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We consider the problem of estimating the effects of an intervention on a time series vector sub-
jected to a linear constraint. Minimum variance linear and unbiased estimators are provided for
two different formulations of the problem—(1) when a multivariate intervention analysis is carried
out and an adjustment is needed to fulfill the restriction and (2) when a univariate intervention
analysis was performed on the aggregate series obtained from the linear constraint, previous to
the multivariate analysis, and the results of both analyses are required to be made compatible with
each other. A banking example that motivated this work illustrates our solutions.

KEY WORDS: Accounting constraint; Linear estimators; Multivariate intervention; Restricted

estimation; VARMA models..

Intervention analysis is nowadays a standard technique to
study the effects of known events on a time series. It was
proposed by Box and Tiao (1975) within the context of
autoregressive integrated moving average (ARIMA) mod-
els. Since then, this technique has been extended to vector
autoregressive moving average (VARMA) models by Abra-
ham (1980) and to structural time series models by Harvey
and Durbin (1986). Box and Tiao (1976) provided a test
statistic to check if a given intervention has produced a
statistically significant impact on a univariate time series.
This test was generalized to multiple time series by Aczél
(1992).

In this article we consider a multiple intervention anal-
ysis of a time series vector whose elements satisfy some
exact linear restrictions. This situation was found in the
study that motivated this work. A banking institution car-
ried out a promotional campaign of its deposit and savings
service and wanted to identify the possible effects on (a)
new accounts, (b) stock variations, (c) cancellations, and (d)
total amount. Because the increase in total amount from the
previous to the current month is given by (1) + (2) — (3),
a linear restriction is satisfied by the vector of time series
every month. This fact should be taken into consideration,
first to achieve accounting-consistent results and second to
make use of all the information available to increase the sta-
tistical efficiency of the analysis. Similar situations may be
faced when studying macroeconomic time series like gross
domestic product (GDP) at the sectorial level (the sum of
the sectors equals total GDP) or a consumer price index
(CPI) at a disaggregate level (a weighted average of the
disaggregated indexes equals the general CPI).

This article is organized as follows. Section 1 presents
two optimal solutions to the problem, valid under different

assumptions. These solutions are then illustrated by means
of some theoretical examples. Section 2 is dedicated to an
empirical application involving a set of data that refers to
the aforementioned banking situation. Section 3 concludes
with some final remarks.

1. OPTIMAL LINEAR ESTIMATION OF
INTERVENTION EFFECTS

Let Z; = (214,....21:)" be a vector of k time series vari-
ables observed at equispaced intervals of time ¢t = 1,.... N.
We shall assume that {Z,} admits the VARMA model

®(B)(Z; — ) = O(B)ay, (1)
where @y = (g, ..., pre) 18 @ vector representing the
level of the multiple time series and a; = (ay;.. .., akt)’

is a zero-mean white-noise process with positive definite
variance—covariance matrix y_ . The matrix polynomials in
the backshift operator B (such that BZ; = Z;_; for every
Z and t) are given by ®(B) = I, - B —--- — ®,BP and
O(B) =1, —0,8B —--- — ©,B% The determinantal equa-
tion |©(z)| = 0 has all its roots outside the unit circle. An
alternative way of expressing (1) is as

Z; — pr = ¥(B)ay, ()

where ¥(B) denotes an infinite polynomial satisfying
®(B)¥(B) = ©(B). If |®(x)| = 0 has all its roots out-
side the unit circle, {Z;} is said to be stationary and (2) is
well defined. Otherwise the process is nonstationary, and
we shall assume that the generating process started at some
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finite time point in the past, with fixed initial conditions,
for (2) to be well defined.

Let X ={Z,,...,Z1_,} be the dataset observed before
the specific time point ¢ = T at which an inter- vention
occurs. Then let Z(WD = (Z0WD" - ZGYD'y be the vector
of unobserved variables without intervention (WI) effects
from time T onward. It is well known that E(Z(T\Yll) wnlX)
provides the linear forecast of Z‘TVXIIL , With origin at ¢ =
T — 1, h steps ahead, with minimum MSE (mean squared

error) and

h—1
(WD) 7 (WI) _
Zy i~ EZp 4| X) = Z Viar 14h-;
j=0

forh=1.2...., (3)

where the ¥;’s are the matrix coefficients appearing in
¥(B). This equation holds valid for both stationary and
nonstationary processes, on the assumption of no change
in the future behavior of {Z;}. When an intervention takes
place at t = 7, (3) becomes

h—1
ZT—1+h -— E(ZT_1+h|X) = NT—-1+h + Z lIIjaT*I"'h“‘j
j=0
forh=1,2...., (4)

where nr_1,, denotes the & vector of intervention effects
at time t = T — 1+ h, for h = 1.2,.... Every element of
this vector is assumed to follow its own dynamics and can
be written as

