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Combining Information in Statistical Modeling

Daniel PENA

How to combine information from different sources is be-
coming an important statistical area of research under the
name of Meta-Analysis. This paper shows that the estima-
tion of a parameter or the forecast of a random variable
can also be seen as a process of combining information.
It is shown that this approach can provide some useful in-
sights on the robustness properties of some statistical proce-
dures, and it also allows the comparison of statistical mod-
els within a common framework. Some general combining
rules are illustrated using examples from ANOVA analysis,
diagnostics in regression, time series forecasting, missing
value estimation, and recursive estimation using the Kalman
filter.

KEY WORDS: Analysis of variance; Diagnostics; Fore-
casting; Kalman filer; Linear regression; Meta-Analysis;
Time series.

1. 'INTRODUCTION

The proliferation of statistical studies in many areas of
research has led to a growing interest in developing meth-
ods of combining information from different studies. This
area of research was named Meta-Analysis by Glass (1976),
and it has received considerable attention in the social sci-
ences (Hedges and Olkin 1985; Wolf 1986). Examples of
the use of Meta-Analysis in other scientific areas can be
found in Utts (1991), Mosteller and Chalmers (1992), Dear
and Begg (1992), Hedges (1992), Draper et al. (1992), and
the references included in these papers.

In this paper we show that analyzing estimation problems
from the point of view of how information is combined
can provide useful insights about the properties of the esti-
mates and their robustness. The paper presents a brief and
idiosyncratic review of some aspects of combining informa-
tion arising in linear models and time series analysis, with
emphasis on pooling rules and diagnostics. In particular,
it is shown that some simple rules of combining informa-
tion reveal the effect of different group sizes in ANOVA
problems, show the advantage of estimating growth with
stochastic instead of deterministic trends, are useful to gen-
eralize missing value estimation procedures in linear time
series models, suggest new diagnostics in linear regression,
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and provide a simple understanding on the recursive updat-
ing of dynamic linear models estimates.

The process of estimation of an unknown quantity 6, that
can be a fixed parameter or a random variable, can always
be seen as a process of combining information from the
data about §. Understanding this process is important to
evaluate the performance of an estimation rule. Often, we
have independent sources of information about 6. For in-
stance, a sample of size n can be considered as a set of j
independent samples of size n;, with > n; = n. If we have
unbiased and independent estimates of the unknown quan-
tity 61,...,0,, they are usually combined according to the
following well-known rule.

Rule 1. Given n unbiased and independent estimates 0;
of a scalar parameter 0 with nonzero variances af, the best
(minimum variance) linear unbiased estimate (BLUE) of
9,07, is given by

—2

A i

—2
i=1 9

0; (1.1

and the variance of the pooled estimate 67 is given by
(o)

This rule is commonly applied in Meta-Analysis for the
parametric estimation of effect size from a series of exper-
iments (Hedges and Olkin 1985, chap. 6). Note that (1.1)
is appropriate only in the fixed-effects model in which the
assumption of unbiasedness of the @; is crucial. If the pos-
sibility of unknown biases is entertained, as in the random
effects model éi =0, +e;,0; = 0+ ¢;, variance estima-
tors like (1.1) sharply underestimate the actual uncertainty
about 6.

This paper generalizes Rule 1 for dependent and vector-
valued unknown quantities, and applies it to several com-
mon statistical estimation problems that are presented as
particular cases of the general problem of combining dif-
ferent sources of information. The paper is organized as
follows. In Section 2 we show that looking at ANOVA from
the perspective of Rule 1 allows a simple understanding of
the robustness properties of the estimators and of the im-
portance of equal sample size in all groups. Section 3 shows
that this approach is useful to compare two time series mod-
els for forecasting growth. Section 4 analyzes the estima-
tion of missing values in linear time series, and shows how
this approach leads to a simple solution for dealing with
the end effects. Section 5 discusses how the structure of an
estimator in linear regression can suggest new diagnostics
to evaluate the data robustness of the fitted model. Section
6 presents the more general rule for combining information
used in the paper, and applies it to derive recursive estima-
tors and diagnostic measures. Finally, Section 7 contains
some concluding remarks.
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2. ROBUSTNESS IN ANOVA PROBLEMS

