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Assessment of Local Influence 

By R. DENNIS COOKt 

University of Minnesota, USA 

[Read before the Royal Statistical Society, at a meeting organized by the Research Section 
on Wednesday, January 15th, 1986, Professor A. F. M. Smith in the Chair] 

SUMMARY 
Statistical models usually involve some degree of approximation and therefore are 
nearly always wrong. Because of this inexactness, an assessment of the influence of 
minor perturbations of the model is important. We discuss a method for carrying out 
such an assessment. The method is not restricted to linear regression models, and it 
seems to provide a relatively simple, unified approach for handling a variety of 
problems. 

Keywords: COLLINEARITY; CURVATURE; DIAGNOSTICS; INFLUENCE GRAPHS; INFLUENTIAL 
OBSERVATIONS; LOGISTIC REGRESSION 

1. INTRODUCTION 
Statistical models are extremely useful devices for extracting and understanding the essential 
features of a set of data. Models, however, are nearly always approximate descriptions of more 
complicated processes and therefore are nearly always wrong. Because of this inexactness, the 
study of the variation in the results of an analysis under modest modifications of the problem 
formulation becomes important. If a minor modification of an approximate description seriously 
influences key results of an analysis, there is surely cause for concern. On the other hand, if such 
modifications are found to be unimportant, the sample is robust with respect to the induced 
perturbations and our ignorance of the precise model will do no harm (Barnard 1980). 

Although an assessment of the influence of a model perturbation is generally considered to be 
useful, few general methods are available for carrying out such an assessment in contexts other 
than normal linear regression, and much of the recent work is concerned with only the 
perturbation scheme in which the weights attached to individual or groups of cases are modified. 
Cook (1977, 1979) and Belsley, Kuh and Welsch (1980) propose diagnostics for assessing the 
influence of case-weight perturbations in linear regression. For the most part, the case-weights 
are restricted to be either 0 or 1 so that a case is either deleted or retained at full weight. These 
ideas are adapted for use in logistic regression by Pregibon (1981). In recent years, deleting cases 
has become a popular basis for studying sensitivity in statistical problems: Moolgavkar, Lustbader 
and Venson (1984) give a number of useful results for general exponential families, and Storer 
and Crowley (1985) study the change in parameter estimates from general conditional likelihoods. 
Cook and Wang (1983) investigate the change in the transformation parameter for a linear regres- 
sion response variable, while Lustbader and Moolgavkar (1985) concentrate on the score statistic. 
Oman (1984) develops measures for assessing the influence of individual cases in calibration 
problems. Extensions of Di (Cook, 1977) for use in the errors-in-variables problem are proposed 
by Kelly (1984). 

Andrews and Pregibon (1978), Atkinson (1982) and Johnson and Geisser (1982) also propose 
diagnostics based on case deletion schemes. For a review of these works and related literature, see 
Cook and Weisberg (1982). 
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Attempts to provide a firm foundation for diagnostics based on case-weight perturbation 
schemes are described in Cook and Weisberg (1982) and Welsch (1982). These attempts are based 
on the influence curve, a construction that relies on an appropriate functional of the true under- 
lying distribution function. The influence curve has been of value in the formulation of robust 
estimators, but it may be more of a hindrance than a help in the present context. To employ this 
idea for the construction of an influence diagnostic we must construct the influence curve, choose 
one of the many sample versions and then select a suitable norm. Even in normal linear regression 
this process seems to obscure rather than illuminate the problem at hand. The difficulty involved 
in carrying out the program for more complicated settings is a further annoyance. 

Case-deletion is not the only paradigm that has been used to investigate the consequences of 
modest modifications of a statistical model. Hodges and Moore (1972), Davies and Hutton (1975), 
and Belsley (1984), for example, consider various aspects of perturbing the explanatory variables 
in linear regression. Polasek (1984) and Leamer (1984) investigate the sensitivity of estimated 
coefficients in changes in the entire covariance matrix of the errors in linear regression. Emerson, 
Hoaglin and Kempthorne (1984) use perturbations of the response variable to study leverage in an 
additive-plus-multiplicative model for a two-way table of data. Although these and similar past 
investigations differ in many important respects, they all reflect a commnon concern for the inevit- 
able imprecision of a statistical model, and have greatly increased our awareness of the importance 
of various aspects of the data, particularly with regard to individual cases. 

Other types of methods have been proposed for dealing with inexactness in a statistical model. 
In a Bayesian context, Box (1980) adds a discrepancy parameter a to the target model and then 
uses the predictive distribution conditional on a to measure deviations from a target value o*. He 
also provides a forceful discussion on the interplay between scientific learning and statistical 
practice, with emphasis on the role of model criticism. Robust methods, on the other hand, are 
designed to be insensitive to selected aspects of the model or data. Robust methods are surely 
important, particularly for automated analysis, and may occasionally provide useful diagnostic 
information, but their stage of development does not match the concerns that arise in practice 
(Carroll, 1983). In many situations, the exclusive use of robust methods can obscure important 
substantive problems. Carefully constructed models in combination with appropriate diagnostic 
methods still provide a useful basis for thorough statistical analysis. For further discussion on 
the interplay between various methods, see Cook and Weisberg (1983a) and Carroll and Ruppert 
(1985). 

This paper presents a general method for assessing the local influence of minor perturbations of 
a statistical model. The method relies on a well-behaved likelihood and certain elementary ideas 
from differential geometry, and seems to provide a relatively simple, unified approach for handling 
a variety of problems. A distinguishing feature of this method is its use of log-likelihood contours 
to gauge influence. Pregibon (1981), Cook and Weisberg (1982) and Cook and Wang (1983) use 
this same idea in combination with case-deletion diagnostics. Barnard (1980) gives a brief general 
discussion on using the likelihood to assess the consequences of model perturbations. Although 
this paper is concerned primarily with local influence, some discussion of assessing global 
influence, which is a significantly more difficult problem, will be given also. 

In the next Section, we introduce the idea of an influence graph, a notion which seems funda- 
mental to the study of influence as described earlier in this Section. In Section 3, we discuss 
numerical summaries of influence graphs. Several illustrations are given in the remaining Sections. 

2. INFLUENCE GRAPHS 
2.1. Motivation 

Consider the standard linear regression model 

Y = Xp + e (1) 

where the elements ei of the n x 1 vector e are assumed to be independent normal random 
variables with mean zero and known variance a2. Collectively, the ith observation yi on the 
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1986] Assessment of Local Influence 135 
response variable in combination with the associated values for the explanatory variables will be 
referred to as the ith case. To motivate the developments of this section, we use model (1) and 
the following form of the influence statistic Di proposed by Cook (1977), 

Di= 11 Y- Y(i) 12 /pa2 (2) 
where Y and Y(1) are the n x 1 vectors of fitted values based on the full data and the data without 
case i, respectively, and p is the dimension of ,B. A similar motivation can be constructed by using 
other case-deletion diagnostics. 

The statistic Di can be usefully viewed as a basis for detecting cases that should be carefully 
inspected for gross errors. The finding of a gross error must necessarily force the removal or 
correction of the corresponding case, and such actions may cause a substantial change in the 
results of an analysis if Di is large. 

Generally, case-deletion diagnostics allow for only one of two possibilities: a case is either as 
specified by the model or totally unreliable (variance -e oo). Other reasonable and equally important 
concerns are not reflected by such diagnostics. For example, we might postulate a model with 
constant variance but admit that the true variances could range between a2/2 and 2a2, a level 
of heteroscedasticity that will often go undetected in practice. To investigate this specific concern, 
we use the following slightly more general version of Di, 

Di(co) = II y_- YW 112/PU2 (3) 
where YW is the vector of fitted values obtained when the ith case has weight co and the remaining 
cases have weight 1. Of course, as co -e 0, var (ei) - ?? and Di(co) -* Di. If Di(co) is large then the 
stipulation that the ith case has variance U2 /Co rather than cr2 will lead to substantial changes in 
the results of the analysis. 

At first glance, it might seem that Di and Di(co) would always give essentially the same 
information. This does not seem to be the situation, however. Figure 1 gives plots of pDi(co) 

4 

pDi(w) 

2 

A 

80. 8.5 1.4 1.5 

Case Weight, X 

Fig. 1. pDi(w) versus w for two possible cases A and B for model (1) 

versus co for two possible cases A and B from model (1). The details behind Fig. 1 will be 
presented in Sections 3 and 4.2. For now we note that the analysis is clearly more sensitive to 
perturbations in the weight attached to case B since DB(Co) -DA (X) > 0 and for some co this 
difference is substantial. We must have DA (1) = DB(l) = 0, of course. However, in Fig. 1, 
DA (0) = DB(O) so that the two cases will be judged to be equally influential when using Di. It 
seems clear that case deletion diagnostics alone are not sufficient to handle concerns other than 
gross errors. In particular, for a more complete understanding of the influence of a single case it 
is necessary to investigate the behaviour of Di(co) at values of co other than co = 0. 
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In the next section we extend these ideas to general models in which co can be used to perturb 
model components other than case-weights. This extension is partially motivated by the follow- 
ing relationship between Di(co) and the log-likelihood L(p) for model (1), 

pDi(co)= [I11 y_1 112 _ 11 y_y 11/ 2 

2 [L() - L(3w )] (4) 

where ,B = , and , is the maximum likelihood estimator of 3 when the ith case has weight Co. 
The form of this relationship is a consequence of the statistical structure assumed for the errors 
in model (1). 

