X)
Pl(X)

=
Z(n, SS∗, k)
Z(n, SS, k)

n∏
i=1

xil =
( |SS∗|
|SS|

)n/2 n∏
i=1

xil. (5)
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For a transformation of the Box-Cox form fα(x) = (xα − 1)/α, α > 0, the ratio is

P (X)
Pα(X)

=
( |SS∗|
|SS|

)n/2 n∏
i=1

x1−α
il . (6)

Note thatα = 0 corresponds to the logarithm transformation. To insert the variable selection step
into the predictive updates, we sample conditional on J for each variable whether a logarithm
transformation should be applied, according to the ratio (5).

When the observations involve negative values (or are very large), it is sometimes useful to
consider the transformation of the form fα,m = [(x+m)α−1]/α,where m is some constant to
be added to the observation and can be estimated as well. We see from the foregoing derivations
that the Bayes ratio should take a similar form:

P (x)
Pα,m(x)

=
( |SS∗|
|SS|

)n/2 n∏
i=1

(xil +m)1−α. (7)

In practice, we may startmwith 1−min{x1i, i = 1, . . . n} and updatem along with the MCMC
iterations.
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(c) Quantile plot for the first factor of image data
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Figure 1. Deciding whether a logarithm transformation should be used for (a) a simulated dataset and
(c) the first factor of a micrograph image dataset. (b) and (d): the logarithm of the Bayes ratio as
computed by (7) with α = 0.

We simulated four hundred observations from exp(Z + 4) − 60, where Z is the standard
Gaussian random variable. Its qq-plot is seen in Figure 1 (a). The log-Bayes ratio (the untrans-
formed likelihood versus the logarithm transformation) as shown in Figure 1 (b) clearly indicates
that a constant around 50 to 60 should be added and the logarithm transformation is necessary.
The qq-plot in Figure 1 (c) shows the long-tailness of the first factor in the micrograph image
example. By applying the transformation-selection procedure just described, we see that from
Figure 1 (d) that a number around 235 should be added before the logarithm transformation.
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The Bayes ratio strongly indicates the use of log-transformation for a wide range of constant m.
As shown later, this transformation significantly improved the clustering result for a molecular
micrograph application.

5. PERFORMANCE EVALUATION OF THE BCVS

5.1. A Simulation Study

In order to investigate the usefulness of variable selection in clustering analysis, we simulated
observations from a mixture of two bivariate Gaussian distributions,

αN(µ(1),Σ(1)) + (1− α)N(µ(2),Σ(2)),

then we add some factors which are just independent Gaussians. Thus, in these data, only the
first two factors are “informative,” and the other dimensions are noises. We compare the results
of the following: clustering using only the first two factors; using BCVS with the anchored
mode, using BCVS with non-anchored mode, and using all the factors indiscriminately.

We first simulated 100 data sets with four factors, for each data set, the parameters for the
bivariate mixture Gaussian distribution were drawn according to

α ∼ Un(0.3, 0.7),

σ
(1)
11 ∼ Inv − χ2(2, 4.0), σ

(1)
22 ∼ Inv − χ2(8, 5.0), ρ(1) ∼ Un(0, 0.6),

µ
(1)
1 |σ

(1)
11 ∼ N(3, σ(1)

11 ), µ
(1)
2 |σ

(1)
22 ∼ N(1, σ(1)

22 ),

σ
(2)
11 ∼ Inv − χ2(8, 5.0), σ

(2)
22 ∼ Inv − χ2(2, 4.0), ρ(2) ∼ Un(0, 0.6),

µ
(2)
1 |σ

(2)
11 ∼ N(0, σ(2)

11 ), µ
(2)
2 |σ

(2)
22 ∼ N(0, σ(2)

22 )

where σ(j)
ll is the variance of the lth variable and ρ(j) the correlation coefficient for cluster j.

Each noise factor has mean 0 and variance τ 2 drawn from Inv-χ2(8, 5.0).
After the parameters were drawn, 200 observations were then simulated with these parame-

ters. This setup resulted in a wide range of data sets, some of which had well-separated clusters,
and some had close clusters. We also generated 100 data sets of size 200 with nine factors
(seven noisy factors). For each data set, the parameters for the bivariate mixture Gaussian dis-
tribution and those for each of the seven noise factors were drawn similarly as described above.
In each dimension setting (4 and 9, respectively), we stratified the 100 simulated datasets into
3 groups (easy, median, and difficult) of about equal sizes based on the performances of the
“gold standard”, i.e., the clustering algorithm using only the two informative factors. Figure 2
compares the performances of the three clustering approaches, BCVS with anchor mode, BCVS
with non-anchor mode, and clustering using all the factors, with the “gold standard”, in each
data set group as well as all data sets.

In the MCMC implementations, we assumed a priori that for each cluster j, [µj |Σj ] ∼
N(x0,Σj/ρ0) and Σj ∼ Inv-Wν0(S

−1
0 ), wherex0 is the vector of sample means of the k factors,

ρ0 = 0.01, v0 = k, and S0 is a diagonal matrix with sample variances of the k factors as the
diagonal elements. We also assumed uniform prior for the number of factors used for clustering
in anchor mode and for the combination of factors used for clustering in non-anchor mode.

Figure 2 showed the differences in the number of correctly clustered objects for each method.
Suppose the true clustering answer groups the observations intoT = (T1, T2). Then the number
of correctly clustered objects of a clustering result C = (C1, C2) is defined as the number of
matched objects for the best match, i.e.,

N(C) = max{|C1 ∩ T1|+ |C2 ∩ T2|, |C2 ∩ T1|+ |C1 ∩ T2|}.
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Figure 2. The number of correctly clustered objects of the three clustering strategies (anchor, non-
anchor, and all factors) were each compared with that of the clustering using the two known factors. A:
BCVS with anchor mode; NA: non-anchor mode; K: clustering using only the first two factors; AL: using
all the factors. The 100 simulated datasets for each setting are stratified according to the clustering
performances when the two informative factors are known (K).