Suppose we have two independent samples (x1,...,2y),
(y1,...,Ym) from the same population, and we want to es-
timate its mean () and variance (02). Assuming normality,
and calling , 7 the sample means and s? and s? the unbi-
ased sample variances, the application of Rule 1 leads to

n
= T 7] 2.1
a n—l—mm+n+my @D
and
_ 2 _ 2
6_2:(” 1)51—|—(m 1)32‘ 2.2)
n+m-—2

The result in (2.2) follows because in normal samples
var(s?) = 20*/(n — 1). When the population is not normal,
[ is still the best linear unbiased estimator, whereas 62 is
not. This happens because the variance of # is always o2 /n,
and then Rule 1 always leads to (2.1), whatever the par-
ent population. However, the variance of s? for nonnormal
populations is usually a more complex function of n: for
instance, when the population is x?, it is given by */g(n),
where g(n) is an increasing nonlinear function of n. There-
fore, for nonnormal populations the general estimate of o2
given by Rule 1 is

g ()R — 0
- m S% g(n) + g(m) 3§~ (2.3)

If n = m, (2.2) and (2.3) are both equal to (s? + s%)/2,
and the estimate is robust: it is BLUE whatever the popu-
lation. However, if the sample sizes, n and m, are very dif-
ferent, then (2.2) and (2.3) will produce different answers.

This result will also be true in ANOVA problems. Sup-
pose we have k different groups. Then, under the standard
hypothesis of variance homogeneity in all groups, the resid-
ual variance estimate is given by

ni—l
sgzz<n_k>sg

where s7 = (n; — 1)7" 370 (yi; — %:)? is the unbiased
variance estimate in group . Again, if the population is
not normal, (2.4) may be a very bad estimate, and will be
in contradiction with Rule 1. However, when the sample
size is equal in all groups, it will be BLUE, whatever the
population.

(2.4)

3. COMPARING ESTIMATES OF GROWTH
IN TIME SERIES

Two procedures often used for forecasting the future
growth of a given time series are: 1. detrend the observed
data by regressing the observations on time, fit a stationary
time series model to the residuals from this regression, and
build the forecast as the sum of the deterministic trend and
the forecast of the stationary residual; and 2. difference the
series, fit a stationary ARMA model in the first difference of
the series, and forecast the series using the ARIMA model
(Box and Jenkins 1976). Typically, models built in this way
include a constant for many economic time series. The de-
cision on which of these two procedures should be used is
made by testing whether or not the series has one unit root.

However, the available tests are not very powerful, espe-
cially for short time series [see, for instance, De Jong et
al. (1992)], and therefore it is important to understand the
consequences of using these models.

Let y; be the time series data, and let us assume, for the
sake of simplicity, that the sample size is n = 2m + 1. Let
t={-m,...,0,...,+m}. Then the least squares estimator
of the slope in the regression on time

Yt = Po + Bit +u, E(u) =0, var(u) = 0% (3.1)

is given by

m -1,
A t '
B = %ty; _ <2 2 12) ;t(yt — y_t). (3.2)

Calling b; = y; — y:—1 the observed growth at time ¢, and
after some straightforward manipulations that are shown in
Pefia (1995), the estimate of the slope can be written as

m

Br=7 wilbj +biy) (3.3)
j=1

where the weights w; are given by

wj:ao—al(jQ—j) i=1,....,m

where ap = 3/(2m + 1) and a; = 3/m(2m + 1)(m + 1),
and add up to one. Therefore, the estimated growth By is a
weighted mean of all the observed growths b;, with decreas-
ing weight from the center of the sample. The maximum
weight is given to b; and by, which corresponds to the ob-
served growth in the middle of the sample period, and the
minimum weight is given to b, and b;_,,, the first and last
observed growth. The weights decrease quadratically from
the middle of the sample.