2.2. Development 
For a given set of observed data, let L(0) denote the log-likelihood corresponding to the 

postulated model, where 0 is a p x 1 vector of unknown parameters. We introduce perturbations 
into the model through the q x 1 vector co which is restricted to some open subset Q of R q. 
Generally, co can reflect any well-defined perturbation scheme and thus is not restricted to be a 
collection of case weights. For example, co might be used to induce a minor modification of the 
explanatory variables in a generalized linear model, or to perturb the entire covariance matrix of 
the errors in a normal linear model. As illustrated in later examples, co must be chosen carefully 
so that the application is sensible. For now we assume this choice to have been made. 

Let L(6 I co) denote the log-likelihood corresponding to the perturbed model for a given Co in 
Q. We assume that there is an w0 in Q such that L(0) = L(6 I co0) for all 0. Finally, let 0 and 06, 
denote the maximum likelihood estimators under L(0) and L(O I c), respectively, and assume that 
L(6 I co) is twice continuously differentiable in (OT, ST). 

To assess the influence of varying & throughout Q, we initially consider the likelihood displace- 
ment 

LD(cj) = 2 [L (0) - L(0 )](5 ) 

In a particular problem, specific characteristics of {06, I co E Q2} might be relevant, but LD(co) 
is a useful universally applicable feature that can be interpreted in terms of the large sample 
confidence region for 0 (Cox and Hinkley, 1974, Chapter 9) 

{ 0 1 2 [L(0^) - L(0)] < X02 (p)}- 

Here, X2 (p) is the upper oa probability point of a chi-squared distribution with p degrees of 
freedom. The motivation for (5) comes largely from (4), but some alternatives will be discussed 
later. For further discussion see Cook and Weisberg (1982, Chapter 5) and Pregibon (1981). 

From this perspective, a graph of LD(co) versus co contains essential information on the 
influence of the perturbation scheme in question. It is useful to view this graph as the geometric 
surface formed by the values of the (q + 1) x 1 vector 

(LD()) (6) 

as co varies throughout Q. In differential geometry a surface of this form is frequently called a 
Monge patch (Millman and Parker, 1977). We will refer to ao(co) as an influence graph since it is 
the graph of LD(co) that displays the influence of the perturbation scheme. In this terminology, 
Fig. 1 displays two possible influence graphs for the scheme in which the weight attached to a 
single case in linear regression is varied. 

The rationale that led to the influence graph oa(c) is not the only reasonable approach, of 
course. Suppose that we partition OT = (OT, 6T), where Oi is pi x 1, and agree that only 01 is of 
interest. In this situation the analogue of (6) is 
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1986] Assessment of Local Influence 137 

as (c) (LDs(')) (7) 

where 

LDs(&-) = 2 [L(0) - L(1,, g(6 1p))], 
g(61) is the function that maximizes L(1, 0,2) for each fixed 0, 6h,01 is determined from the 
partition &T =( T,0 T ), and L(01,g(01)) is the likelihood profile for 01. The motivation 
behind (7) comes in part from the large sample confidence region for 01, (Cox and Hinkley, 
1974, Chapter 9) 

{01I 2L(0-L(Oj,g(Oj))] <X2(pl)). 

The influence graph defined at (6) and its counterpart for parameter subsets defined at (7) 
are based on using the contours of the postulated log-likelihood L(0) to measure the amount 
that 06(, is displaced from 0, but other formulations are possible. For example, we might consider 
using the contours of the perturbed log-likelihood L(6 I c) to compare 0 and 0, This approach 
leads to the influence graph 

(c) (LD'X) (8) 

where LD'(c) = 2[L(O^,, I &) -L(6 I o)]. 
In the construction of oz'(c), the moving frame of reference L(Q I w) is used to compare 0^, 

and 0, while ox(co) was constructed by using the fixed frame of reference L(0) for the same 
comparison. Influence diagnostics based on variable frames of reference have been proposed in the 
statistical literature. Notably, Belsley, Kuh and Welsch (1980) use U(j), the sample standard 
deviation based on the reduced data, as a scale factor in their measure DFFITS of the influence of 
the ith case in linear regression. Since O(j) changes from case to case, the reference frame is variable 
and in this sense DFFITS is similar to the influence graph based on L(6 I c). Although diagnostics 
based on fixed reference frames seem easier to motivate and interpret, it will be shown in Section 
3.2 that o and o&' are equivalent for the local approach considered here. 

Ideally, we would like a complete influence graph, such as those displayed in Fig. 1, to assess 
influence in a particular problem. Clearly, this is possible in only the simplest situations so that it 
becomes necessary to consider other methods for extracting the information contained in an 
influence graph. Global measures of influence, which characterize the behaviour of an influence 
graph over all of Q2, are generally much more difficult to construct in practice than local measures 
which characterize behaviour in a neighbourhood of a selected co, say L*. 

The various influence diagnostics that rely on case-deletion can be regarded as global measures 
since they are designed to measure total change at various corners of Q2 = (0; 1)f, where n is the 
sample size. Systematically searching the corners of Q, however, can be a difficult task. Single 
case-deletion diagnostics can be computationally intensive and suffer from a form of masking. 
Group deletion methods are not easily implemented or well understood, although the recent work 
by Gray and Ling (1984) may be useful in linear regression (Carroll and Ruppert, 1985). In con- 
trast to case-deletion diagnostics, the methodology developed in the following Sections is relatively 
easy to use for the identification of groups of cases that may require special attention. In addition, 
from Fig. 1 and the discussion of Section 2.1, it is clear that the behaviour of an influence graph 
around co* = c = 1 is certainly relevant. 

In the next section we suggest a local measure of influence for characterizing the behaviour of 
an influence graph around co* = o0. 

3. LOCAL INFLUENCE 
In this Section we use geometric normal curvatures to characterize the behaviour of an 

influence graph around coo, although the essential results can be obtained by using less descriptive 
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but more standard methods of analysis. The normal curvature of a surface (ax(c) in this appli- 
cation) should be discussed in any first text on differential geometry. Some background 
information is available in Bates and Watts (1980). For convenience we use ax(c) as defined in 
(6) to develop normal curvatures. The other types of influence graphs discussed in Section 2.2 
will be compared later in this section. Also we concentrate on studying curvatures at CoO. 
Curvatures at points other than coo may be of some value in assessing the global behaviour of an 
influence graph, and a few results along these lines are briefly mentioned at the end of Section 
3.1. 

3.1. Curvatures for o(co) 
When q = 1, the influence graph ca(co) = {aj(c)} reduces to a plain curve as illustrated in Fig. 1. 

The curvature of such plane curves at coo is (Stoker 1969, p. 26; Goetz 1968, p. 84) 

C =la6o2 - '2ct1 /( '2 +'2 )3/2 (9) 

where the first and second derivatives c'i and 6&i are evaluated at coo. This curvature can be viewed 
as the inverse of the radius of the circle which best approximates ai at coo, or as the rate of change 
of the angle that the tangent vector makes with the horizontal axis with respect to arc length 
along the curve. In standard differential geometry texts, curvature is developed in the arc length 
parameterization and a sign is often attached, but for our purposes (9) will be sufficient. 

Since oil = 1 and ai2 0, C reduces to 

C = 6&2 = LD(c0o) 

which must necessarily be positive since LD(co) achieves a local minimum at coo. As developed in 
Section 4.2, this curvature can be evaluated for the graphs of Fig. 1: C = 2(0.05)2pDi for case 
A and C = 2(0.99)2pDi for case B. Clearly, C easily distinguishes between the two influence 
graphs in this figure. 

When q > 1, an influence graph is a surface in Rq+l and the notion of curvature becomes a 
bit more complicated. We are specifically interested in a description of how the surface a(co) 
deviates from its tangent plane at coo. Such a description can be obtained by studying the 
curvature of certain curves on the surface that pass through a(co0). Visualized in R3, the 
required curves are the normal sections formed by the intersection of the surface with planes 
containing the vector that is normal (orthogonal) to the tangent plane at coo (Stoker 1969, p. 88). 
The curvatures of these normal sections are called normal curvatures and these are the curvatures 
that we use to characterize the behaviour of an influence graph around coo. 

Because LD(co) achieves a local minimum at coo, a simple representation of normal sections 
is possible. To construct a normal section, consider a straight line in Q2 passing through coo. Such 
a line can be represented by 

@(a) = wo + al (10) 

where a E R 1 and 1 is a fixed nonzero vector of unit length in R q. This line generated a lifted line 
on the influence graph ox(co) passing through a(coo). Each direction 1 specifies such a lifted line 
and each lifted line corresponds to a normal section. The equivalence of lifted lines and normal 
sections in this application can be seen as follows. Without loss of generality, we first shift the 
problem so that coo corresponds to the origin, coo = 0. The tangent plane at coo is spanned by the 
columns of the (q + 1) x q matrix V with elements &q(co)/acop, i = 1, . . ., q + 1,j = 1, . . ., q, 
where all derivatives are evaluated at coo. Since aLD(co)/&aw = 0, V has the simple form 
VT = (Iq, 0) and thus the subspace orthogonal to the tangent plane is spanned by bq+i , the basis 
vector for Rq+1 with a 1 in the last position and zeros elsewhere. A normal section can now be 
seen to be that portion of the influence graph cut out by the plane spanned by the vectors bq+1 
and (I T, 0). It follows that each lifted line a {co(a)} is a normal section. 

The normal curvature Cl of the lifted line in the direction 1 can now be obtained by applying 
(9) to the plane curve pT(a) = (a, LD {co(a)}) at a= 0. This plane curve is just the lifted line 
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1986] Assessment of Local Influence 139 

a {t o(a) } in rotated coordinates. The individual curvatures in the family of plane curves p obtained 
by letting 1 range over all unit vectors in Rq form the basis for our characterization of a. 