A completely random assignment will result in a N(C) slightly greater than n/2.
It is interesting to note from the boxplots that for the datasets with 4 factors the BCVS

with both the anchor and non-anchor modes performed almost as good as the method with
the two informative factors known, and all the three are better than the method using all the 4
factors indiscriminately. The datasets with 9 factors showed more striking differences. Note
that when all the 9 factors are used in fitting a mixture of two Gaussians, we have to entertain
109 free parameters: two nine-by-nine dimensional covariance matrices, two mean vectors, and
the mixture proportion. It is not surprising that such a method performed poorly. It is somewhat
surprising, however, that BCVS performed so much better, suggesting that we do not lose much
by not knowing which factors to use. A careful examination shows that the BCVS with anchor
mode performed slightly better than that with non-anchor mode.

5.2. Classification of Images from Electron Micrographs

In a recent study (Samsó et al. 2002), we applied the BCVS to classify the electron micrograph
images and compared its performances with the popular hierarchical clustering (HAC) method.
The signal components of these images were generated by projecting a volume of the 50S
ribosomal subunit from Escherichia coli reconstructed from electron micrographs of a negatively
stained sample (Radermacher et al. 1987). A set of four images, as shown in Figure 3 (a), was
created by tilting four projections by different angles. A set of lower-tilt images were also
produced for closer comparisons but is not shown here.

One hundred copies of each projection were generated and noise was added to each of them,
yielding four tilt groups of 100 images each. Two different sources of noise were used. In the
first series, Gaussian noise with standard deviation from 1 to 20 was added to each projection.
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Figure 3. (a) The images of the 50S ribosomal subunit from E. coli at four tilting angels. (b) Images
with Gaussian noises at different SNR levels. (c) Images with real noises.

In a second series, the “real noise” obtained by windowing 400 regions of an image of carbon
film obtained in the electron microscope was added. The real-noise windows were also scaled to
obtain a wide range of SNR. Examples of the resulting individual images from selected data sets
are shown in Figure 3 (b) and (c). These data sets differ from those obtained in real experiments
where particles are found in random orientations. However, these partially simulated data allow
the comparison of different classification methods without confounding the comparison with
alignment issues.

Each image data were submitted to either CA or PCA dimension reduction, and the first
eight factors were saved. These eight-dimensional data sets were classified by both the BCVS
and HAC with “complete-link” merging criterion. Since methods for factor selections in HAC
are subjective, all eight factors were employed with this procedure. The HAC dendrogram tree
was cut at a threshold giving four classes.

Results. The BCVS yielded a smooth sigmoidal decline of the success rate of classification
with increased noise (Figure 4). HAC showed a more erratic pattern, e.g., from noise 4 to 5
there is a sudden decrease of classification (from 100% to 75.5%, Figure 4 (a), resulting from
the merging of nearly all of the observations of two tilt groups (94% and 96%) into a single
class, leaving a fourth class almost empty. At this noise level, BCVS classified 100% correctly.
Up to and including noise level 14, the BCVS anchor and non-anchor modes produced similar
results. At noise levels greater than 14, the anchor mode gave the best results.

For real-noise data sets, at high-tilt, both BCVS and HAC produce similar results through
noise level 10 (Figure 4 (b)). At noise level 12, HAC decreases its score suddenly (from 92%
to 59%), whereas BCVS continues to return favorable scores through noise level 14, at which
a score of over 79% is seen. The BCVS outperformed HAC more significantly in all low-tilt
datasets (e.g., 81% vs 48% at noise level 4, as shown by dashed lines in Figure 4 (c)).

PCA versus CA. CA is historically preferred to PCA in image processing because PCA often
results in factors whose scales differ in magnitudes, rendering the Euclidean distance-based
HAC algorithm difficult to produce meaningfully clusters. However, since the BCVS adaptively
adjusts scales of factors through inferences of variances, we examined its application under PCA
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Figure 4. The comparison results for the micrograph image data. Solid lines are for high-tilt datasets
and the dashed lines for low-tilt datasets.

data reduction. With well-behaved Gaussian noise we found that in all cases both BCVS and
HAC perform better on PCA data than on CA data (Figure not shown).

HAC’s results on real-noise data sets using PCA show very low scores (below 40%) for all
noise levels (Figure 4 (c)). Scores in this range indicate that the classification is not much better
than a random assignment of particles into classes. Because HAC uses Euclidean distances, it
is not well suited for cases in which the variance (i.e., the spread) of a factor differs by an order
of magnitude or more from the variance of other factors. These results support the accepted
practice of using CA data reduction for HAC. In contrast, the BCVS algorithm is not hindered
by data with such characteristics and can perform better than that using the CA.

Logarithm transformation of factors. We observed that, under PCA reduction, the first factor
had a much larger variance than the other factors and the degree of this effect varies from class
to class. The q-q plot for the first factor is displayed in Figure 1 (c), which shows a clear sign
of long-tailness. We considered the transformation of the form log(x + m). As discussed in
Section 4, the Bayes ratio of the original model versus the log-transformation data model for this
factor can be computed. Figure 1 (d) shows the logarithm of the ratio for a range of m values,
which is overwhelmingly in favor of transformation (a value of -100 means that the logarithm
transformation is e100 times more favorable than no-transformation).