Note that in the assumption that the linear model (3.1)
holds, the 2m values b; (t = —m + 1,...,m) are unbiased
estimates for 3. The covariance matrix of these 2m esti-
mates is the Toeplitz matrix:

202 —02 0 e 0
—0? 202 —o? '
V= (3.4)
—o?
0 en e —g2 9202

Now we can set the following rule [see, for instance, New-
bold and Granger (1974)]. )

Rule 2. Given a vector 6 of unbiased estimators of a pa-
rameter § with covariance matrix V, the best (in the mean-
squared sense) linear unbiased estimator of ¢ is given by

bp = ('V-I)"H'V (3.5)

where 1/ = (1 1...1), and the variance of §r is given by

var(fp) = ('V11) 7L (3.6)

This Rule 2 is a particular case of the Rule 5 that is
proved in the Appendix.
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The inverse of the Toeplitz matrix (3.4) has been studied
by Shaman (1969), who obtained the exact inverse of a first-
order moving average process. As V can be interpreted as
the covariance matrix of a noninvertible (§ = 1) first-order
moving average process, then we have

vl = -
o?(2m +1)
[ 2m 2m—-1  2m—-2 - 1
2m—1 2(2m—1) 22m—2) --- 2
2m—2 2(2m—-2) 3(2m—2) --- 3
X . . . )
2 4 6 - 2m—1
|1 2 3 2m |

It is easy to show that the estimator (3.3) can also be ob-
tained by applying Rule 2 to the unbiased but correlated
estimates b;.

When an ARMA model is fitted to the residuals of the re-
gression model, the equation for the h-step-ahead forecast,
where we call gt(h) = E[yt+h|yt’ Yt—1,-- .], is

9:(h) = Bo + Prh + i (R)

where 71;(h) is the forecast of the zero-mean stationary pro-
cess fitted to the residuals. As for a stationary process, the
long-run forecast converges to the mean, 7:(h) — 0, and
the parameter (B, is the long-run estimated growth of the
time series.

Let us compare (3.7) with the growth estimate provided
by the integrated ARIMA model

(3.7)

Vye =B +ny (3.8)

where V = 1 — B, B is the backward shift operator By; =
yt—1, and n; follows a zero-mean stationary and invertible
ARMA model. Letting V' denote the covariance matrix of
ng, the estimate of 3 in (3.8) is given by the generalized
least squares estimator

f='v')"l'v (3.9)
where the vector b has components b, = y, — y:—1. Then
it is well known (Fuller 1976) that b = (1/(n — 1)) >_b;
is asymptotically unbiased for 3. When n is large, the ex-
pected forecast h periods ahead is given by

9¢(h) = bh + 7 (h)

where 7i,(h) is the h-step-ahead forecast of the stationary
process n;. As for h large, the n;(h) will go to zero; the
long-run growth will be estimated by a weighted average
with uniform weighing of the observed growths b;.

In summary, the two models forecast future growth by
using a weighted average of the observed growths in the
sample. Linear regression gives minimum weight to the last
observed growth and maximum weight to the center of the
sample period. The ARIMA model gives uniform weighting
to all the years in the sample. A comparison of the forecast-
ing structure of these and other models used for forecasting
growth can be found in Pena (1995).

(3.10)
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4. ESTIMATING MISSING VALUES
IN LINEAR TIME SERIES

Suppose a Gaussian stationary time series y; follows the
general representation

Yt = Zﬂ'i@/t—i + at 4.1)
=1

where a; is a white noise process with variance o2. Then, if
the value y is missing, we can obtain an unbiased estimate
of it by using

g = > miyr (4.2)
i=1

and this estimate will have variance 2. Also, from (4.1) we
can write for all j such that 7; # 0

o0
Yraj — Z TiyT4+j—i | — arsi/m; (4.3)
i=1

i#j

_ -1
Yr =7,

and therefore we can obtain additional “backward” unbi-
ased estimates of yr from (4.3) by

g5 =3t (yT+j -> 7Ti?/T+j—i) (4.4)
i#]

with variance o /77. As all these estimates are unbiased and

independent given the observed data, the best linear unbi-

ased estimate of the missing value yr is readily obtained

by applying Rule 1 to yield

oo o2
p ~(J)
gr =Y =z 07 4.5)
=0 2 T
where mo = —1. It is easy to show (Grenander and Rosen-

blatt 1957; Pefia and Maravall 1991) that this estimate is
equivalent to the well-known expression for the missing
value estimation in a Gaussian stationary time series