Clearly p61 = 1 and P2 = Pj = 0 and thus Cl = I 1 = I LD{o(a)} 1. Using the chain rule for 
differentiation Cl can be evaluated further, 

Cl = 2 l TFII(11 

where 11111 = 1 and F is the q x q matrix with elements a2L(0 )/JxOkai,j, k = 1, . ., q. This is 
the basic form for normal curvatures that will be used in this paper. 

For (11) to be useful we should have a straightforward way to evaluate F. Using the chain rule 
for differentiation, F can be expressed as 

P=JTLJ (12) 
where - L is the observed information for the postulated model (co co) and J is the p x q 
matrix with elements a0i / aco, i = 1, 2, ..., p, 1, 2, . . ., q, where Oi. is the ith component 
of 0, . Next, to evaluate J we use the fact that 

aL (O I w) 
L =0 (13) 
aoj =0g(, 

for j= 1, 2,.. .,p and all co in 2. Differentiating both sides of (13) with respect to co and 
evaluating at coo, it follows that 

J = - (L) -1 A\ (14) 
where a is the p x q matrix with elements 

2L OI co) 
aoj awj 

evaluated at 0=0 and co= oo, i=1,2,.. .,p, j1,2,.. .,q. Substituting (14) into (12) we 
obtain 

F= AvT (L-, (15) 
and therefore from (11) 

C, = 2 1 ITAT(L)-1 dliI (16) 
where 11111= 1. The individual components of (16) are often straightforward to obtain once the 
perturbation scheme has been defined. 

There are several ways in which (16) might be used to study a(c) in practice. The extremes 
Cmax = max1C1 and Cmin = min1C1 are two possible options. Of course, Cmax and Cmin corres- 
pond to the maximum and minimum absolute eigenvalues of Fin (15). Another option is the 
average curvature C obtained by averaging (16) with respect to a uniform distribution on the 
surface of the unit sphere in q dimensions. 

The eigenvector lmax associated with Cmax can be used to set the directions in (10) which 
can then be used to construct plots, similar to those in Fig. 1, of the lifted line a {o(a)q}. This 
vector indicates how to perturb the postulated model to obtain the greatest local change in the 
likelihood displacement, and may be the most important diagnostic to come from this approach. 
When simultaneously perturbing all case-weights in linear regression, for example, suppose that 
the ith element of 1max is found to be relatively large. This indicates that perturbations in the 
weight coi of the ith case may lead to substantial changes in the results of the analysis and thus 
that oi is relatively influential. In such situations, it will, of course, be important to investigate 
the ith case to find the specific cause of the sensitivity. Similarly, the eigenvectors associated 
with intermediate eigenvalues can be used to investigate the behaviour of a(c) in directions 
corresponding to less extreme curvatures. These and other ideas will be illustrated in later 
sections. 
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Recall that the developments thus far have been guided by the goal of understanding the 
behaviour of an influence graph around co0. These developments do not apply when studying a 
graph around a different point co*. Additional complication arises because lifted lines generated 
by using co(a) = w* + al no longer corresponds to normal sections in general. However, curvatures 
of normal sections can still be obtained as follows. 

Let FT = = (- 23L(0.,)/1aco). Here and in the remainder of this Section all 
derivatives are evaluated at co* rather than wo so that V, for example, now has the form 
VT =(Iq,F.) Further, let Wjk denote the (q + 1) x 1 vector with elements a2 U(W)/aWjak 
i = ,. . ., q + 1. Then the velocity and acceleration vectors of the lifted line o {co(a)} at w* 
are respectively 

= Vl (17) 
and 

CY I j I k Wjk Ij lk 

- 21 TFlbq+l (18) 

where 1 = (1j). The normal curvature Ci* associated with the direction 1 can be written as 

Cl = 11 I/ c11 / 11 2 (19) 

where Pv is the projection operator for the column space of V and Pv = I-Pv. The projection 
in (19) is the essential step for obtaining the curvature of a normal section from a lifted line. 
The curvature Cl* can be further evaluated by making use of the forms for the velocity and 
acceleration vectors given above. First, from the form of V, 11 &I 112 = 1T (I+ fFtT) 1. Next, using 
(18) the numerator of C/* is just 21 I'FI I times the length of the last column of Pv. Combining 
these results we obtain, 

2 1i ITj1 
C1 I +11 ft112y/2T T(+FFT)l (20) 

Equation (20) in addition to the tang:nt planes at selected points c* may be of value in studying 
the global behaviour of an influence graph, but this idea requires further study. Recall that 
F = 0 at w0 so that (20) reduces to (11) when c* = w. In the remainder of this paper we focus 
on the behaviour of various influence graphs around coo. The developments leading to (19) provide 
a convenient way to obtain normal curvatures for other influence graphs. 

3.2. Other Influence Graphs 
In this Section we investigate the influence graphs ?s(co) and a'(co) defined in equations (7) 

and (8), respectively. 
By replacing ot and 0' in the development that led to (20), and by using the chain rule for 

differentation, it can be verified that the velocity and acceleration vectors at co for a' are the 
same as those for 0:. Thus, oa and e:' have identical curvatures at wo, although the two influence 
graphs can differ considerably in global behaviour. Since we are primarily interested in assessing 
local influence around w0, 0: and the analogous graph a, for subsets will be used in the remainder 
of this paper. 

To develop the curvatures for %:(o), we first note that the development leading to (20) is valid 
with L(O,) replaced by L[y(01.)] where y = (of gT(01i)) and g is defined folowing (7). 
It follows that (20) can be adapted for as by replacing F and F by G- 2aL(y)/&a and 
G = ,2L(y)/ac2 respectively. Since G = 0 at w0, (11) is also valid with F replaced by G. To 
find a useful expression for G, we again use the chain rule and obtain 

G=KTLK (21) 
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where L is as defined following (12) and K is the p x q matrix with elements aYi(01W)1aWj, 
i 1, 2, ... .p,j= 1, 2, .. .q, evaluated at wo. 

We next need to find a useful representation for K. Let K1 denote the Pi x q matrix a0pj,/aco 
and let K2 denote the P2 x p 1 matrix ag(O 1 )/aO 1 evaluated at 01 01. Then 

fI\ 
K= K,. (22) 

K2 

The matrix K1 consists of the first Pi rows of J defined in (14). To evaluate K2 we make use of 
the fact that 

a 
L L[01, g(01)] =0 for all 01 (23) 

where gi is the ith component of g, and the derivative is evaluated at g = g(01), i = 1, 2, ... , p2. 
Differentiating (23) with respect to 0 1 and evaluating at 0 1 we find 

K2 = - (L22)ylL21 (24) 
where L22 and L21 are determined from the partition 

L =(L; 2:) (25) 

Finally, combining (11), (21) and (24) with the form of K1 mentioned above, we obtain the 
normal curvature for subsets, 

Cl(Ol)=2lTAT(LTl -B22) 'lA (26) 
where 111 l = 1 and 

/0 0 
B22( ) 

0O L -122 

The techniques discussed at the end of Section 3.1 are applicable to (26), of course. 
In the following Sections we describe several applications of these ideas. Our intent is to 

illustrate the range of possible use and to develop selected applications in some detail. If the 
proposed methodology is found to yield useful results in relatively well understood situations 
then we might expect it to yield similar results in more complicated settings where few, if any, 
methods are available. For this reason selected applications involving model (1) will be given 
special attention. 

4. CASE-WEIGHTS IN NORMAL LINEAR REGRESSION 
Let w denote the n x 1 vector of case-weights for the regression model (1) and again assume 

that a2 is known. The relevant part of the log-likelihood for the perturbed model is 

1 n 

L(i3Io) 2(72 ci(Yi -x ) (27) 
1= 1 

where wi and yi are the ith components of w and Y, respectively, and xT is the ith row of X. 
Differentiating (27) with respect to ,B and co, and evaluating at ,B and co0 = 1, we find 

A = XTD(e)/a2 (28) 
where e (ei) is the n x 1 vector of ordinary residuals when co = 1 and D(e) = diag(e1, . . ., en). 
Since L(=) --XTX/a, 
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Cl = 2 IlTATL-l Al) 

= 2 1 TD(e) PxD(e) 1/02 (29) 

where PX = X(XTX) lXT, and 11 1 = 1. In what follows, PM will be used to denote the pro- 
jection operator for the column space of the matrix M, and P = I -PM. 

When a2 is unknown, a similar calculation for OT = (BT, a2) yields 

XTD(e)/J2 
A = (eT p204 ) (30) 

esq 
where a2 is the maximum likelihood estimator of a2 and esq is the n x 1 vector with elements 
ei2. Since 

..^/XTXI&2 .......0X 

O n/2a / 

the analogous result for 0 is 

Cl = 2l T [D(e) PxD(e) + esqeq I2na2 a l/2. (31) 
General analytic expressions for Ima x are not known for (29) or (31). 

If only ,B is of interest, the above results in combination with (26) shows that the curvature is 
given by (29) with a2 replaced with a2. The three special situations described in Sections 4.1- 
4.3 should furnish some insight into the behaviour of the curvature and the interpretation of 
'max when only ,B is of interest. 