(L= 0B = = 8or  B)(1 = B,
= (wiotwi B+ + wi.siBS‘)Pt(T) (5)

for i = 1,....k, where Pt(T) =1ift =7 and Pt(T) =0
otherwise. Besides, 7;, b;, and s;, as well as the §’s and w’s,
are coefficients that depend only on the observed behavior
of the ith variable. In particular, it is assumed that {1 —
di1x — -+ — 8; ».x"") = 0 has its roots outside the unit
circle, fori =1,... k.

Now let us note that E(Zr_ 144/ X) = E(Z3),1X) be-
cause X does not convey any information about the inter-
vention. Thus, (3) and (4) can be written as

ZOWD _ p(ZWD|X) = ba
and Z— E(ZWD|X) = n+ VPa, (6)
where Z = (Z/,...,Z'), and similar definitions hold for

Z™WD 7, and a. The k(N — T + 1) x k(N — T + 1) matrix
U is lower triangular with 7, on its main diagonal and ¥;
on its ith subdiagonal, fori=1,...,. N =T.

We suppose that a univariate time series {y;} is also ob-
served and is related to {Z;} by

Y = C,Zt fort = 1,..., N, (7)

with ¢ = (c1,...,cx)’ # 0 a known constant vector that
defines the form of an accounting constraint among the
multiple time series under study. The set of restrictions (7)
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applying for ¢t =T,..., N can be expressed as
Y =CZ with(C = I ® C/, (8)

where Y = (yr,....yn).® denotes Kronecker product,
and C is a full-rank matrix.

The problem lies in estimating the intervention effects #,
where

Z=27ZWD 4 g, )
These effects will be represented by the linear form

n=Lg,

where L is a k(N — T + 1) x { matrix of coefficients that
depends on the polynomial in the left side of (5) and 3
is a fixed vector of dimension [ < k + s; + --- + s, con-
taining the w’s. Of course, the estimation procedure must
take into consideration the restrictions (8). In fact, (8) pre-
cludes the application of a multivariate intervention analysis
on the augmented time series vector {(Z;,y:)'}, which, at
first sight, could be deemed appropriate, but the estimation
would not be possible because of the accounting relation-
ship (c/, ~ 1)(Z}.4,)’ = 0.

(10)

1.1 Primary Solution

We suggest carrying out a preliminary estimation of the
w’s, the §’s, and the VARMA model parameters of {Z,}.
disregarding the restrictions (8). This joint estimation pro-
vides the matrices ¥ and ¥, as well as the values of the
4’s, all of which are henceforth assumed known. The pre-
liminary estimation of the w’s produces an estimated vec-
tor b = (&1,0,. -+ D150y Whi0s - - > Whs, ) and its corre-
sponding (positive definite) estimated variance—covariance
matrix var(b) = ¥,,. The b estimator is unbiased, although
inefficient, because it does not take into account the restric-
tion. It is related to 3 by means of

b=38+u, (11)

where u is a random-error term uncorrelated with Z such
that E(u) = 0 and var(u) = Z,. Even though our main
interest is to estimate 3, we realize that (9) and (10) imply

Z=2" 413 N (12)

so that Z(WD and 3 are linked together and must be esti-

mated simultaneously. Similarly, (6) allows us to write
E(ZMY|x) = 20D e, (13)

with e = —Wa such that var(e|X) = V(Iy 741 ® )V =
Y. and E(eu’|X) = 0.
We now put Equations (13) and (11) together to form the

system
(FETEY (B (). e

and (8) can also be expressed as

Y = (CcCL) ( Z™ ) .