§=—> pyr—i+yr+:) (4.6)
=0

where the pP are the inverse autocorrelation coefficients.
An advantage of formulation (4.5) is that it provides a clear
understanding of how to proceed when the missing value is
near the extremes of the series so that the two-sided sym-
metric filter (4.6) has to be truncated. Then we have to com-
bine (4.2) with the n — T backward estimates (4.4) that are
available, and the exact formula for the finite sample inter-
polator is

n—T 2 )
()

N Z LF;
j=0 <=0 "Jj

4.7)




This idea can be easily extended to groups of missing ob-
servations. We will illustrate it here with an example: sup-
pose we have an AR(1) process in which the values y7 and
yr.+1 are missing. Then for yr we have the two estimates

e (4.8)

Yr = dYT-—1

with variance o2 and the backward estimate

~(2
o =

(4.9)

with variance o2(1 + ¢?)/¢*. The best linear unbiased esti-
mate will be

o ¢(1+¢%) ¢
yr 1+ ¢2 + ot 1+¢2+¢4?JT+2

which agrees with the general formula obtained by a dif-
ferent approach in Pena and Maravall (1991). The estimate
of g1 will be similar to (4.10), but with the roles of y7_1
and yr_o reversed.

¢ Pyrao

yr—1+ (4.10)

5. SENSITIVITY ANALYSIS IN
LINEAR REGRESSION

It is well known that in the linear regression model
y = Bo+ Bz + u, E(u) =0, var(u) = o (5.1)

the least square estimate of the slope is given by

B= Zwibi

where w; = (z; — %)%/ Y (x; — )% is a set of weights
(w; > 0,> w; = 1) and the b; are estimates of the slope
that can be built up by using the sample data:

(5.2)

Yi—Y

b; = -
;i — X

(5.3)
where w;b; = 0 if x; = Z. These estimates are not indepen-
dent because alb = 0, where a, = ((x1 — %)+ (2, — T))
and b = (by,...,b,). They have a singular covariance ma-
trix:

(5.4)

where D, is a diagonal matrix such that the ith diagonal
element is the ith element of a,, that is, diag(D,) = a.
Then we can use the following rule.

Rule 3. Given n dependent estimates §; with singular
covariance matrix Sy, the best linear unbiased estimator of
0 is given by

Sy=D;YI—1/n11)D; c?

It is straightforward to check that a generalized inverse
of (5.4) is given by

Sy = DpDyo~? (5.6)

because 1'D, = 0, and if we apply (5.5) to (5.6) and (5.3)
as 1'S;1' = 1/0? Y (z; — z)?, we obtain (5.2). In summary,
(5.2) is again the BLUE estimate given the estimates b;.

Equation (5.2) shows that the leverage (z; — %)%/ (z; —
%)% determines the potential influence of an observation on
the estimated slope of the regression line, whereas the ob-
served effect also depends on b;. Because (3 is the sum of n
components w;b;, a measure of the relative weight of each
term on determining 3 can be built by |w;b; — wb| where
wb = 3/n. Assuming (3 # 0, this measure can be written in
relative terms as

) (e D)
E

Say

6; = -1 (5.7)

where Sy, = >, (z; — &)(y; — ). Note that §; is a mea-
sure of the influence of a point (z;, y;) on the slope, whereas
the usual statistics of influence, as the one due to Cook
(1977), tries to identify both outliers and influential points.
Also, Cook’s statistic can be very affected by masking (Pena
and Yohai 1995), whereas §; is not. For instance, Table 1
presents a set of artificial data with three large influential
observations that are not identified either by D; (Cook’s
statistics) or by the studentized residual (¢;) as extremes,
but they are indicated as the most influential on the slope
by the statistic (5.7).