4.1. Simple Random Samples 
For a simple random sample, F has only one nonzero eigenvalue, Cmax, with corresponding 

eigenvector lmax = e/llI e 11. Thus, the local changes in 3 will be zero when wo = 1 is perturbed 
in any direction that is orthogonal to e. In this simple situation, the maximum curvature is 
Cmax = 2 which is independent of the data. For this reason a curvature of 2 serves as a useful 
general reference, with curvatures much larger than 2 indicating notable local sensitivity. Perturba- 
tions of the case weights in a simple random sample can therefore never result in serious local 
changes, although global changes resulting from gross errors can be serious, of course. It is well- 
known that a gross error in a simple random sample is indicated by a relatively large element of 
e. An important general implication of this is that even if Cmax is small an inspection of lmax 
may reveal the presence of gross errors. In other words, Cmax is a useful indicator of serious local 
problems, but it may miss global concerns that are not manifest locally. Experience has shown 
that, regardless of the size of Cmax, an inspection of lmax is worthwhile. This idea will be 
illustrated further in later examples. 

4.2. Individual Cases 
The curvature for the influence graph obtained by modifying the weight attached to a single 

case, say the ith, is 

C= 2elhitt/a2 = 2p(l -hii)2Di (32) 
where hii is the (i,j)th element of Px and Di is given by (2). Form (32) was used to construct 
Fig. 1. For case A, hii = 0.95 and for case B, hii = 0.01. Thus, case A corresponds to a high 
leverage point with a relatively small residual while B corresponds to a low leverage point with a 
large residual. For both cases pDi = 3.5 so that the curvature for case A is about C = 0.02 while 
C= 6.9 for case B. In this example, perturbing the weight attached to case B would lead to changes 
in ,B that are uniformly larger than those obtained when the weight attached to case A is similarly 
modified, although the two cases would appear from Fig. 1 equally influential when deleted. 
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Generally, high leverage points with relatively small residuals are influential only when consider- 
ing the possibility of a gross error so that the case contains no relevant information about ,B. In 
the example of Fig. 1, the variance of case A might be set at ten times the variances of the remain- 
ing cases without any serious consequences while a similar modification of the variance of case B 
could lead to substantial changes. 

As mentioned previously, the curvature given in (32) and the analogous case-deletion 
diagnostics are simply summaries of different characteristics of the influence graph obtained by 
modifying a single case-weight: Cl measures the influence of local changes in the case weight, 
while Di measures global changes. Clearly, a case that is locally influential must be globally 
influential, but the reverse need not be true. Both types of information can be useful, depending 
on the concerns of the investigator. However, when considering many cases simultaneously, it 
will be easier to use (29) to characterize the local behaviour of an influence graph than to use 
multiple-case-deletion diagnostics to characterize global behaviour by using the corners of 2. 

4.3. Individual Coefficients 
Individual coefficients in a linear model are often of special interest. In such situations, (26) 

can be used to assess influence on a selected coefficient of simultaneously modifying all case 
weights. To develop this result, rearrange the columns of X = (X1 , X2) so that the first column 
XI corresponds to the coefficient ,1 of interest, and let r denote the residuals from the regression 
of XI onX2, 

= (r1) = PX Xi. 

An evaluation of (26) in this situation requires A as given in (30), L(O) as given near (31), and 

XTX 0 X 
L22 = ( 

With these results and a little simplification, C1(J1) can be written in the intermediate form 

C1(i1) = 2 lTD(e) X-[(XTX _A22] XTD(e) I/ 2 

where 

0 0 
2 

(XT2X2) 

Next, using standard results to obtain the inverse of the partitioned form of (XTX)1 and 
simplifying, 

C1(f31)=2 lTD(e)rrTD(e)l/ 11122 (33) 
It follows that 

Cmax (j1) = 2n Y r/ ej//{ r2 z ej }. (34) 

This curvature is bounded above by 2n and will tend to be large when corresponding elements of 
r and e are large. 

The maximum curvature occurs in the direction 

imax = D(e) r = (e1r1). (35) 
Relatively large or small elements of lmax correspond to cases that have I ri I and I e1 I large 
simultaneously. Thus, an inspection of lmax will identify cases, if any, that are contributing 
substantially to Cmax. 

The recognition of the importance of cases with I r1 e1 I relatively large is not new. Such cases 
will stand out in a standard added variable plot of the residuals from the regression of Y on X2 
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versus r, whose specific form is 6 Y = ,Br + e versus r. The term ,Br produces the linear trend in an 
added variable plot and e produces the scatter, (see, for example, Cook and Weisberg, 1982). For 
illustration, Fig. 2 gives a schematic representation of a de-trended added variable plot of e versus 
r. The sloping lines are not relevant to the present discussion; these will be discussed in Section 
5.1. The central elliptical portion of Fig. 2 is assumed to contain the bulk of the data. The points 
designated by A to H represent the kinds of cases that generally attract special attention, but not 
all of these cases will be influential for I1 under the perturbation scheme described above. The 
estimate I31 will be most sensitive to perturbations of the weights attached to cases like A, C, E 
and G, since I r e1i will be relatively large for these cases. On the other hand, f31 will be 
relatively insensitive to the weights for the remaining cases, B, D, F and H, since for these cases 
I r1e1 I is small. 

e 

A B /C 

-H- D-- r 

Fig. 2. Schematic representation of a detrended added variable plot of e versus r. 

To illustrate why cases like B, D, F and H are not influential under case-weight perturbations, 
consider simple regression through the origin. The results (34) and (35) apply in this situation 
with r interpreted as the vector of values of the single explanatory variable and I1 interpreted 
as the corresponding regression coefficient. Clearly, f31 will be independent of the weight attached 
to any observation at the origin. Observations at the origin have r1 = 0 and thus will not and should 
not stand out regardless of the size of the associated residual e1. These comments may seem to 
present a little dilemma since experience with added variable plots clearly indicates that cases 
like B, D, F and H can exert considerable influence on iB1. A resolution of this will be suggested 
in Section 5. 

4.4. Geese Data 
As a first numerical illustration, consider the geese data for observer 1 as reported in Weisberg 

(1980, p. 95). The data consist of observations on y = true flock size as obtained by count from 
aerial photographs and x = visually estimated flock size for a sample of n = 45 flocks of snow 
geese. These data were collected in an effort to determine how well flock sizes could be visually 
estimated during a census of the population, and were instrumental in the decision to base the 
actual census counts on aerial photographs. Part of the rationale for this decision can be seen 
from Pig. 3 which is a plot y versus x; the different markings for the points are discussed below. 
We use these data in combination with a simple linear regression model to illustrate the behaviour 
of Imax in the presence of heteroscedasticity. 

The plot of the data given in Fig. 3 shows strong evidence of heteroscedasticity. From this 
it seems reasonable to expect that the coefficients of the fitted line will be sensitive to minor case 
weight modifications, particularly the weights corresponding to cases with large observed counts. 
This is confirmed by the curvature Cmax = 14.37 computed from (29) with a2 = 2 So that only 
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Fig. 3. Scatter plot of the geese data; the different point marks correspond to the signs 
of the elements of 'max 

coefficients are of interest. Further, to get maximum movement from the fitted line, we might 
expect to increase the weights of cases with large positive residuals, while decreasing the weights 
of cases with large negative residuals, or vice versa. This is just what an inspection of 'max, 
indicates; the different markings fQr the points in Fig. 3 correspond to the signs of the elements 
of lmax* 

Figure 4 gives a plot of lmax versus x. Clearly, lmax is responding to the essential hetero- 
scedasticity in the data. Generally, such inspections of lmax can provide useful diagnostic 
information that may be used to guide subsequent analysis and future experimentation. 

I .e 

/max 

x 
x 

0 .0 - - - - - - - - - - - - - - - - -_______-_ 
x 

x 

-8.5 I I I 1 1,,, E I, Ixl, li l [XI I 
a B00 302 400 see 

observer count 

Fig. 4. Geese data: Scatter plot of Imax versus observer count. 

This content downloaded from 163.117.20.121 on Tue, 24 Nov 2015 10:08:44 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


146 COOK [No. 2, 

For these data there is a strong relationship between the ordinary residuals e from the simple 
linear regression of y on x and the elements of lmax* For example, a plot (not shown) of the 
absolute elements of lmax versus e shows a very strong U-shaped pattern. Cases with relatively 
large absolute residuals tend to be emphasized by lmax' while cases with small absolute residuals 
are de-emphasized. In this way lmax directs attention to cases where specification of weights is 
most important. In general, the relationship between lmax and e is not monotonic since it depends 
on Px as shown in (29). 

4.5. Rat Data 
For a second numerical illustration, we use the rat data and corresponding model as reported 

in Weisberg (1980, p.1 10-1 13). The data consist of 19 cases and the regression model contains 4 
explanatory variables, x0 = constant, x1 = body weight, x2 = liver weight and x3 = relative dose. 
The response variable is y =percentage of dose in the liver. Weisberg found that case 3 is 
influential, D3 = 0.93 and h33 = 0.85, and that the relative dose for this case is apparently 
anomolous. 

Again considering only coefficients, the maximum curvature for the rat data is Cmax = 3.58. 
This curvature does not indicate extreme local sensitivity, but further investigation is certainly 
in order. A scatter plot of the absolute values of the elements of lmax versus x2 is given in Fig. 5. 

e0.6 x 

/max x 

x 
e0.4 

x 

x x 
x 

x X 
x x 

x 

w.e I I I I1I I I I I I I I I 1Xi I 1 1 iI 

5 6 7 8 9 

liver weight 

Fig. 5. Rat Data: Scatter plot of the absolute elements of Imax versus liver weight. 

The pattern in this plot suggests heteroscedasticity. Since analogous plots involving x1 and X3 
do not exhibit a clear pattern, any further analysis of these data should probably give considera- 
tion to the possibility of heteroscedasticity as a function of x2. For example, the pattern in 
Fig. 5 indicates that the error variances may be a function of I x2 - m 1, where m is a measure 
of central tendency for x2. The score test (Cook and Weisberg, 1983b) supports this indication. 