3 (15)
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This situation is related to the restricted-parameter estima-
tion problem of linear regression (see, for instance, Se-
ber 1977), although here we are not just estimating fixed
parameters but also forecasting a random vector. A gen-
eral solution to this problem is provided in the Appendix
for completeness. Thus, (14)~(15) are of the form (A.l)
in the Appendix, with ¥y = 0 and H = (C CL), an
(N—-T+1) x [k(N—-T+1)+!] matrix withrank N =T +1,
so that expressions (A.2)—(A.3) can be used and yield the
following results:

ZVD = p(ZzMWDX) + 2,.0'A 7!
x [Y — CE(Z™V|X) — CLbl
— (Y - C‘Lb) (Ik(1\7—T+l) - AZC)
x E(ZWD|X) (16)
and
B8 =b+ S, L'C'ATYY — CE(ZMWV|X) — CLb)
= As[Y — CE(Z'™V X)) + (I, — A3CL)b,  (17)
where
A=CS.C +CLE,L'C'. A, =%.C'A7Y
and A3 = X, L/C'A™ L (18)

Furthermore, the MSE matrix ©, = E[(Z(WD — Z(WD)

(ZWD — ZOWDY] | the variance—covariance matrix Y =

var(3), and the covariance matrix .3 = FE[(ZWD
ZWD)(B - B)'] is given by

X. = (IK(NquLl‘) - Azcj)ze
Sy = (I — A;CL)S,.
—-A.CLY,.

In summary, to use this solution in practice we should
apply the following two-step procedure: (1) Carry out a pre-
liminary multivariate intervention analysis on {Z;}; that is,
estimate first a VARMA model with data from ¢ = 1 up to
t = T — 1 and obtain E(ZWY|X), then include the inter-
vention effects in the model and reestimate it with all the
available data to obtain ¥.%,.%,, L. b, and ¥,. (2) Take
into account the restrictions among the series by revising
the estimates using (16)—~(19).

Remarks: (1) The precision of 6 is at least as high as that
of b because X, — ¥ 3 is a positive semidefinite matrix. (2)
The restriction Y = C(ZWY + LB) is fulfilled by our so-
lution, as required by (15). It does not follow, however, that
7 = ZWD 4 L3, even though (12) assumes that it happens
with the true values. Therefore, Z(W" should not be consid-
ered as a proper series adjusted for intervention effects. (3)
In case we were indeed interested in imposing as restriction
(@) Z = Z™WD + L3 instead of just the accounting constraint
(b) Y = C(Z™WD + L3), we must realize that (a) implies (b)
for any matrix C. Therefore (a) is more restrictive than (b),
which holds only for a particular C' matrix. Of course, the
corresponding solution for (a) can be obtained by the result
in the Appendix, in the same way we obtained (16)—(19),
and it is given by (16) and (17) when C =/ and Y = Z.

1.2 An Alternative Solution

We now consider a different formulation of the problem
that takes into account the results of a univariate interven-
tion analysis performed on the series {y;} of (7). We may
need this solution when, for instance, the univariate time se-
ries {y;} has been analyzed first, obtaining the (N — T +1)
vector 7, of estimated intervention effects. Afterwards, a
complementary multivariate intervention analysis of {Z,}
is carried out, and due to the link between {y;} and {Z,},
we want the results to be compatible with those obtained
from the univariate analysis. To do so, we add the additional
(unbinding) restriction

My = CLB + ¢, (20)

where € is a zero-mean random vector uncorrelated with
Z™WD and (e/, ') of (14). The (positive definite) variance—
covariance matrix var(e} = X, is known and given by . =
var(#),). We consider now the system (14) together with the
new set of restrictions

Y C CL 7, (WD) 0
<m>:<o CL>< 3 )+(E) @1

in place of the previous (15). Then we realize that (14) and
(21) are such that the two equations pertaining to 3—that
is, (11) and (20)—do not involve the known datasets in (13)
and (15). Therefore, we can first estimate 3 by applying the
result in the Appendix to (11} and (20); that is,

B =b+ T, L'C(CLY,L'C' +¥.) (7, — CLb)
= Affy + (I - AGCL)b. (22)
with
25 = (I - AjCL)T
A% = 2, 0CNCLEL'C + )7, (23)

where the superscript A stands for alternative solution and
+ for Moore—Penrose (generalized) inverse.