With this factor log-transformed, the rate of correct classification is significantly improved
for BCVS on real-noise, PCA-reduced data. For example, at the noise level 8, the correct-
classification rate increases from 83.50 to 94.25 for the anchor mode, and from 82.75 to 94.25
for the non-anchor mode, and such a high success rate of more than 80% is maintained through
noise level 18.
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5.3. Clustering of Microarray Data

Lymphoma Data. Alizadeh et al. (2000) reported a microarray gene expression study on diffuse
large B-cell lymphoma (DLBCL), the most common subtype of non-Hodgekin’s lymphoma. It
was known that this DLBCL is clinically heterogeneous with about 40% of patients responding
well to the current therapy and the remaining 60% succumbing to the disease. The microarray
studies of the tumor cells in these two types of patients revealed the molecular heterogeneity of
the two types of DLBCL. It is of interest here to see if a clustering technique, without using any
knowledge about the identities of the tumor cells (i.e., whether they come from a responding
patient or not), can identify the two distinct groups.

A complementary DNA (cDNA) microarray chip (Schena et al. 1995) was constructed by
Alizadeh et al. (2000), who selected genes that are preferentially expressed in lymphoid cells
and genes with known or suspected roles in cancer or immune systems. The final “Lymphochip”
consists of 18,000 cDNA clones. About 1.8 million measurements of gene expression were
made in 96 normal and malignant lymphocyte samples using 128 Lymphochip microarrays.
After some preprocessing of the raw data, the authors discarded about 75% of the mRNA
measurements of all the patients and made available a 4026 × 96 matrix corresponding to the
mRNA expression measurements of 4026 genes in the 96 patients.

We first submitted the data to Splus software package to conduct the PCA and return the
projections of the data to the first 16 eigen directions. Then we asked the BCVS to cluster the
objects into two groups based on the 16 factors. The algorithm typically picked 7 to 8 factors in
the clustering analysis. When BCVS was asked to produce 8 clusters with non-anchor mode,
it resulted in very similar clusters as that reported in Alizadeh et al. (2000) who used HAC. On
average 11 factors were selected, 1-9, 11 and 15. When four clusters were asked for, BCVS
chose to use ten factors, 1-9 and 12, and produced a group (47 members) with mostly DLCL
types, a group that mixes CLL and FL types (24), a group of Blood B cell types (13 ), and a
group of Blood T cell types (12). This result is in close agreement with Alizadeh et al. (2000).
A small difference is that the two germinal center B cells were grouped with the CLL+FL cluster
and DLCL-0009 and SUDHL5 were put into the DLCL cluster.

Leukemia data. Golub et al. (1999) applied gene expression microarray techniques to study
human acute leukemias and discovered the distinction between acute myeloid leukemia (AML)
and acute lymphoblastic leukemia (ALL). Distinguishing ALL from AML is crucial for suc-
cessful treatment, since chemotherapy regimens for ALL can be harmful for AML patients.
Their results demonstrated the feasibility of cancer classification based solely on gene expres-
sion monitoring and suggested a general strategy for discovering and predicting cancer classes
for other types of cancer, independent of previous biological knowledge. They first constructed
a classifier that can distinguish the two types of cancers using an initial collection of samples
belonging to known classes. As a second task, they applied a two-cluster self-organizing map
(SOM) to automatically group the 38 initial leukemia samples into two classes on the basis of
the expression pattern of all 6817 gene. Their SOM results matched the known classes closely:
Class A1 contained mostly ALL (24 of 25 samples) and class A2 contained mostly AML (10
of 13 samples). So SOM clustered 3 ALL samples with the AML class and 1 AML sample
with ALL. A drawback of the SOM, however, is its lack of statistical interpretation and the
uncertainty measurement of the results.

The dataset contains the expression levels of 6817 genes for 38 patients. There are actually
7129 probe sets - controls and gene redundancies bringing the 6817 up to 7129. The patient
samples are known to come from two distinct classes of leukemia: 27 are ALL and 11 are
AML. We submitted all the data (controls & redundancies) to PCA using the S-Plus function.
Recognizing that the total number of observations is very small, we chose to output the first
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eight eigenvectors from the PCA and use the BCVS with the anchor mode. The BCVS chose
the first 7 eigenvectors to include in the mixture modeling, and reported two classes: Class
1 contained 27 samples, 26 of which were ALL samples and Class 2 contained 11 samples,
10 of which were AML samples. This result is slightly better than that obtained by Golub
et al. (1999) using SOM, illustrating that PCA plus BCVS produces competitive results for
clustering. More importantly, in comparison with SOM, the PCA and Gaussian mixture models
possess clear statistical interpretations and well-established mathematical properties, enabling
the investigator to think further about the modeling issues.

6. DISCUSSIONS

Based on Gaussian mixture models, we propose a novel Bayesian method BCVS for clustering
high-dimensional data. The new method has the following features: (a) factors informative
to the clustering model are automatically selected; (b) transformations of the factors can be
selected in an automatic and principled way; and (c) the new method combines the PCA with
the formal Bayesian modeling. We have shown by simulation that the variable selection step in
BCVS can significantly improve the clustering result especially when the number of factors in
consideration is high. We have also shown by a few real applications that the BCVS produced
as good or better results than the popular hierarchical clustering method.