Further information might be obtained by looking in directions that correspond to smaller 
nonzero eigenvalues of F. Since Px has rank p there will be at most p such directions. This serves 
as a reminder that the sensitivity of an analysis to case-weight perturbations can be expected to 
increase with p for fixed n. 
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5. EXPLANATORY VARIABLES IN NORMAL LINEAR REGRESSION 
It is well known that minor perturbations of the explanatory variables in linear regression can 

seriously influence the results of a least squares analysis when collinearity is present. Such results 
may also be influenced by a few isolated errors in the values of the explanatory variables or by a 
few values that are widely separated from the remaining data. We are not thinking of the errors-in- 
variables problem where enough information may be available to allow X to be modelled 
stochastically. For convenience we again assume that a2 is known. The following results can be 
easily adapted for the situation in which a2 is unknown and only 3 is of interest by replacing 
a2 with a2 

Let sj, = 1, . . ., p, denote scale factors to account for the different measurement units 
associated with the columns of X. Then the perturbed log-likelihood L(,B I c) is constructed 
from (1) with X replaced by 

Xc, =X+ WS (36) 

where W = (coq) is an n x p matrix of perturbations and S = diag(s1, ., sp). The diagonal element 
Sj of S converts the generic perturbation coij to the appropriate size and units so that Cjjsj is 
compatible with the ijth element of X. Next partition the p x np matrix A as A = (Al, . .,,AP) 
where the elements of the p x n matrix Qk are a2L( I W/FIa, aFjk, i = 1, 2, . . ., p, j = 1, 2, . . ., n. 
Then 

1Ak = Sk (dkeT - XT)/a2 (37) 
where dk is a p x 1 vector with a 1 in the kth position and zeros elsewhere. 

In this application, F is a potentially large np x np matrix and determining its eigenvalues 
may be an unpleasant task. However, the eigenvalues of F= AT(XTX)-l A/a2 can be determined 
by replacing (XTX) 1 with (XTX) -1/2(XTX) -/2 and using the fact that the nonzero eigenvalues 
of ATA are the same as those of AAT which will be a manageable p x p matrix in this situation. 
Using this method, it can be shown that the nonzero eigenvalues of F are 

eTe8i/c2 + I2 ?S//a2 (38) 
j )I 

where 8i is the ith eigenvalue of S(X1X) -'1S, i = 1, 2, . . ., p. Thus, 

Cmax = 2eTe 5max/a92 + 2 13/S?1/2. (39) 
j )I 

Except in the special situation discussed below, an analytic form for 1max is unknown. 

5.1. Individual Columns 
The above results can be applied to situations in which less than p explanatory variables are 

perturbed by setting sj = 0 for the unperturbed variables. In particular, when only the first column 
of X is perturbed, sj = O for j / 1 andF=A T(XTXIV'Aia2 where A1 is given by (37) with k = 1. 
Using the identity 

d[(XTX)1 d, = 11 r 1-20) 
Cmax can be obtained from (39) or directly from F, 

Cmax = 2s2 (11 e 112 11 r 11-2 + I32)/a2 (41) 

where r is defined near (33). Clearly, Cmax depends on the value chosen for s1. In practice it is 
convenient to leave s1 unspecified until the remaining part of a Cmax has been determined. The 
magnitude of s1 necessary for a large curvature can then be determined and compared to prior 
knowledge on the size of potential errors. 

Next, using the relation 

X(XTX) -1 d = r/ll r 112 (42) 
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and F as given above, it can be verified that the direction of maximum curvature is 

imax = e- 3lr (43) 
A particular element xi1 of X1 will tend to be influential if the corresponding element (ei - 3ri) 
of lmax is relatively large. As in Section 4.3, lmax depends on the building blocks of a detrended 
added variable plot for i31 and it would be convenient if this plot could be used to assess the 
relative sizes of the elements of lmax. A single plot could then be used to assess the effects of two 
perturbation schemes-(case-weight perturbations as described in Section 4.3 and explanatory 
variable perturbations as described here)-in addition to furnishing other useful diagnostic 
information; see, for example, Chambers, et al. 1983. 

The ith plotted point in a detrended added variable plot is (ri, ei). If we pass a line with slope 
i31 through this point, the intercept of this line will be the ith element of lmax, (ei- 13ri). In 
practice it is often sufficient to visualize a single line with slope ,1 on the plot, and then 
mentally shift the line to assess the absolute sizes of the intercepts for each plotted point. Of 
course, special plots may be necessary if this procedure does not yield a clear interpretation. 

The two diagonal lines in Fig. 2 were constructed under the assumption that t1 = 1 so that 
I ei3- ri I = 0 for cases C and G while I e - Pri I is relatively large for the remaining outlying 
cases. These ideas should resolve the dilemma mentioned in Section 4.3: Depending on 01, cases 
like B, D, F and H will be important under perturbations of an explanatory variable, but not 
under perturbations of the case-weights. 

5.2. Rat Data Again 
For a first numerical illustration we again use the rat data. The perturbation scheme is 

characterized by S = diag(so, s1, S2, S3) = diag(0, 1, 0, S3), with S3 = 0.01 (0.01) 0.04. Thus only 
body weight and relative dose are to be perturbed, although for a thorough analysis perturbations 
in liver weight should probably be considered also. The value s1 = 1 indicates that perturbations 
of body weight will be on the order of 1 gram. Similar interpretations hold for the various values 
of S3. For S3 = 0.01 (0.01) 0.04 the maximum curvatures obtained by setting 2 = 2 in (39), 
are Cmax = 2.8, 9.4, 20.5 and 36.0, respectively. The curvature for S3 = 0.01 is relatively small 
while the curvatures for the remaining S3s are cause for concern. At the very least, further 
investigation is indicated. 

For example, a plot of LD {@(a)} in the direction of the eigenvector corresponding to Cmax 
is given in Fig. 6 for S3 = 0.03. Interestingly, the largest element of lmax always corresponds to 
the relative dose for case 3 which is the anomalous value Weisberg (1980) identified. The scale 
on the x-axis in Fig. 6 is the amount that the relative dose for case 3 is perturbed in units of S3 . 
Thus, for example, a= 0.5 indicates as3 = 0.015 was added to the relative dose for case 3 
while the relative doses for the remaining cases were perturbed by an amount less than 0.015 
in absolute value. Clearly, the influence of perturbations for S3 = 0.03 is very strong. In particular, 
the value of LD at a = -0.5 shows that 0,, will be moved outside of a 95 per cent confidence 
regiQn for 13 when perturbing each element of X by an amount that is not greater than 1 of the 
respective sjs. The nonmonotonic behaviour in Fig. 6 arises since the lifted line ai {@(a)} need 
not correspond to a path of monotonic increase. 

When perturbing explanatory variables to detect a few isolated errors or outlying values that 
seriously influence the coefficient estimates, lmax is of primary importance. If we perturb only 
relative dose and concentrate attention on the corresponding coefficient, information on the 
relative sizes of the elements of lmax can be obtained from the de-trended added variable plot of 
e versus r, as discussed in Section 5.1. This plot is shown in Fig. 7. The common slope of the two 
diagonal lines in Fig. 7 is 33 = 4.18. The intercepts of these lines serve as bounds on the intercepts 
obtained by passing lines with common slope P3 through each of the points on the plot. In view 
of the discussion given in Section 5.1, we see immediately that 03 will be most sensitive to 
perturbations in the dose for case 3 since the absolute intercept of the line passing through 
(r3, e3 ) is the largest. 
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Fig. 6. Plot of the likelihood displacement LD in the direction of maximum curvature for 
the rat data. 
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Fig. 7. Rat data: Added variable plot of e versus r for X3 relative does. 
The diagonal line has slope (3 = 4.18. 

5.3. Longley Data 
For a second numerical illustration we use the perturbation scheme for the Longley data 

described in Weisberg (1980, p. 70-72). For this setup, which consists essentially of using the 
SkS to represent round-off errors in the last digit of the explanatory variables, evaluating (39) 
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with a2 = J2 gives Cmax = 0.18. Weisberg found that only one significant digit in the ,Bs would 
be stable under his perturbation scheme. However, the small maximum curvature indicates that 
this instability does not reflect important local changes in the estimates when judged against 
the log-likelihood. This illustrates that seemingly substantial changes in estimates may, in fact, 
be inconsequential if the log-likelihood is sufficiently flat. 

5.4. Acetylene Data 
Finally, we consider the acetylene data as reported by Snee and Marquardt (1975). There are 

16 observations and the model includes all linear, cross-product and quadratic terms in 
XI = reactor temperature, X2 = mole ratio, and X3 = contact time. The addition of a constant 
X0 gives a total of 10 coefficients in the model. For these data, perturbing a single column of 
X may not be appropriate since any anomalies associated with a base variable will also be present 
in the associated quadratic and cross-product terms. The primary intent of this example then 
is to indicate briefly how the perturbation scheme described in (36) can be modified to handle 
polynomial models. 

For illustration, suppose that we choose to perturb only X2. Then 

Xw = (Xo, X1, X2 w, X3, XIX2 ,) X1X3, X2wX3 Xl, X2W, X32 

where X2,, = X2 + Ws2 . The maximum curvature for this scheme is Cmax = 127s, and an index 
plot of lmax is given in Fig. 8. Clearly, the value of X2 for case 13 deserves careful consideration 
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Fig. 8. Acetylene Data: Index plot for Imax 

regardless of the size of s2. Similar perturbations of X1 and X3 do not indicate that case 13 
is of special interest, but further investigation using case-deletion diagnostics does support this 
conclusion. Case-deletion diagnostics, however, can only direct attention to an entire case, 
while perturbing a base variable can isolate a particular component of a case. 