Once 3* and T4 have been obtained, we can write
B = BA + 3, where €5 is a zero-mean random vector un-

correlated with e and Z™? and with var(e3) = £5. Hence
the first row of (21) becomes
Y - CLB* = CZWY + ClLeg. (24)

and using (13) we obtain (by the result in the Appendix)

ZWDA = B(ZWVD X)) + £.0/(CE.C + CLEAL/ ¢!

x [Y - CLB" — CE(Z™V| X))
= AMY - CLBY)
+ Tev—re1y — AXC)E(ZVV|X (25)
with
E? = (Ik(N—T+1) - A?C)E
AR = B.0(CE N+ CLESLC) T (26)

Thus, to apply this solution in practice, we suggest a two-
step procedure as with the primary solution. In the first
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step we now require an additional univariate intervention
analysis of {y,} basically to obtain 7, and X..

Remarks: (1) None of the restrictions imposed by 7}, and
Y are binding; therefore, they are not fulfilled exactly by
B~ and ZMWDA_ (2) A variant of this alternative solution
might be of interest in some cases in which the accounting
constraint must be met exactly. In such a case all we have
to do is to assume that once 3% has been obtained it has a
fixed value so that e5 = 0 in (24). As a result, Expressions
(25)—(26) remain valid with Zg\ = 0. (3) We should empha-
size that the univariate intervention analysis was assumed
to be carried out with no awareness of the behavior of {Z;}.
Therefore, there may be some cases in which (20) would
not make sense in the light of the information provided by
{Z,}—for instance, when an intervention effect is distin-
guishable on a particular series element of {Z,} that has a
small weight on the aggregate series so that such an effect
is not appreciable on {y; }. In that case we suggest either re-
vising the univariate analysis, paying attention specifically
to the intervention in consideration, or else discarding the
univariate results and employing our primary solution.

1.3 Some lilustrative Theoretical Examples

To shed some light on the estimates produced by the pre-
vious solutions, let us consider a very simple example of a
bivariate series driven by a white-noise process; that is,

(2)-(2)+(z) wms ()
z2t M2 ao¢ Jg12 03

Suppose that both series are subjected to an intervention
producing a pulse effect at time 7" and that the aggregate
series is obtained as y; = z; + z9;. Here we have ¥ =
I E(ZWD|X) = (1. o) fort =T, T+1,...,N;np =L
with L = (15,04, . ... ()2)/, and ﬁ = (_wlo,(/.)Q())/, while Y =

CZ with C = Iny_741 ®c and ¢’ = (1,1). A preliminary
intervention analysis on {Z;} produces b = (&9, w20) SO
that Expression (11) holds, and let us call

v 01121) T(12)
u 2 .
0(12) Iy

Then, by calling of = of + 2012 + 03.00,) = oy +

20(12) + 0%y, a0 = (0} + 012) /(08 + () awy = (0f,) +

o012))/ (03 + 0fy)), and §; = (07 + a12)/0f for i = 1,2, we

can write
Xy
(6D)

5
Oynv-1) IN-T® ( 5; )

(87
Ay = ‘”) 1.0..... 0),
7 (“(2) (L.0.....0)

and using (16) we obtain

Oax(N=T)

FWn _ [ # + a1 (yr — L — p2 — @10 — @20) )
T po + ao(yr — (1 — p2 — @10 — @20)
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and

> (W1
ANBIE (1 + 00 (yr — 1 — 2o + S2(yr — g1 — p2) )
fort =T +1.T+2....,N.

Similarly, the intervention parameters are estimated as

3= é?w + oy (Yr — p1 — p2 — @10 — Wao)
W20 + 2y (Y1 — 1 — 2 — @10 — Wao)

_ { o
W20

with variance—covariance matrix

2 2 (.2 .2
5, = oy T afy (g + ) —
h T2y — @y (of + 0(20)) ‘7(22) - “(22)((’3 + 0(20))

A few comments about these results are now in order.

On the one hand, because «a; + Ay +az +ap) = 1,
we see that 2%’1) — Q1o + éé\}/l) — @y = yr and sim-
. : ~(WI) (W)

ilarly as 61 + 02 = 1, we get 2, ' + Z3p ° = y for

t=T+1.....,N. Thus, the restriction imposed by the ag-
gregated series is strictly fulfilled. On the other hand, both
wio and woo take into account the preliminary estimates
and adjust them by adding a weighted discrepancy between
yr—m—pz = [ar— B2y 1X)]+ 22y — E(25y V| X)] and
@10 + @20. The involved weights, a1y and oy are ratios
that increase (decrease) with respect to o3 + 0(20). Further-
more, the variances of w9 and wqg are clearly smaller than
those of @,¢ and wag.