What is lacking in our current method is a way to determine the total number of clusters
for the mixture model. Conceptually, one can just give a prior for the clustering variables
(total cluster number and memberships) and then proceed with the MCMC machinery. For
example, a popular prior for clustering indicators is that derived from the Dirichlet process
(Neal 2000), which is most conveniently described conditionally: given the clustering of the
first i observations, the i+1st observation can join an existing cluster of size nj with probability
nj/(q+i), and form a new cluster of its own with probability q/(q+i). The prior expectation of
the total number of clusters in this model is O(log(n)), which may not be desirable in practice.
Qin et al. (2002) proposed a modification: the i+ 1st observation joins an existing cluster with
probability 1/(q+ ci) and forms a new cluster with probability q/(q+ ci), where ci is the total
number of clusters formed by the first i observations. This prior gives an expected number
of clusters of O(

√
n). One can also prescribe a prior for the clustering variable, as suggested

by Richardson and Green (1997), by giving first a distribution on the number of clusters and
then a distribution for the memberships of the n objects. A potential problem with this line of
approach is the additional computation cost.

Another possible avenue to achieve the automatic selection of cluster number is to treat it
as a model selection problem and use the Bayesian information criterion (BIC) to determine the
number of Gaussian components (Yeung et al. 2001). Although this approach is not directly
based on a model, it is much cheaper computationally and gives satisfactory result in general.
However, with the additions of variable and transformation selection variables, the BIC in Yeung
et al. (2001) needs to be revised to suit for the new variable selection task.
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APPENDIX: BAYESIAN MULTIVARIATE GAUSSIAN INFERENCE

For the consistency of notations and the self-containedness of the article, we here present the
standard conjugate Bayesian analysis with Gaussian observations. More details can be found in,
for example, Gelman et al. (1995). Suppose n iid realizationsX = {x1, . . . ,xn} are observed
from the k-dimensional Gaussian distribution N(µ,Σ). It is of interest to make inference on
µ, Σ, and a future observation xn+1.

The prior distribution for Σ is the Inverse-Wishart distribution, Inv-Wν0(S
−1
0 ), which is of

the form:

p0(Σ) = c0|Σ|−
ν0+k+1

2 e−
1
2 tr(Σ

−1S0), (8)

where c0 is the normalizing constant, k is the dimensionality, and ν0 and S0 are two hyper-
parameters to be given by the user. Conditional on Σ, the prior of µ is

µ |Σ ∼ N(x0,Σ/ρ0). (9)

To make our later analysis more convenient, we define the normalizing function

Z(ν, S, k) = |S|
ν
2

{
2
νk
2 π

k(k−1)
4

k∏
i=1

Γ
(
ν + 1− i

2

)}−1

. (10)

Then c0 = Z(ν0, S0, k).
In order to make p0 a proper distribution, we need to have ν0 > k − 1 and |S0| > 0. With

this distribution and ν0 > k + 1, we have E(Σ) = S0/(ν0 − k − 1).
If we have n iid observationsX = {x1, . . . ,xn} from N(µ,Σ), then data-parameter joint

distribution is

P (X,µ,Σ) = c0(2π)−
(n+1)k
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2 ρ
k
2
0
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2
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]
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2
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Σ
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)−1
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]

where

SS =
n∑
i=1

(xi − x̄)T (xi − x̄) +
nρ0

n+ ρ0
(x̄− x0)T (x̄− x0) (11)

and
x̄∗ =

n

n+ ρ0
x̄+

ρ0

n+ ρ0
x0. (12)

Thus, after integrating out µ, we have

P (X,Σ) = c0(2π)−
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2 ρ

k
2
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]
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2
0 (n+ ρ0)
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where
c1 = Z(n+ ν0, S0 + SS, k).

Hence, the model likelihood P (X) is of the form

P (X |n, k, λ0) =
Z(ν0, S0, k)

Z(n+ ν0, S0 + SS, k)
(2π)−

nk
2

(
n+ ρ0

ρ0

)−k2
. (13)

Marginally, the distribution of µ is

[µ |x1, . . .xn] ∼ tn+ν0−k+1

(
x̄∗,

S0 + SS

(n+ ρ0)(n+ ν0 − k + 1)

)
.

The predictive distribution of a new observation x is

[x |x1, . . .xn] ∼ tn+ν0−k+1

(
x̄∗,

(n+ ρ0 + 1)(S0 + SS)
(n+ ρ0)(n+ ν0 − k + 1)

)
. (14)

DISCUSSION

ADRIAN E. RAFTERY ((University of Washington, USA)

1. Introduction. It is a pleasure to congratulate the authors on a paper that proposes
promising solutions to several outstanding problems in model-based clustering. I prefer the
term model-based clustering to Bayesian clustering, because many of the references that the
authors cite as examples of Bayesian clustering in their Section 1 are not specifically Bayesian,
but are model-based, and because most clustering done in practice is heuristic rather than
model-based. That is the big dichotomy in the clustering literature, rather than the Bayesian-
frequentist one. For recent reviews of the literature on this topic, see Fraley and Raftery (2002)
and McLachlan and Peel (2000).

I will start by summarizing the main features of the paper and highlighting what I see as
some of its most important contributions. I will then address the issue of whether dimension
reduction and clustering should be done separately (as the authors do), or together, and suggest
that simultaneous solutions are possible. I will also discuss the nature of the hierarchical
agglomerative clustering that the authors used as a comparison method. Finally, I will discuss
the relative advantages and disadvantages of maximum likelihood via the EM algorithm, and
fully Bayesian estimation via MCMC, for model-based clustering.

2. Highlights of the Paper. The paper addresses the important problem of clustering high-
dimensional data, i.e. n×p data matrices containing J groups, where the dimension, p, is large
relative to the number of data points, n. The work is motivated by three examples: clustering
of electron microscope images, where n = 400, p is in the tens of thousands, and J = 4;
lymphoma gene expression data, with n = 96, p = 4, 026 and there are 2 groups; and leukemia
gene expression data, with n = 38, p = 6, 817 and there are 2 groups.