Instead of looking for a summary, we may look at the
whole distribution of the w;b; terms in order to find those
terms that seem to be very different from the others. Also,
if the estimate ﬁ is close to zero, the statistics (5.7) will
be very unstable, and it will be more useful to consider
|w;b; — wb| or to study directly the distribution of the
terms w;b;.

Consider now the multiple regression model

Y =X3+U (5.8)

where X is n x p, E(U) = 0, var(U) = 0?1, and I is the
identity matrix. We suppose, to simplify the presentation
and without loss of generality, that all the variables have
zero mean. Then it is well known that each of the compo-
nents of ﬂ can be written as

n
b = (1'5;1)11'S;0 (5.5) B = leijbij (5.9)
1=
where S, is a generalized inverse of Sy, and the variance where
of the pooled estimator O is i — 7§
R o his = 2 (5.10)
var(Or) = (1'S; 1)~ 9T e
Table 1.
X 1 2 3 4 5 6 7 8 9 10 17 17 17
Vi 2 3 4 5 6 7 8 9 10 11 25 25 25
D; 25 10 .03 .01 .00 .01 02 .05 .09 A5 16 16 .16
b 1.4 1.0 6 3 —0.1 —0.4 -0.7 —1.1 -15 —20 9 9 9
b 42 .08 .21 .46 .66 .82 .93 99 . 1.01 .99 1.85 1.85 1.85
The American Statistician, November 1997, Vol. 51, No. 4 329



and e;;. g is the ith component of the vector of residuals e;.r
obtained by regressing x; on all of the other explanatory
variables. That is, if X ;) isa matrix without the jth column
x; and §; = (X(’j)X(j))_lX(’j)xj is the least square estimate
of this regression, then e;. g = 2; — X(;)%;. The weight w;;
is given by e, p/ "€ .

Suppose that we are mainly interested in some regression
coefficient 3;. Then the usual diagnostic statistics that look
at the change on the whole vector of parameter estimates
may not be useful. However, the weights w;; provide a nat-
ural and simple way of looking at the potential effect of an
observation. These weights can be computed from

(s — i) (X X)) T X (yei)

(5.11)
2 (I — Hjy)wy

/LUZ] =

where x;(;) is the ith row of X(;y and H; is the hat or
projection matrix built without variable X;. A plot of the
variables w;; can be useful to judge the robustness of one
estimate to the given sample.

As in the simple regression case, a measure of the influ-
ence of point (z;y;) on the estimation of 3; can be built
by

nw;;b;
30ij

oy = -1 (5.12)

j
and we can apply to this measure the comments indicated
for (5.7).

A different. problem occurs when we have two indepen-
dent samples of n; data points (X;Y;),7 = 1,2 in which
we have obtained Bz = (X!X;)"' XY, with covariance
s2(X!X;)™*, and we want to combine both estimates to ob-
tain the BLUE. Then we can use the following rule.

Rule 4. If 6, is an unbiased estimator of ¢ with covari-
ance matrix V;j and 6 is also unbiased for 6 with covariance
V4 and these two estimates are independent, the best linear
unbiased estimator (minimizing the trace of the variance
covariance matrix) is given by

A~

Or = (Vi + v )7t
+ (VP VYT, (5.13)

and the covariance matrix of the pooled estimator is

Vit=vrt vy (5.14)

This rule is a particular case of Rule 5 that will be proved
in the Appendix, and generalizes Rule 1 to the vector case.
For instance, the BLUE estimate of 3, when combining two
independent samples of two regression equations with the
same parameter [ but different error variances, is given by

B = (X{X1/st + X3 Xa/53) (X Y1 /5T + X3Ya/s3).