Let us suppose now that a univariate intervention analysis
has been carried out on {y;}, as well as a bivariate interven-
tion analysis on {Z}. Then the alternative solution is called
for with ), = (w,0,....0)" and ¥. = diag(s2.0,....0)
given. In this case we observe that

(CLEL'C' +5.)*

1 —
_ 2 2\—1
= (0’(0) + O.w) ( O,N—T O(ZV—T)X(JV—T) ) '

Hence, if we call 4,y = (afi)+a(12))/(a'(20)+ai) fori=1,2,
we obtain

thus
BA _ &10+5(1)(w_u~)10’€120> _ ( “A"?O )
@20 + Oy (w — @10 — Wa2o) oy
and
vh = 0(21} —~6(2})(U(20)2+ 03)2 2 2 » 2 24]-
s o) — 01)0(2) (070 +05) 0(ay — 079y (070) + L)
Then, to obtain Z{WDA  we first calculate
(CE.C'+ CLEGL'C) ™

_ < (U?O) + Ug)/[a(%aé?o) +a2(of + ”?0))] - )

—2
N-T oy In-T
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and define §7 = 6ia§((ffo) + Ui)/{agafo) + o%(0f + 0(20))}
for ¢ = 1, 2. Therefore we get

(i)
/1}& — 5;

® 0
OE(N—T) IN—T 2 ( (51 )
2

Oz2x(N—1)

so that

ZWDA _ ( 07 (yr = — p2 — wiio - u}"%)
! pe + 85(yr — p1 — p2 — @iy — why)

and

Z(WDA _ ( p+ 0 (yr — = p2) )
! p2 + 82(yr — p1 — p2)
fort=7T+1,T+2,...,N.
We can see here that é‘i?/)‘A + 20VDA oLy unless 02 = 0,
in which case §; = ¢; for i = 1.2. As it happens with
the primary solution, to obtain &f}, we start with & and
add a weighted discrepancy, in this case between w and
(@10 4+ @20). Besides we notice that (02 + 0(20))(5(1-)
(of + 0'(20))(1(1) for i = 1,2 so that the weights involved
in 3% are larger (smaller) than those used to get 3 when
og is larger (smaller) than 2. A similar reasoning is ap-
plicable to the reduction (increase) in variance shown by
Y3 and Eg. In particular, when o2 = 0 (see Remark 2 of

the alternative solution), B turns out to be more efficient
than 3.

2. A BANKING APPLICATION

The data considered in this application were obtained
from a banking institution (Bank X) and are presented
here in disguised form for confidentiality reasons. They are
monthly observations on new accounts {NA,}, stock varia-
tions {SV,}, cancelled accounts {CA.}, and total amount
{TA;} from January 1990 to April 1996. The interven-
tion under study is a promotional campaign launched by
Bank X in May 1994 and relaunched in March 1995. In
Figure 1(a) we show {NA,}, {SV.}, and {CA,} together,
whereas Figure 1(b) shows the behavior of {TA,}, which
is obtained as TA; = TA;_; + NA; + SV; — CA;. Thus,
if we let y, = (1 — B)TA;,Z; = (NA;, SV,, CA,), and
¢ = (1,1,—1), we are in the situation considered in Sec-
tion 1.

2.1 Application of the Primary Solution

As a first step, we built a VARMA model for {Z;} with
data fromt = lup tot =T — 1, with T = 53 correspond-
ing to May 1994. The resulting model was (I3 — &, B —
®,B2)(I3 — ®12B™)Z; = v + a; and was estimated by
maximum likelihood with the following results (note that
v==>o(1)u):

0 0 0
$, = | .139(.063) 0 —.744(.300) |,
0 0 .308(.138)