The method proposed is as follows, in brief. The number of groups, J , is taken to be known.
1. Extract the first k0 principal components. In the examples, k0 = 8 or 16.
2. Fit a mixture of multivariate normal distributions to a subset of the k0 principal components.

The covariance matrices are taken to be unconstrained.
3. The subset of the principal components to be used is treated as a parameter, and estimated

using the Markov chain Monte Carlo model composition (MC3) algorithm of Madigan and
York (1995). This is a Metropolis-Hastings algorithm over the discrete space of possible
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subsets of the principal components, in which the mixture model parameters are integrated
out analytically.

4. Taking the first k principal components, rather than an arbitrary subset, is an option, called
anchor mode.

5. Bayes factors can be used to choose a Box-Cox transformation of the variables.
A simulation study was carried out, in which n = 200, p = 9 and there were two groups.

This gave good results, but in a situation very different from the motivating examples. The
method was applied to the motivating data sets, with encouraging results.

The two biggest contributions of the paper are methods for variable selection and for the
selection of transformations in model-based clustering. The results show clear gains when
variable selection is used in clustering, over the approach when all the variables are used. This
is similar to the situation in regression, where it has been shown that one gains by doing variable
selection or model averaging in a Bayesian context (e.g. Hoeting et al. 1999; Clyde 1999). The
method proposed for selecting transformations makes a lot of sense.

3. Dimension Reduction and Clustering: Together or Separate?. The authors first perform
principal component analysis on the full data set. They then select the first k0 principal compo-
nents, where k0 is very small relative to the total number of principal components, and they then
do clustering on the resulting reduced data set. This is simple and appealing, and gives good
results in their simulations and examples. It is worth pointing out that this is actually a very well
known general approach in the clustering literature and goes back a long way (e.g. Chien 1978;
Everitt 1974; Schnell 1970; Tyron and Bailey 1970). The originality of the present approach
is that after the first k0 principal components have been extracted, further variable selection is
carried out simultaneously with the clustering.

However, Chang (1983) has shown that the practice of reducing the data to the first prin-
cipal components before clustering is not justified in general. He showed that the principal
components with the larger eigenvalues do not necessarily contain the most information about
the cluster structure, and that taking a subset of principal components can lead to a major loss
of information about the groups in the data. Chang demonstrated this theoretically, by simula-
tions, and also in applications to real data. Similar results have been found by other researchers,
including Yeung and Ruzzo (2001) for clustering gene expression data, and Green and Krieger
(1995) for market segmentation.

This point is illustrated in Figure 5. This is a simulated two-dimensional data set in which
there are two clear groups. The first principal component is the diagonal line with equation
roughly y = −x that separates the two groups. This first principal component accounts for
about 90% of the variance, so consideration of the eigenvalues of the covariance matrix would
often lead to collapsing the data to the first principal component only. But if this were done,
it is clear that all the cluster information would be lost. In fact, all the cluster information is
contained in the second principal component, which accounts for only a small proportion of the
variance.

Of course, Liu et al. do not use only one principal component; they use k0 = 8 or 16.
But they are reducing data with thousands of dimensions to 8 or 16; how can we be sure that
something similar to Figure 1 is not happening, on a much larger scale? In their examples, this
does not seem to be the case, but the other papers I have cited provide evidence that this can
happen in practice.

This also suggests that the choice of k0 is crucial in practice, and I wonder how the authors
propose choosing it so as to avoid problems such as those I have mentioned.

4. Simultaneous Parameter Reduction and Clustering: Is it Possible? It is easy to criticize
strategies such as those of the authors, but dimension reduction of some sort is clearly necessary
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Figure 5. Two Groups in Two Dimensions. All cluster information would be lost by collapsing to the
first principal component. The principal ellipses of the two groups are shown as solid curves.

in these very high-dimensional problems. The authors’ strategy of reducing the data to the first
few principal components is commonly used in high-dimensional clustering problems. So the
question is, what else can be done? Directly clustering data of such high dimension seems
hopeless.

Some initial dimension reduction may be necessary and easy to do in problems like this.
For example, in gene expression data, eliminating the nonexpressed genes is standard practice,
and this can reduce the number of dimensions from around 6,000 to a few hundred in typical
examples. In medical image data, many of the pixels are of no interest because they belong to
the background or to broad features, and eliminating them can reduce the effective dimension
of the problem by 90% or more.

A general alternative strategy is to keep all the remaining dimensions in the analysis, but to
use more parsimonious models for the covariance matrices in the multivariate normal mixture
model. Various such parsimonious models have been proposed, and they allow surprising
flexibility, as well as huge reductions in the number of parameters needed.

Perhaps the simplest such model is the diagonal covariance, or naive Bayes model, in which
Σj = diag(v1j, . . . , vpj). This is quite parsimonious relative to the Liu et al model. For example,
for a 400-dimensional data set (typical of gene expression microarrays when nonexpressed genes
have been removed), it has about the same number of parameters as the Liu et al model with
k0 = 18 principal components. It is also quite flexible: it allows different volumes and shapes
for each cluster, and also different orientations. The main restriction is that the orientations are
axis-aligned. The big advantage here is that clustering is done simultaneously with parameter
reduction. This model has performed well for clustering gene expression data (Yeung et al,
2001).
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A more general, but still parsimonious set of models arises from the volume-shape-orien-
tation decomposition of Banfield and Raftery (1993), in which Σj = λjDjAjD

T
j . Here λj is a

scalar that determines the volume of the jth cluster,Aj is a diagonal matrix of scaled eigenvalues
determining its shape, and Dj is an orthogonal matrix determining its orientation. Each of the
volume, shape and orientation may be constant across clusters, or allowed to vary between
clusters.