6. RECURSIVE ESTIMATION

Suppose we have a parametric model y; = f(x+,0,as)
that relates a vector of responses to a set of explanatory
variables z, a vector 6 of p location parameters, and a set

330 General

of unobserved random variables a;. We will say that a basic
estimate of the location parameter 6 is an estimate obtained
from a sample of size p, and an elemental estimate of 0 is
an estimate obtained from a sample of size one. We will say
that an estimate is proper when it is obtained from a sample
of at least size p. In the standard regression model where (3
is p x 1 the elemental estimate of 5 given a sample (y;, x;)
of size 1 is obtained from a,;ﬁAl = y;. Using the Moore—
Penrose generalized inverse (Guttman 1982) and calling A~
the generalized inverse of A, the solution to this equation
can be written as

Bi = (&) "y = (afm:) s (6.1)
where ; is a p X 1 column vector. This elemental estimate
has a singular covariance matrix.

Sometimes we need to combine a proper and an elemental
estimate of #. For instance, in regression recursive estima-
tion where we have an estimate ﬁ(n) of (5.8) based on n
data points, we observe y,.1 and need to revise ﬁ(n) to ob-
tain BA(RH). In general, given a p x 1 vector of parameters
6 we will say that éi is an elemental unbiased estimator of
@ if: 1. the covariance matrix of é.i,Vi, is §uch that rank
(Vi) = 1:2. given p independent estimates 6; with covari-
ance matrices V;, the matrix V" +---+ Vs where V. is a
generalized inverse of V, is nonsingular; and 3. combining
these p estimates by

P P -1 R
=3 (Sv ) va

we obtain a basic unbiased estimator of 6. For instance, in
linear regression the estimate (6.1) is elemental unbiased
because: 1. The p x p covariance matrix of the estimate
Bi, Vi is V; = z;xl(atz;)~202, and it has rank equal to 1:2.
V.m =xal/0? and

1 P
= (;) Z ;T
i=1

and 3. combining the elemental unbiased estimates 3; by

(6.2)

)

DV

i=1

~ () lxxi 2o

P
Br = Z (Z zixh) ey = (X' X)TIXY (6.3)
=1

we obtain the basic BLUE estimate. We can generalize (6.1)
as follows.

Rule 5. Given n independent estimates 0; unbiased or
elemental unbiased with covariance matrices V;, that may
be singular, the best (minimizing the trace of the covariance
matrix) unbiased estimate is given by

-1

=3 (v ] v

i=1 \j=1

(6.4)

where V;” is the Moore—Penrose generalized inverse of V;,
and where we have assumed that ) V™ is nonsingular. The



covariance matrix of 01 is then easily seen to be

Vit= iv;.
=1

This rule is proved in the Appendix.

The application of this Rule 5 to recursive estimation
leads directly to the Kalman filter (see, for instance, West
and Harrison (1989) for a presentation of this estimation
procedure in dynamic linear models). To show this, let us
consider the standard state space formulation of a dynamic
linear model with observation equation

(6.5)

Y = Al + ¢4 (6.6)

and state equation

O = Q01 + uy (6.7)

where y; is r x 1, A; is r x p with rank (A:) = r,e; is
N-(0,C4),Qy is p x p, and us ~ Np(0, R:). In this model,
at any time ¢ we may consider two independent estimates
of 6. The first is the forecast of the state that comes from
6.7)

0% = 0,0, (6.8)
and whose covariance matrix can be obtained from
0; — éil) = Qt(Gt_l — ét—l) -+ Ust. (69)

Calling I; = {y,..
defining

.,y1} the information until time ¢, and

Vijso1 = E[(0y — 00)(0; — 0,)' | I;—1] (6.10)

and letting V; = V} ¢, we have from (6.9) that the covariance
matrix of (6.8) is given by

Vijem1 = Vi1 Q) + Ry (6.11)

The second estimate of § at time ¢ is obtained from (6.6)
when y; is observed. Assuming p > r and A; A} nonsingular,
this estimate is given by

0% = AL(A ANy, (6.12)
and using (6.6) it can be written
0% = AL(ALA)) Ay + AL(AA) e, (6.13)

which shows that it is not unbiased for ;. However, it is
easy to see that it is elemental unbiased, with singular co-
variance matrix