493
(a) MULTIPLE TIME SERIES
6000 : T : v :
soooF ‘ |
) \
4000} " \ /\\ X
=l An
2000—/\//\’ \ WH(U | F/\ ’\\\JM /\J. J\f \
| N | w \/ A\/ N TR
1000+ CA | \’J ' ’ \ )
\’,]/\\ Il \\‘_ \/f\\\,\/‘, L\\\J—\T’\V/ ~ “!\,\, ‘W\A'\
0—‘/\/\1 A p\J\ \ /\] \ ’ﬁ A JJ \‘/ [V
W 1Y
-1000} i L/\/v v v {[/ \V
-2000f V
~3000 10 20 30 20 50 60 70 80
T=53
X10° (b) TOTAL AMOUNT
22 LI T T T T T
ot i
18+ 4
1.6+ J
1.4 1
1.2F 4
" 1
0'80 16 éo 3|0 4‘0 slo 60 7}0 80
T=53
Figure 1. Observed Data: (a) New Accounts, Stock Variations, and

Cancelled Time Series Data, (b) Total Amount Time Series Data.

0 0 0
by =1| 0 0 0
0 .063(.038) 0
0 0 0
D1y 0 .469(.110) 0
0 0 0
1.930.9(113.7)
U= 0
206.2(61.8)
and
492,497  — —
v, =] 56,387 175361 —

—-12,447 21462 13.519

with standard errors in parentheses. To judge the adequacy
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of the fitted model we present both the univariate Ljung—
Box statistics calculated from 24 lags for each individual
series of residuals NA : Q = 26.1: SV : Q = 27.0; and
CA : Q = 15.2, and the Hosking (1980) multivariate port-
manteau statistics with values 102.1 and 180.3 for the first
12 and 24 lags, respectively, that were considered reason-
ably appropriate. The plot of the multivariate residuals did
not show any signs of inadequacy.

This model provided us the following explanation for the
individual series: {NA,;} fluctuates around a constant level
regardless of the past behavior of {Z,}: {SV,} is affected by
the values of both NA and CA in the previous month and by
its own value one year before so that a seasonal fluctuation
is incorporated; {CA;} depends on its own value one month
ago and on the value of SV recorded 2 and 14 months before
the current month, with a variability much lower than those
of the other two series. These results indicate the presence
of inertia in the inflows and outflows of money into the
system. When new accounts are opened, NA increases its
value and a change will be reflected on SV next month. Thus
NA is a leading indicator for SV. Moreover, if cancellations
occur at time ¢ (due for instance, to a promotional campaign
of a competitor bank), they will be reflected in less inflows
from previous accounts.

Second, we tested for significant intervention effects on
{Z,} with the aid of the @Q* statistic proposed by Aczél
(1992). which yielded a value Q7. = 231.2. When com-
paring this figure against a chi-squared distribution with 72
df, we concluded that a significant impact was felt by {Z,},
even though we know that such a distribution must be con-
sidered as an approximation to a true F distribution; see
Lutkepohl (1991, sec. 4.6) in this respect. The specific dy-
namic forms of the interventions for each individual series
were postulated from the empirical evidence provided by
the forecast errors with origin at the time point ¢t = 32 as
compared with their two standard error limits (see Fig. 2).
Besides, subject-matter considerations also gave support to
the following forms of type (5):

NA g = (d'~(}+'“"1-1(131“)Pt(”3/’

: | p(53)
SV e = (@‘2‘0+u“2-1“B]U+W2.MBH)P; )
CA 3 = 0.

Therefore, to use the linear form (10) we employed a 72 x5
matrix L with 1’s in entries (1.,1), (2,2}, (31,1), (32,2), and
(35,2) and with O's everywhere else. The corresponding pa-
rameter vector became 3 = ((,u’]_(), W1.10, W20 W2, 10, wg_“)’.

A VARMA model with interventions was then estimated
and yielded the following results:

) 0 0 0
$, = | .168(.049) 0 —.819(.232)
0 0 .282(.107)

A 0 0 0

by =| 0 0 0

0 .122(.033) 0
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Figure 2. Prediction Errors for the Multiple Time Series: Prediction
Errors and Two Standard Error Limits for each Element of the Multiple

Time Series Vector.
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_ 0 0 0
By = 0 A3(08T) 0
0 0 0

1.946.2(86.7)
U= 0]

308.1(18.2)