6. EXTENSIONS 
6.1. Case-Weights in Exponential Families 

In this and the following Section, we indicate how previous results can be extended beyond 
normal linear models. 
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Let yi denote an observation from a regular curved exponential family with minimal 
representaition 

f(y 0) = exp {yqi (0) - (77i( } 
For a seriesy , . Yn of independent observations the log-likelihood is therefore 

L(0) = z (yil7i - 4I4(77)) (44) 
i 

Often, the log-likelihood obtained by attaching a weight wi to the ith case can be written simply 
as 

L(O I c) = I - c(y1))i (45) 
i 

Pregibon (1981) used a likelihood of this form to derive various diagnostics for logistic regression. 
Let 

7= 3,q/30 (n x p) 

2i= 2m(O)/a02 (p x p) 
and 

t=diag(a2 i/ar ) (n x n) 

where all derivatives are evaluated at 0, the maximum likelihood estimator of 0. Applying the 
results of Section 3.1, 

F = D(u) r [N uit1 - 7T ] -1 ?TD(U) (46) 

where D(u) is an n x n diagonal matrix with the score residuals 

Ui = (i - a40i/ni) (47) 
as the diagonal entries. 

Many generalized linear models are special cases of (44) with 7hi(O) =K(x7T0) where K is the 
link function. Further, 

7 = diag (Ki) X 

and 
T 

ni = Ki xixi, 

where K, and Ki are the first and second derivatives of K evaluated at xid, respectively. In parti- 
cular, 77 = 0 when the canonical link is used. 

With a few simple modifications, the results of Section 4.3 can be applied in logistic regression 
where yi - binomial (mj, pi) and log {pi/( 1-pi)} = xTo * Let wi = [mi pi (1 - 3d)], i= 1 , 
let D(w) = diag(wi), and let D(x) denote a diagonal matrix with the components of 
X , Xi = (yi- msi3)/w12 , as the diagonal entries. Then 

F = D(x) PwD(x) 

where W = D(w)l/2X. Similarly, when 0 1 is of special interest, the direction of maximum curvature 
is 

imax = D(X)rw, 
where rw is the residual vector from the regression of the first column of W on the remaining 
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columns. Figure 9 gives a plot of Xi versus the elements of r, for the coefficient of log(volume) 
from Finney's data as reported in Pregibon (1981); the outstanding cases are the same as those 
identified by Pregibon. 

4 

x X 4 

3 - X18 

2 

x 
x X) X 

_ I 
x x 

x x x x x 

-2 I l l l l l l l l 

-0.15 -0.10 -0.05 0.00 0.a5 0.tG 0.15 0.20 

rw 

Fig. 9. Finney's Data: Added variable plot of xi versus rw. 

6.2. Explanatory Variables in Generalized Linear Models 
Consider the log-likelihood (44) with 77i = K(x6TO). The log-likelihood L(O I co) obtained after 

the explanatory variables have been perturbed by an amount co can be constructed by replacing 
xT with X T the ith row of X,, defined in (36). From this it can be verified that A has the same 
structure as described in Section 5 and that 

A S =k {duTdiag(ki) + diag(u Ki - j Ki )} (48) 
where dk is defined following (37) and u = (ui). Further, the observed information matrix is 

_ L = _XT diag(uiKi - 4'jkj2) X. (49) 

For a concrete illustration we use the leukemia data as reported in Cook and Weisberg (1982, 
p. 179). Here, a patient's survival time in weeks yi, i = 1, 2, . ., 17, is assumed to follow a one 
parameter exponential distribution with mean exp{01 +02xi} where xj=logjo(WBCj) and 
WBC1 is the white blood cell count for the ith patient. 

The log-likelihood for the original data is of the form given in (44) with 

i7i = K(O 1 + 0 2Xj) = - exp [- (d 1 + 0 2 Xi)] 

and 4i(n) = - log( - i). From this it follows that 

K1=exp [-(Ol +O2x)] (EYi) 

Ki = - Ki 

Ii = 77i-=exp [O +02x] =Ki- 

=i2 =exp [2(0, + 02x)] = var (h.) 

ui=yi-exp [O1 +02xil 
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and thus that 

ui ki- ?sKIQ = -yi ki 
These calculations along with (48) and (49) can now be used to construct F as given in (15). 

To assess the influence of potential anomalies in WBC, we perturb x = log1o(WBC) rather than 
WBC itself. This implies that errors associated with WBC are multiplicative rather than additive, 
which seems to be a reasonable implication. 

The maximum curvature for this perturbation scheme is Cmax = 17.01 4s where sx is the 
scale of the error associated with x. Clearly, s2 must be substantial for the local influence to be 
large. An index plot of lmax is given in Fig. 10. Although the curvature is small, an inspection 
of the direction of maximum curvature does direct attention to case 17 which is the case that 
Cook and Weisberg (1982, p. 185) identified as influential by using case-deletion diagnostics. 

Imax 

0.75 

0.50 

0.25 

-0.25 

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 

INDEX 

Fig. 10. Leukaemia Data: Index plot of lmax* 

7. DISCUSSION 
Statistical conclusions can be viewed as the end result of a synthesis of the relevant information 

provided by the observed data and the prior information provided by the model which is usually 
a plausible, but necessarily imprecise, description of the actual process that generated the data. 
The developments in the proceeding Sections are based on the informal notion that important 
conclusions should not depend critically on the hypothesized model or unusual aspects of the 
data. If our conclusions do depend critically on the model or the data, there is surely cause for 
concern and the knowledge of such dependence must become a part of the conclusions. Other- 
wise, our ignorance of the precise process that generated the data should do no harm. 

An obvious way to see if perturbations of the model influence key results of the analysis is to 
compare the results derived from the original and perturbed models. The influence graphs 
introduced in Section 2 are simply devices to facilitate such comparisons when the behaviour 
of the parameter estimates is of interest. These graphs are not designed to display all of the 
possible consequences of an induced perturbation. For example, they may not respond to 
situations in which the shapes of the original and perturbed log likelihoods are substantially 
different, while the corresponding parameter estimates are nearly identical. Nevertheless, as 
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illustrated in the discussion of linear regression, the proposed graphs do provide important 
diagnostic information and a relatively simple, unified approach for handling a variety of 
problems. 

For a complete understanding of the influence of a particular perturbation scheme, it is 
probably necessary to know the full behaviour of an influence graph over U. The central 
methodology of this paper seems to be a reasonable way of characterizing the local behaviour of 
an influence graph around wo. The maximum curvature Cmax is a useful indicator of extreme 
local behaviour, and the plot of the corresponding lifted line provides a straightforward way to 
confirm such indications. Experience has shown, however, that the direction of maximum 
curvature Imax contains the most important diagnostic information. This approach leads to new 
interpretations for outlying points in added variable plots from linear regression and provides a 
way to extend these plots to more complicated situations, including generalized linear models. 

In some problems such as case-weight perturbations, it may be worthwhile to supplement a 
local analysis of an influence graph by studying its behaviour at the boundaries of Q. In other 
problems it may not be possible to specify Q2 precisely and in such situations a local analysis is 
most natural. This happens, for example, when perturbing explanatory variables. 

The proposed methodology was developed in a likelihood framework, but the basic ideas are 
equally applicable in Bayesian analyses. For example, the likelihood displacement might be 
replaced by the Kullback-Leibler divergence between the original and perturbed predictive 
densities and co might be used to assess the sensitivity of the analysis to perturbations in the prior 
parameters. Geisser (1985) briefly describes several related ideas that might be used in this 
context. 

There is an apparent danger associated with the use of diagnostic methods: can we too often 
end up pursuing meaningless shadows in the data and thereby neglecting important substantive 
issues that should be our primary concern? This danger may seem particularly real for the 
proposed methodology since the diagnostic statistics are obtained by maximizing over a 
potentially large number of dimensions. Figure 5 and the associated discussion may be a good 
example of how we can be misled. There seems to be no sure answer to such concerns, but there 
are a few ways in which they may be alleviated. First, simulation methods can be used to aid the 
interpretation of plots such as that in Fig. 5; Atkinson's (1981) envelopes is one method that 
might be adaptable. Second, in all situations where explicit expressions for Cmax and lmax have 
been obtained, the proposed methodology agrees well with standard procedures. And lastly, few 
analyses are intended to yield definitive answers. Recalling the comments by Box (1980), results 
from one analysis will direct our attention in future studies, with persistent results leading to 
scientific learning. 

Finally, this work has centered on the identification of influential aspects of the model and 
this leads naturally to the identification of relevant and perhaps unexpected characteristics of the 
data. Inevitably, we will be faced with the issue of accommodation, or how to proceed once 
potential problems have been identified. Accommodation is important, of course, but specific 
universal recommendations are elusive since appropriate procedures depend strongly on context. 
In any event, identification must necessarily precede accommodation. 
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DISCUSSION OF PROFESSOR COOK'S PAPER 

Professor R. M. Loynes (University of Sheffield): Ideas rarely spring fully-armed from the 
brow of their begetter, and ideas of diagnosis of problems in regression can be traced back a long 
way if one tries, but there is no doubt that Professor Cook's introduction of what is now called 
Cook's distance (Cook, 1977) seemed a remarkable advance at the time, and it is therefore a 
considerable pleasure to listen to him speaking tonight on a related topic. Now, of course, every- 
one calculates this, or some very closely related, measure when fitting a regression model, and, as 
Professor Cook observes, the general idea, of deleting cases, has been adapted for use in other 
contexts-in logistic regression and calibration problems for example. A further application, 
incidentally, is in subset selection (Loynes 1983; Chatterjee and Hadi, 1984). 