If the orientation is the same across clusters, but the volume and shape are allowed to vary
between clusters, a parsimonious but flexible model results. This generalizes the diagonal or
naive Bayes model: the cluster orientations are still axis-aligned, but the axes are rotated, and
the rotation is determined simultaneously with the clustering. The diagonal model would not
work well in the situation of Figure 1, but this generalization would work very well.

Another parsimonious principal component-based approach is the mixture of probabilistic
principal component analyzers of Tipping and Bishop (1999). This allows a different set of
principal components for each group, and these are estimated simultaneously with the clustering.
This seems likely to achieve much of the parsimony of the Liu et al approach, but without the
potential disadvantages pointed out by Chang (1983) and others. This is related to the mixture
of factor analyzers approach of Ghahramani and Hinton (1997); see McLachlan and Peel (2000)
for a review of these approaches.

Finally, I note that using a time series covariance structure for Σj may be very parsimonious
and quite appropriate for some high dimensional situations that have a sequential structure, such
as chemical spectra. The obvious covariance structures of this kind are those that arise from
autoregressive-moving average (ARMA) models, and these are highly parsimonious. Model-
based clustering has been applied with some success to the clustering of chemical spectra by
Wehrens, Simonetti and Buydens (2002), but without using the specifically sequential nature of
the data. It seems possible that exploiting this aspect of the data more fully might lead to more
efficient and even more successful clustering in such applications.

5. The Hierarchical Agglomerative Clustering Straw Man. Liu et al. compare their methods
with complete link hierarchical agglomerative clustering based on Euclidean distances. They
refer to this as hierarchical agglomerative clustering, or HAC, but it is worth noting that this
is only one of many possible kinds of HAC. It is related, although vaguely, to model-based
clustering with the the model Σj = λI , i.e. spherical, equal-volume clusters. This is likely
often be to an inappropriate model for the data.

It is possible to carry out model-based hierarchical agglomerative clustering. One just uses
the likelihood as merging criterion at each stage (Banfield and Raftery 1993). This has been
used recently with considerable success in the high-dimensional situation of text classification
(Tantrum, Murua and Stuetzle 2002).

Thus BCVS’s advantage over HAC in the authors’ simulation study may be due either
to (i) being Bayes, or (ii) using a better model (the unconstrained covariance model) for the
components. Which of (i) or (ii) is correct is an empirical question, and is not answered by
the paper. It could be addressed by carrying out model-based HAC, and comparing the result
of this with BCVS. This can be done, for example, using the MCLUST software available at
www.stat.washington.edu/mclust.

6. Label-Switching. The authors have laid out a Bayesian approach to the estimation of
a mixture model using MCMC. As such, it would seem to be subject to the label-switching
problem discussed, for example, by Richardson and Green (1997). This arises because one
can change the labeling of the mixture components without changing the likelihood. Because
there are J! labelings, it follows that there are J! components of the posterior distribution, which
are identical except for the labeling, if the prior is symmetric with respect to labelings. This
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has various perverse consequences: for example, if the MCMC sampler does truly explore the
posterior distribution, the posterior means of the means of the mixtures components will all be
the same. This problem is not easily diagnosed; for example, label switches do not necessarily
correspond to sudden big jumps in the MCMC chain.

In the vanilla mixture model, various solutions to the label-switching problem have been
proposed (Celeux, Hurn and Robert 2000; Stephens 2000), and these seem to work quite well.

I would be interested in the authors’ comments on this problem. On the face of it, it seems
as if it invalidates their method in its current form. I wonder if the authors feel that the approach
could be rescued using some of the proposed solutions to the label-switching problem; could
these be adapted to BCVS?

7. MLE via EM, or Bayes via MCMC?. Several of the groups active in research on model-
based clustering now focus more on maximum likelihood estimation via the EM algorithm than
on Bayesian estimation via MCMC. These include the Grenoble group (e.g. Celeux, Chaveau
and Diebolt 1996), the Queensland group (e.g. McLachlan and Peel 2000), the Microsoft
Research group (e.g. Cadez et al 2000), and our own group at the University of Washington.
This is surprising, because of the appeal of the Bayesian framework and because several of these
researchers had earlier adopted Bayesian MCMC approaches to the model-based clustering
problem (e.g. Bensmail et al 1997). How can we explain this?

For estimation, the two approaches give similar results in many situations. Both have
strengths and weaknesses. The EM approach is often simpler to implement, particularly when
the components of the mixture are complex. The Bayesian approach requires the additional
work involved in prior specification and the assessment of prior sensitivity, which may not seem
very rewarding if similar results are obtained without using a prior. For example, Liu et al use
the prior

µj ∼ N(x0, 100Σj).

This seems extremely spread out. How sensitive is the posterior for the principal components
chosen to this choice, for example to the choice of the constant 100? The Bayesian approach
also suffers from the label-switching problem mentioned earlier.

The Bayesian approach also has advantages. In model-based clustering, the MLE of Σj

can be degenerate, with zero or near-zero eigenvalues or diagonal elements, yielding infinite or
near-infinite likelihoods, corresponding to small and/or highly linear clusters. By specifying
a prior for Σk, a Bayesian approach can alleviate this by effectively smoothing the likelihood
so that its many uninteresting infinite spikes are removed. Similarly, the Bayes estimates of
posterior cluster membership probabilities, p(Jj |xi), take account of parameter uncertainty, and
so are more accurate and less extreme towards 0 or 1.

But the biggest advantage of the Bayesian approach lies in model selection, model averaging
and hypothesis testing, rather than estimation. Liu et al have shown this convincingly in their
treatment of the selection of the principal components to be used. In this regard, the good
performance of the anchor mode is striking. Do the authors have any thoughts on how general
this is?