V) = Al(AA) T CH(A AT Ay (6.14)
This matrix has a generalized inverse
V)™ = 407 A

Therefore, following Rule 5 the BLUE estimate will have
a pooled covariance matrix

Vil =V +ACT A (6.15)

and the estimate will be given by

Or = (I = V,ALCT T A) Qb1 + Vi ALCly:  (6.16)
or, as it is normally written,
O = 06,1 + WAQC{l(yt - AtQtét—l)- (6.17)

Equations (6.15) and (6.17) constitute the Kalman filter,
which appears as a particular case of Rule 5.

It is interesting to stress that Equation (6.7) provides a
clear ground for building influence measures of the last ob-
served data in recursive estimation. Calling 0, /;_, = Q:0; 1
the forecast of 6, with information until y;_;, the change
to the parameter vector due to observing y; is given by

0 — ét/t—l =V, A,C ey (6.18)

where e;/;_1 = y; — Aif;/;_1 is the predicted residual. The
Mahalanobis change to §; will be given by

D=0y =00 1)' Vi (0 — 0, p1) (6.19)
that can be written as
Dt = eé/t_lct_lAt‘/tA;Ct_let/t_l. (6.20)

This diagnostic measure can be built for any statistical
model in the state space form (6.6), (6.7) and estimated
with the Kalman filter. It is straightforward to show that
for linear regression models this statistic for the last ob-
served point is equivalent to the one introduced by Cook
(1977), whereas in ARIMA and transfer function models
it is equivalent to the statistic introduced by Pena (1990,
1991).

7. CONCLUDING REMARKS

Any estimation or forecasting procedure can be seen as
a way to combine the available information. In Bayesian
statistics the prior information is combined with the poste-
rior using Bayes’s Theorem. In classical statistics the dif-
ferent pieces of sample information are weighted to obtain
the final estimate. When we have unbiased estimators (or
elemental unbiased) they are linearly combined to obtain
the best linear unbiased estimate using as weights the (gen-
eralized) inverse covariance matrices. We have shown that
analyzing estimates from this point of view can provide
some useful insights on the properties of some statistical
procedures.

APPENDIX: PROOF OF RULE 5

To prove Rule 5 let us consider the class of unbiased
estimators

n—1 n—1
éT = ;Azézﬁ- (I— ZlA1> én
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such that if the 9} (i=1,. . ,n) are unbiased, éT will also
be unbiased. The covariance matrix of O is

n—1 n—1
Sy = ; AV AL+ V, — ; AV,

- i Vi A+ 0 AV Al
i=1

and the trace of this matrix is

m = i tr(A;V; A7) + tr(Vy,)
i=1
n—1n-1
ZtrAV + 0N (A, 4)).
i=1 i=1

Now, if V' is symmetric we have that 9 tr(AVA')/0A =
2AV,0 tr(AV)/0A =V, and 3 tr(AVB)/0A = B’V so that

n—1
=24;Vi = 2V, +2) AV, =0
7j=1

om
0A;

and so

i
L

.
Il
-

juy

Aiz I— Aj

—1

v, V.t (A.2)

[

Adding the n — 1 equations (A.2) we obtain

n—1 n—1 n—1 n—1
IR DAED IR D
i=1 i=1 j=1 i=1

n—1 n—1 n—1
DAV VT =V v
=1 i=1 =1

n—1 n n—1
> av (S ) -nyv
=1 i=1 i=1

n—1 n—1 -1
Z AV, =V, Z vt
=1 =1

and inserting this result in (A.2)

n—1

-1
DV
i=1

> v
A=V,

n—1
_ Z%—l Z%—l ‘/;;—1

=1 i=1

A=V, ivi—l
i=1

332 General

ZV> v
i=1

We have assumed in the proof that all the inverse matri-
ces involved exist; the proof is similar when some of these
matrices are singular by replacing the inverse by the gen-
eralized inverse of the matrix.

[Received April 1995. Revised August 1996.]
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