167.665  — —
v, = | 77477 167883 —
—14.725  2.721 14410

3.630.8(631.2)
3.402.3(448.9)
2.175.6(262.0)
1.5 )F.Q(()‘)(}.?%)
—1.765.7(344.8)

and
398.390 — — — -
14.370 421,070 — — —
o= | 30,580 32.260 68.650 — —
1.690 1.780 3.800 423.570 —
1.770  59.950  3.980 220 118.870

Again we judged the adequacy of this model by looking
both at the Ljung-Box statistics for each individual series
of residuals with 24 lags—NA : (Q = 23.3.SV : ¢ = 18.3,
and CA : ) = 18.1—and at the multivariate Hosking (1980)
portmanteau statistics for the first 12 and 24 lags with val-
ues 106.1 and 178.3, respectively, which were also consid-
ered appropriate. The plot of the multivariate residuals did
not show any signs of inadequacy. From the latter model we
calculated the polynomial appearing in (2) by solving the
equation ¢(B)W(B) = I. Then we were able to obtain the
matrix £, described after Expression (13), which is required
to work out the proposed solutions. The values of b and X,
can be interpreted as saying that the promotional campaign
of May 1994 increased the amount of both NA and SV
in 3.630.8 £ 631.2 and 2.175.6 + 262.0 units, respectively.
Similarly, the March 1995 campaign produced increases
amounting to 3.420.3 + 448.9 on NA and 1.525.9 & 262.0
on SV. An overshooting effect occurred in SV, however, be-
cause it diminished its value by 1.765.7 = 344.8 units during
April 1995. Thus, the bank’s customers took advantage of
the promotion in March and made deposits in both existing
or new accounts, but part of that money was taken out from
the accounts in April. In fact we may say that the second
campaign served basically to attract new customers because
the deposits of the old customers stayed in the bank only
for one month.
The second step of our suggested procedure was then
applied to adjust the estimates of the intervention parame-
ters according to our primary solution (16)-{(19). Thus, we

495
obtained
H592.6(509.2
R 5 657.5(560. ()
B=| 2.186.0(246.2)
1.747.6(559.8)
—1.656.7(321.2)
and
259,350 e — — —
—370 313.580 — —_ —
Yy=1 —1.550  20.730  60.600 — —
590 —104.460 —4.660 313.370 —
—600 43.100 2280  —9.300 103.160

which, when compared with b and ¥,, allow us to ap-
preciate the effect of considering explicitly the accounting
constraint. In this application we observe that the magni-
tude of the effects remained basically the same, but a sub-
stantial gain in efficiency was obtained. Similarly Figure 3
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Figure 3. Observed. Predicted, and Estimated Data: Elementwise
Comparison of the Observed Data (- - -) and Estimated Data Free of
Intervention Effects ( ).
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allows us a visual comparison of the predicted and esti-
mated series without intervention effects, £(Z™"|X) and
Z WU against the observed series Z. It is worth mention-
ing that an indirect estimation of the intervention effects
on {y:} may be accomplished by calculating #, = CLB
with var(f),) = CLosL'C’. In our example this estimation
produced a 24-dimensional vector 7, with nonzero values
in entries 1, 11, and 12. Thus, the corresponding values
5.778.9 £ 562.9,5,405.1 + 646.6, and —1.656.7 + 321.2 are
interpretable as the effects of the promotional campaign on
the flow series {TA; — TA,_,} for the months May 1994
and March and April 1995.

2.2 Application of the Alternative Solution

We now start by performing a univariate intervention
analysis on {y;}. An ARIMA model with intervention ef-
fects was constructed as indicated by Box and Tiao (1975),
producing as a result

(1+ .258 B?)(1 — .686 B'?)y,
(.126) (.103)

= 1.476.9 + (5.802.7 + 6,161.4 B'"Y — 1,023.1 B'")
(251.7)  (632.9) (632.5) (626.7)

.
% P{(-).B) +

with 6, = 770.9 and Ljung-Box statistic Q(24) = 19.5,
which did not show any evidence of inadequacy. All we
need from this model is the vector #}, containing the esti-
mated intervention effects and its corresponding variance—
covariance matrix. In this case 7, is of dimension 24
and has values 5,802.7, 6,161.4, and —1,023.1 in entries
1, 11, and 12, respectively, and O’s in its remaining en-
tries. Similarly the matrix £. = var(f),) became a diag-
onal 24-dimensional matrix with values 400,683, 400,051,
and 392,954 in entries 1, 11, and 12, and O’s everywhere
else.
By applying expressions (22)«23), we obtained