Throughout, the authors have taken the number of clusters to be known. They point out
that a Bayesian approach could solve this also, and mention the use of BIC (Fraley and Raftery
2002; Yeung et al 2001) as a possibility. As they say, this is cheap computationally and has
given good results in many applications. It could be adapted to variable and transformation
selection as well. Its use for transformation selection might require the calculation of a more
exact Bayes factor.

Steele (2002) has derived a unit information prior for model selection in mixtures, and in
simulation studies he found that Bayes factors based on it gave similar performance to BIC. This
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provides both some further justification for BIC, and a basis for possible further refinements of
model selection methods in model-based clustering.

P. L. IGLESIAS and F. A. QUINTANA (Pontificia Universidad Católica, Chile)

This paper proposes a Bayesian clustering procedure after transforming the data via PCA.
The number of factors to be included is considered random and therefore part of the inference
problem. The goal is to search for homogeneous groups. Under BCVS the transformed vector
via PCA is modelled as a mixture of gaussian distributions with Dirichlet-distributed weights and
conjugate style priors for mean vectors and covariance matrices. We congratulate the authors
for an excellent piece of work, which not only contains novel material, but also opens the door
to a number of potentially fruitful research topics.

BCVS involves highly dimensional parameters and many variables. It is then natural
to wonder about sensitivity on prior specification and robustness of the clustering method to
departures from the gaussian mixture model. Concretely,

1. How would the clustering structure change under different choices of the prior f(k) for the
number of components? Would it be possible to elicit such prior in a fully Bayesian way,
that is, without carrying out a pre-exploratory data analysis? Perhaps a natural alternative
is to perform a reference analysis, which is not necessarily equivalent to a uniform prior on
k.

2. Much of the structure in the gaussian mixture model is preserved for some elements in the
class of multivariate elliptical distributions, without the need of using Box-Cox transfor-
mations. In this case, we anticipate some changes in the clustering structure. For instance,
with heavy-tailed distributions we would expect some points to shift to different clusters,
and maybe even less clusters than in the gaussian case.

3. An alternative way to produce clusters consists of using product partition models (PPM)
after the k principal components are chosen. An advantage of this method is that the number
of clusters J does not need to be known in advance.

DANIEL PEÑA (Universidad Carlos III de Madrid, Spain)

This is a very interesting paper with many insights and I would regret that the method
proposed in the paper may fail because the initial step of the procedure. Working with the first
k0 principal components of the data may lead to loose very useful information, as the directions
of maximum variability need not be the directions most useful for clustering.

An interesting direction for clustering is one in which the projected points cluster around
well separated different means. Note that a univariate sample of zero-mean variables of size n
will have maximum separation in two groups when it is composed of n/2 points equal to −a
and n/2 points equal to a, and then the kurtosis coefficient of the sample will take its minimum
value, equal to one. Thus, directions of minimum kurtosis coefficient seems useful to show
possible clusters.

Another interesting direction for clustering will be the one in which the majority of the
points cluster around a common mean, but there are some small groups of points at both sides
of the main group. In particular we may have a central group and some outliers. In this case, the
kurtosis coefficient of the distribution of the data will be large. Thus, interesting directions for
clustering are those in which the projected data have either a small or large kurtosis coefficient
and a powerful cluster method for high dimensional data can be obtained by projecting the data
in the directions with maximum or minimum kurtosis coefficient (see Peña and Prieto, 2001). It
can be shown that this method has some optimal properties when the data have been generated
by mixtures of elliptical distributions. For instance, when the data are generated by a mixture



272 J. S. Liu, J. L. Zhang, M. J. Palumbo and C. E. Lawrence

of two normal distributions with the same covariance matrix the direction which minimizes the
kurtosis of the projection is the Fisher linear discriminant function (Peña and Prieto, 2000).

Given these results, I would suggest to the authors that instead of selecting the first k0
principal components select those components in which the projected data have the largest or
the smallest kurtosis coefficient. Alternatively, instead of working with principal components,
they can directly take as variables the projections of the original data on the k0/2 orthogonal
directions of maximum and minimum kurtosis coefficient.

CHRISTIAN P. ROBERT (CEREMADE, Université Paris Dauphine,France)

It is quite exciting to track the growing importance of mixture modelling in the Bayesian
literature and, in particular, at the Valencia 7 meeting. This paper is an exemplary illustration of
the versatility of mixture modelling, since this modelling applies to many areas from clustering
to nonparametric settings. My comments will mainly be limited to relevant works in the area,
although I first want to point out that the computation of the Bayes factor (5) using improper
priors is invalid, stricto sensu (Robert, 2000).

First, the authors rightly perceive the relevance of using Principal Components (PC) to
reduce the dimension of the model and they introduce the compelling idea of anchor. To my
opinion, using PC is an almost compulsory step as fitting a mixture model to a high dimensional
dataset will almost certainly lead to a large number of components, unless some strong and
well-documented structure is available. During the talk, I was wondering, however, how the
exploratory technique of PC (and the concept of anchor) could be embedded within a more
Bayesian Decision Theory framework.

Second, the authors note that integrating the parameters out lead to improved performances
of the sampler. There is more to this point: we showed in Casella, Robert and Wells (2000) that
this integration provides an easier exploration of the space of the missing variables (or of the
corresponding sufficient statistics), and exhibited a quite peculiar phenomenon of concentration.
In the cases we studied, it indeed appears that the marginal posterior distribution of the sufficient
statistics, (

∑
i Ij(Ji),

∑
i Ij(Ji)xi,

∑
i Ij(Ji)xixi

T ) say, is highly concentrated on a few values,
and thus that partitionned sampling is very helpful in uncovering the important parts of the
missing variables space.