The object of tonight's paper is rather different: assessment of the effect of small perturbations 
of the model. Before coming to the main topic, by the way, I'm not sure I entirely agree that 
case deletion is merely a reflection of model perturbation, as seems to be assumed: one particular 
kind of model perturbation happens to lead to case deletion in its associated estimator, but 
logically they don't seem to be tied very closely together-a large Di, for example, can indicate 
either error in the model (should be non-linear) or error in the data. In a similar way, I would 
not consider, in most circumstances, a perturbation of the explanatory variables as a perturbation 
of the model: moreover, is the likelihood displacement necessarily the right criterion in this 
context? For subset selection problems (which might be regarded as an extreme kind of explana- 
tory variable perturbation), for example, the unadjusted likelihood is certainly not appropriate. 

However, these are mostly rather minor matters of terminology. The underlying tenet, that, 
if a minor perturbation in the model leads to a major change in essential parts of the results of 
the analysis, then there is evidence of a difficulty, is very appealing and, indeed, I would say 
completely convincing. It suggests measuring the sensitivity of the analysis to change in the model 
by some kind of derivative, and this is exactly what is suggested: in fact what is used is essentially 
the second derivative at the proposed model of the likelihood displacement as defined at (5)- 
more precisely it is the normal curvature of the likelihood displacement surface. 

This is an interesting and valuable idea, and some of its consequences and applications are 
worked out in the paper-I particularly liked the possibility of focussing on single columns of X, 
as in sections 5.1 and 5.4-but I think some further development is needed: I see two apparently 
different difficulties, though they may merely be variations on a theme, with the present 
formulation. In the first place, neither the curvature nor the direction of maximum curvature is 
invariant with respect to reparameterization. Suppose that the case weights for normal linear 
regression are taken as (1 + wi)/2 rather than wi: then the original Cl is multiplied by 4. (Of 
course this is not a very natural parametrization in the present situation, but I don't know how 
to ensure or even define a natural one.) This means that we have no idea of the appropriate scale 
for Cl. (And even within the terms of the paper, why is the value 2 necessarily appropriate? Should 
the yardstick perhaps depend on X, at least to the extent of involving its column rank p?.) The 
second difficulty is that the measure Cl depends on the details of the perturbation permitted. 
Suppose that, as in Section 4.2, we consider the effect of perturbing a single case, but instead of 
varying the weight directly we take the disturbance term in the ith observation to have a 
distribution which is N(O, a2) with probability wi and N(O, ku2) with probability 1 - wi. Then 
we find that 

__k _ -J) ?k-1I 
e 

C =2hii ( e p e k -l 

which is to be compared with (32). Both models of perturbation predict larger variance for yi if 
wi < 1, and so in some rather general sense are similar, and I'm not sure how often I would be able 
to plump for one rather than the other, but it seems to me that the message to be got from one 
might be quite different from that derived from the other. However it may be that this is not in 
fact a serious problem. 

As another application, which again may throw some light on the question, take the normal 
linear model and assume the variance-covariance matrix of y is a2 (I + W)-1, with o2 assumed 
known for convenience. The relevant part of the log-likelihood is 

L(l, w) = - (2a2 ) -1 V-X)' (I + W) y-X3) 
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where W represents a perturbation in both variances and covariances. Although W is in fact 
symmetric the expression for L(P, w) is unchanged if no such restriction is imposed and as it is 
slightly simpler to do so we take a general W. The vector 1 in this case is most easily thought of 
as a matrix L, and the analysis to find the curvature in direction L can be carried through either 
by using suffices explicitly or by using the "vec" operator. In either case the equivalent of (2.9) 
is found to be 2e'L'PxLe/a2 with constraint tr(L'L) = 1. The equation for a maximum is thus 
PxLee' = XL for some X: postmultiplying by e shows that Le is an eigenvector of Px, and since 
it must obviously correspond to a non-zero eigenvalue we have Le = Xt for some t. Substituting 
this into the previous equation we find L = Xse'. Then the constraint gives e'e s'X'Xs = 1, and 
the maximum curvature is then 2e'es'X'PxXse e/a2 = 2e e/a2, for any s. Again, if only ,B is of 

C2 2 "2 interest and a is estimated we replace a by a and find Cmax = 2n which is both independent 
of X and large. Assuming my algebra is correct, does this result tell us that the perturbation 
scheme is unreasonable? 

Returning to the first problem, I don't have a particularly compelling solution. As far as 
showing that local influence is different to global influence, and that the behaviour of the 
likelihood displacement surface near the postulated (unperturbed) model is of considerable 
interest and probably importance I think that both the general argument and Fig. 1 are convincing. 
It would be possible to use the ratio of Cl to the square of the slope of the line joining the case 
deletion value to the unperturbed value, but this seems clumsy. Another approach would be to 
take the position that it is a comparison that is sought, for example between Cl for different 
realizations of the same model with the same perturbation scheme, that is needed; this may show 
that the value 2 (or rather a value derived in just that way), on which some doubt was thrown 
above, is in fact both valuable and sensible. 

But the basic idea is surely important and, as our chairman reminded us in a similar situation 
a year or two ago -it is the first step which counts. I have therefore much pleasure in proposing 
the vote of thanks. 

Dr A. J. Lawrance (University of Birmingham): I would like to welcome Professor Cook to 
our meeting tonight. His paper develops an important new view of influence based on likelihood 
displacement. One of the main statistics from Professor Cook's earlier deletion approach is also 
equivalently a likelihood displacement, but is now usually called by the name of Cook's Distance; 
it is available in many statistical packages. I have found out that Cook's distance tonight is 
actually 4,015 miles, thus giving a further demonstration that it is not intended to measure local 
influence. 

Tonight's paper is primarily concerned with local influence, and its chief conceptual tool is 
that of differential geometry. I was delighted to see the subject put to such good statistical use. 
Also I congratulate Professor Cook on having found what must be the last new thing to perturb 
in a statisticdil analysis, that is perhaps surprisingly, the parameters of the model. Previous per- 
turbing has been to the data and to the explanatory variables, and tonight's paper has comments 
on these as well. 

I find emphasis in the paper on case-weight analysis to be a little overdone, and regard case- 
weights as rather artificial parameters of the model-if you want to equivalently regard them as 
reciprocals of non-constant variances in a least squares analysis, then heteroscedasticity can be 
analysed in its own right. This appears to be the de facto use in the examples anyway. I wonder 
if there is any advantage to be had from describing the non-constancy in terms of external 
variables Z and a perturbing parameter X, perhaps in the form a2 exp(XZ). If case-weight local 
analysis is to be undertaken for its heteroscedastic implications, then I would have thought that 
plots such as Fig. 1 should be superimposed for each and every data case, and perhaps be studied 
for their outlying or clustering effects, or absence of such effects. Incidentally, the slopes at 
X = 0 in Fig. 1 are another informative feature and are given by 

-2 1hii Yi xi1(i)2 2 I - hii L (i) 
This is the result for the ith-case curve with a general regression model when only , is being con- 
sidered. Here hii/(l - hii) represents the di,stance of the ith point in the explanatory space from 
the average of the other points and yi - xi,(1) is the usual predictive residual; &(i) is a predictive 
residual mean square over all responses, but based on fitted values which have been calculated 
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without using the ith case of the data. The slope result may interestingly be compared with (32) 
for the curvature at zero, and in practice should be used in conjunction with LDS(O) which is 
n log (&2,)/!2). 

The core of the paper is in Sections 2.2 and 3.1 with the introduction of the likelihood displace- 
ment (5). I am particularly grateful to the author for his careful discussion of curvature, and in 
his presentation, for the three-dimensional illustration of an influence surface concerning the 
rat data. Also, by indicating that curvature refers to the ordinary curvature of the curve formed 
by a lifted line in a specified direction, we have a clear intuitive idea of its meaning. The author 
takes the second derivative form of curvature in a particular direction and shows that it can be 
neatly reexpressed as (16). The calculation does, however, need explicit knowledge of the maxi- 
mum likelihood estimates 0 of 0, but only at the non-perturbation value coo of Co. This is perhaps 
just minimally inconvenient. From (16) the directions of maximum curvature follow. All this is 
very nice, although the need to explicitly calculate the estimates and eigenvalues can lead to 
intractability in theoretical developments. Life is also more complicated if curvatures are required 
at points away from the non-perturbing value coo. The relevant derivations (17) to (20) are 
certainly skilful but it is a pity that there are no illustrations in the paper to demonstrate their 
tractability or to justify their usefulness. 

Turning next to the case-weight local analysis of Section 4, we are advised to inspect the 
elements of 'max, the over-all direction which gives maximum curvature. The relevance of 
individual elements is however an empirical observation and has not yet been justified by their 
explicit interplay with the basic quantities of regression analysis; indeed, this would appear to 
require the intractable eigenvalue analysis. I am also slightly mystified by the sanctity of two 
for the maximum curvature. Its value depends on the parameterization of the perturbing. What 
other evidence is there that this represents a universally small curvature? The results for case- 
weight local analysis of individual regression coefficients are elegant, and interesting in their 
relation to added variable plots, or individual coefficient plots, as I sometimes prefer to call 
them. I wonder about Cmax and Imax at deletion (w = 0) instead of at inclusion ( = 1), but 
note that in presenting the paper, the author appeared to play down the analysis of maximum 
curvature, while emphasizing the importance of its direction. This needs further theoretical 
clarification. 