3.647.5(447.3)

3,906.8(518.1)

B =1 2216.6(238.7)

1,946.4(527.8)

—1,533.8(297.2)

and

200.070 — — —_ —
—12.810 268,470  — — —
o4 =|-15720 14600 56,020  — —
~6,320 —142,610 —9,080 278,600 —
—2,070 25,360 700 —20,370 88.330

and a comparison with the previous values of B.23.b,
and ¥, can now be established. In this application we ob-
serve that the elements in the diagonal of Z‘ﬁ are only
slightly smaller than those of X; but much smaller than
those of Y, indicating that the alternative solution is
preferable in terms of precision. Furthermore, the estimated
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values BA differ from [3 and even more from b. Special
mention should be made of the last element of 3*—that is,
@iy = —1.533.8—which is affected by the (nonsignificant)
estimate of that effect derived from the univariate model.
Thus, we should be cautious when applying this alternative
solution for the potential presence of bias, even though the
precision gets increased. We do not include graphs of the
elements of Z(WDA because they show essentially the same
pattern as those in Figure 3.

Finally, it is important to keep in mind that the solu-
tions presented should not be considered as competitors
but as complementary of each other because they emerge
from different and excluding assumptions about the use of
the dataset {y;}. Moreover, in our case we were fortu-
nate in that the univariate intervention analysis produced
a dynamic form for the intervention effects compatible
with those forms for {Z;}. Had that not been the case,
we would rather discard the univariate results and rely
solely on the multivariate analysis. In closing this section
we should mention that all the computations for this appli-
cation were carried out with the aid of the SCA statistical
system, release V.1 (Scientific Computing Associates, P.O.
Box 625, Dekalb, IL 60115) and the MATLAB, version 4.2¢
(The Math Works, Inc., 24 Prime Park Way, Natick, MA
01760).

3. CONCLUDING REMARKS

Multiple time series intervention analysis will be more
useful in practice when, besides the time series data, we
are able to take into account additional information. In this
article we have shown how to incorporate efficiently the
information provided by a linear restriction (an accounting
constraint) when estimating intervention effects.

We have provided two solutions that apply under different
assumptions. Each solution is optimal in the sense of pro-
viding linear and unbiased estimators with minimum MSE.
We advocate the use of the primary solution whenever pos-
sible, to avoid inconsistencies in the results obtained from
independent univariate and multivariate intervention anal-
yses. Nevertheless, the alternative solution stands on its
own merit as an optimal solution when it can be justified.
From a purely theoretical perspective, both solutions are
obtained as special cases of a fairly general result pro-
vided in the Appendix that had already appeared in the
literature. Therefore, we do not claim originality in that
respect. In fact, our aim is essentially to provide a new tool
that will enable a time series analyst to incorporate into
his/her analysis the extra piece of information conveyed by
an accounting constraint, through a statistically sound pro-
cedure.

The accompanying illustrative example deals with a real
banking problem that motivated this work. We present this
application in detail so that an interested analyst can ap-
ply our suggested solutions using it as a guide. Such an
application serves also to compare numerically the results
produced by the two solutions and understand their appro-
priateness under different circumstances.
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APPENDIX: LINEAR ESTIMATION OF A
RESTRICTED RANDOM VECTOR

We consider the problem of estimating the random vector
Z based on the following two relationships:

W=Z+a;, Y=HZ+v, (A1)
where W and Y are some known data vectors, a and v are
zero-mean random-error vectors uncorrelated with Z and
such that F(aa’) = Ly, E(vv') = Ly, and FE(av’) = 0.
Furthermore, ¥y and ¥y are known nonsingular matri-
ces and H is a known constant matrix. Then the mini-
mum MSE linear and unbiased estimator of Z is given
by

Z = W+SwH (HSwH' +2y)H (Y — HW)

AY + (I - AH)W (A.2)
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with MSE matrix
E(Z-2)(Z-12)) = Sw
- Zu*H’(szfH/ + E}»’)+HZ1,V
= (I - AH)Zw, (A.3)

where A = Xy H' (HEw H' + Zy)T. A proof of this result
was given by Catlin (1989).

{Received September 1997. Revised March 1998.]
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