Third, Celeux, Hurn and Robert (2000) also implemented tempering in this setting, follow-
ing Neal (1996). The algorithm in §3.2 of our paper is essentially the same as the Tempering
Sampler of Liu et al. , with the difference that the level exchange is operated at every step of
our algorithm. The motivation for using tempering there was to evacuate the label switching
problem that plagues mixture posterior simulation, particularly in higher dimensions.

REPLY TO THE DISCUSSION

We thank all the discussants for their exciting ideas, sharp questions, and knowledges in the area
of model-based clustering. As Raftery rightly pointed out, many of the methods we labeled as
“Bayesian” are in fact EM-based likelihood method based on a complete statistical model. To
us, there is no major distinction between the two approaches except that the complete Bayesian
approach often wins in giving one the full inference. Besides providing a principled approach
to model selection, the Bayesian procedure is also more flexible in incorporating complex
structures, such as the one for Box-Cox transformations.

Although the EM-based approach appears to have avoided the troubles of prior specifications
and “label-switching” nuisance, it does so by sacrificing its inference power — now the inference
has to be based on certain asymptotic results which may not hold particularly well for mixture
model fitting. Being able to assess the sensitivity to prior specifications should be seen as a
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virtue of the Bayes approach, although it might give the researchers (us) some additional hassles.
In other words, the EM approach in a way only hides the problems, not really solves them. If
the Bayesians are willing to take an asymptotic approximation in the place of the (perhaps)
more accurate MCMC computations, they will not have any label-switching problem at all —
asymptotically the posterior modes corresponding to different labeling can never communicate.
It is indeed true that in the finite-sample case the label-switching problem causes the Bayesians
some headache, but we have not yet seen a problem where this difficulty causes any material
damage. Furthermore, a cheap and effective way to get around the issue is to artificially impose
an order among the clusters (e.g., based on the ordering of the first component of the mean
vector of each cluster).

Professor Robert objected to our use of improper priors in transformation selections. Al-
though what Robert pointed out is a well-known and general phenomenon for Bayesian model
selections, our situation is slightly different. As explained in Section 4, the ratio of the Bayes
factors needed for the transformation selection is perfectly proper, as long as the priors for the
parameters in the transformed and untransformed models are “equally” noninformative. One
can probably also calibrate these priors to make them “equally” informative and proper. Us-
ing noninformative priors here, however, makes practical sense: if we are not sure whether we
should impose a Gaussian model for the original data or the logarithm of the data, it is very likely
that we are completely ignorant about the mean and variance parameters of the corresponding
model.

Both Raftery and Robert pointed out the “incompatibility” and potential dangers of using
the exploratory PCA method together with the general Bayesian framework. Although we agree
with Robert that a coherent Bayesian model encompassing both PCA and mixture modeling
would be a more aesthetic thing to do, we are skeptical whether such a full Bayesian paradigm
exists that can completely dominate the approach we took. Regarding the counter-example
shown by Raftery, we feel that if distinctions among different clusters cannot be discerned
with the first 10 to 15 principle components, it is perhaps more fruitful for us to re-examine
the underlying science and revise the model accordingly than to search for a more omnipotent
model. Nevertheless, the suggestions made by Professors Peña and Raftery are very interesting
and worth further exploration. In particular, Peña’s idea of choosing judiciously additional
“special” directions according to either kurtosis or other statistics can be an important addition
to the current BCVS framework.

Microarray analysis provides for statisticians an excellent entry point to bioinformatics/
computational biology. We would like to take this opportunity to mention a few other important
bioinformatics problems in which statistics is likely to play an important role. These include, by
no means exclusively, the protein folding prediction, multiple sequence alignments, transcription
factor binding-sites identification, gene regulatory network constructions, evolutionary analysis,
and the analyses of single nucleotide polymorphisms (SNPs) in the human genome. Some related
references can be found in Liu (2002).

The prediction of protein tertiary structures is of great importance to drug designs and
the basic biochemistry. Although many proteins’ structures have been worked out by X-ray
crystallographers, these only account for a small part of the protein universe. Multiple sequence
alignment is still the main tool for protein or DNA sequence analysis, which has been at the
center of computational biology for about 30 years. With the completion of the human genome
and genomes of many other species, the task of organizing and understanding the generated
sequence data through multiple alignment becomes even more pressing and challenging. The
control of genes’ expressions is fundamental to cell survival, growth, and differentiation. An
important form of control is exerted by interfering with genes’ transcriptions by specialized
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proteins called the transcription factors, which recognizes short DNA segments in front of
genes. Predicting novel transcription factor binding sites and deciphering genetic networks are
all important steps towards the general goal of understanding gene regulation. As the great
evolutionist T. Dobzhansky pointed out: nothing in biology made sense except in the context
of evolution. Evolution study can not only help us understand where and how we come from,
but also shed light on protein functions and cellular processes. The SNPs refer to frequently
occurred (one in 1000 bases) single-base variations among the genomes of different individuals.
Because of the availability of high through-put SNPs detection and analysis tools and their great
potential in mapping genes responsible for complex diseases, the SNPs have recently attracted
much attention from scientists. Statistical modeling and computation are crucial to fully realize
the power of SNPs.

Now is clearly an exciting time for statisticians, especially Bayesian statisticians. We are
challenged by many important biological and other scientific problems through massive amount
of data, which are often associated with in-depth subject knowledges; yet, we are equipped
with the powerful Bayesian modeling machine and unprecedented computational tools, such as
MCMC and EM algorithms, and computer power. We hope that our paper and the discussions
can get some of the readers interested in looking into a broader array of bioinformatics problems.
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