I should like briefly to take up the author's invitation to consider other possible applications, 
and in view of our overlapping interests in regression transformation, I will briefly consider this 
area. In the spirit of the Box-Cox approach one might first think of perturbing the regression 
model (4) of the paper using the transformation parameter X. This would be convenient since X 
does not have to be estimated but is used at X= 1, its non-perturbing value. However, the 
likelihood displacement (5) is measuring changes in parameter values. The regression parameters 
,B and a2 clearly change enormously with changes in scale of measurement, and curvatures would 
not be meaningful. Thus, the author's comments about the careful and sensible choice of X are 
to be heeded; scale transformation is not an operation which causes "interesting" changes in 
regression parameter estimates. I think I am coming round to case-weight local analysis! Suppose 
we regard X as a parameter and eliminate , and a2 from the unperturbed likelihood, since changes 
in ,B and a2 are not relevant to our initial interest in X; this is the parameter-subsets approach at 
(7). We have a likelihood displacement LD,(co) involving (co), the maximum likelihood estimate 
of X for the full and co-displaced likelihood. This will be obtained by minimizing 

p(X)T(W- WX(XTWX) lXTW)5(X) 

where W = diag (l, c2 . ., cn) and 5(X) is the usual scale-corrected version of y(X). The 
likelihood displacement is then given using the unperturbed profile likelihood for X as 

LD,(co) =constant + n log{j(X(w))TP 
I 

(X(A()) } 
The use I see for this is inq the situation of Fig. 1 in which just the ith case is perturbed and co is 
scalar. The computing of X(X) is of course the drawback for explicit results, but the curvature at 
co = 1 and the slope at c = 0 should be tractable, and I hope to publish results later. If this is 
indeed the case, one could determine which are the individually most influential data cases as far 
as X is concerned. If we are just interested in maximum curvatures, we may go to..(2.6) of the 
paper; for this we again only require X = X( l), and the observed information matrix L for X, ,B and 
a2 which is not impossible. But it may be easier to use (10) directly. 

This content downloaded from 163.117.20.121 on Tue, 24 Nov 2015 10:08:44 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1986] Discussion of Professor Cook's Paper 159 

I will conclude by venturing to suggest that regression diagnostics are here to stay, and that 
tonight's paper is a valuable contribution to the area by one of its most innovative contributors. 
Thus I am not in the least bit perturbed by this paper, and have great pleasure in seconding the 
vote of thanks. 

The vote of thanks was passed by acclamation. 

Dr F. Critchley (University of Warwick): It is a pleasure to congratulate the author on a major 
contribution to an important area. The spirit of my comments is two-fold: to balance some of 
the points made and to suggest some extensions to what is, I am sure, going to prove a seminal 
paper. 

In his Introduction, the author raises three objections to an existing device, the influence 
curve: (1) difficulties in its construction limit its scope; (2) a norm must be selected; and (3) 
there is too much choice (frorn among the several sample versions). It appears that similar 
objections apply equally to the influence graph and the related constrXucts described in the 
present paper: (1) their construction is not immediate, especially when 0 and/or lmax are not 
known explicitly. Lack of an analytic expression also limits theoretical insight; (2) this is not a 
problem here precisely because only one response (the likelihood displacement) is being 
monitored. As the author fairly states in the second paragraph of the Discussion, this is not a 
virtue. Whereas LD(co) has merits when viewed as a norm for the change in the p-dimensional 
parameter estimate, there are, as with the influence curve, a variety of other measures of the 
divergence of 0 and 0O^,. Moreover, here we have the general challenge of comparing two entire 
log-likelihood functions and not just their modal values; and (3) in the penultimate paragraph of 
the paper, the author himself fairly discusses the problems associated with the q-dimensional 
choice of co. 

It is also instructive to enquire how strong these objections really are. The answer appears to 
be "not very". The author presents a strong case for the value of the influence graph. For the 
influence curve, we note that: (1) at yesterday's meeting of the Multivariate Study Group, 
Patricia Calder, Ian Jolliffe and the current writer demonstrated the tractability and utility of 
the influence curve in multivariate analysis. Indeed, in Principal Components Analysis, there 
is an additive measure which therefore avoids the masking and computational difficulties which 
arise in regression (see the end of Section 2); (2) Selection of a norm is necessary whenever 
more than one response is monitored. This does not seem to be a major difficulty. Indeed, as 
with (3), it seems rather to be an advantage in that a variety of measures provide a variety of 
information. Finally, concerning (3), we note that Critchley (1985, Section 4) contains some 
general theoretical results comparing three standard sample versions of the influence curve. 
These are in terms of the curvature of a certain functional and so are very much in the same 
spirit as tonight's paper. 

Overall, I believe we should welcome the influence graph as a valuable supplement to the 
influence curve rather than as a replacement for it. Finally, three possible extensions. 

Uncertainty: currently the state of the art in influence analysis is point estimation. Influence 
curve measures are based on a point estimate F of the Xunderlying distribution and influence 
graph measures on (highly nonlinear) functions of 0 and 0 Obvious benefits will flow from 
incorporating uncertainty into influence analysis. There are many ways in which this could be 
done. One example for the present paper would be to use interval estimates based on the null 
(co = coo) distribution of Cmax and Imax. Generally, it seems that uncertainty will increase with 
q. 

Global measures: The tough challenge which these present seems less difficult when LD(co) 
is known explicitly. For instance in the motivating example in Section 2.1 we can show that 
LD(co) = c?LD(O) where 

(1- hi1) (1 - c) hit e? 
and LD(O) =___ I {1- hii(I )} ( -h )2 i2 

with LD(O) corresponding to deleting the ith case completely. Apart from the known constant 
a2, the whole graph of LD(.) depends only upon two quantities his and es and so can be described 
globally by just two summary measures, say its curvature at co0 (as proposed) together with 
LD(O). As an aside, this is a small example of the fruitful supplementing of old ideas with new 
as advocated above. 
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Data analysis without a probability model: in principle there is no barrier to extending 
influence analysis beyond the realm of probability models. Foi example, the influence curve 
can be used in both scaling and clustering methods by replacing F with the observed dissimilarity 
matrix in the appropriate functional. For the influence graph, we need only replace maximized 
log-likelihoods by the negatives of the discrepancy measures (e.g. sum of squares) minimized 
by the data analytic procedure. 

Professor A. C. Atkinson (Imperial College, London): It is a pleasure to congratulate 
Professor Cook both on a paper which suggests many interesting new avenues for research and on 
his lucid presentation this evening of the key ideas behind his paper. 

I have two points. The first is to ask for clarification of the relationship between the scheme 
for model perturbation and the score test for the related elaboration of the model. 

The second point is more in the nature of a challenge. The standard works on diagnostic 
regression analysis (Belsley, Kuh and Welsch, 1980; Cook and Weisberg, 1982; Atkinson, 1985 
and Weisberg, 1985, Chapters 5 and 6) describe single deletion diagnostics in appreciable detail, 
but give little guidance on how to detect multiple outliers in the presence of masking. One 
exploratory method which does work is least median of squares regression (Rousseeuw, 1984). 

Let the residual ri = yi -x xb. Two criteria for the estimation of b are 

Ordinary Least Squares Minimize 2rt 
b 

Least Median of Squares Minimize median r . 
b i 

The least median of squares estimate of b is found by a Monte-Carlo algorithm in which the model 
is fitted to randomly chosen subsets of p cases (Hawkins, Bradu and Kass, 1984; Rousseeuw and 
Leroy in an unpublished technical report). This exploratory first stage of fitting to reveal outliers 
is followed by a confirmatory stage. Rousseeuw (1984) uses robust estimation; Atkinson (1986) 
least squares with omission of suspect cases followed by single case deletion and prediction 
diagnostics. 

Rousseeuw (1984) motivates his discussion with a simulated example in which there are 30 
"good" observations and 20 "bad" ones. Atkinson (1986) shows that single deletion diagnostics 
fail to reveal this structure. I would like to see what Professor Cook's methods make of this 
extreme example. 

Professor Sir David Cox (Department of Mathematics, Imperial College, London): It is 
perhaps only the most sophisticated of the theoretical physicists investigating the very foundations 
of the Universe who consider that their mathematical representations are in some sense exact: 
others regard mathematical formulations as idealized approximate representations of aspects of 
the system under study. Therefore investigation of sensitivity to model formulation is veryC 
important. Therefore the present paper is extremely welcome. 

Professor Cook's approach is interesting and fruitful. There are other formulations. The 
following is a sketch of one alternative. Let f(y; 0) denote a working model and 7r(y) an unknown 
truer model. We fit the working model say by maximum likelihood, obtaining a maximum likeli- 
hood estimate 0 and an estimated covariance matrix (ni)V' from the observed information. Now 
under the model 7r, it is known that the estimate converges to 0r, say, that the estimated variance 
converges to (nir)1 and that the asymptotic variance of 0 is (nil), say, where simple formulae 
(Cox, 1961) are available for these vectors and matrices. 

In the first place, two questions arise. Is 0r meaningful? What is the relation between apparent 
and true covariance matrices, i.e. between i7r and i4? 

Provided that the parameter is regarded merely as a specifier of a model and not as something 
of intrinsic interest, the first question has a simple answer in that Or gives the model within the 
family in question that is closest to ir in minimizing a natural measure of distance, 11 f- ir 11; the 
best-fitting model within the family is obtained. This leaves, of course, the issue as to whether the 
model family can be improved. The second question leads to a constrained calculus of variations 
problem to find the kind of departure with respect to which there is greatest sensitivity; this is 
somewhat analogous to the treatment in the paper, although aimed at variance of estimation rather 
than at the point estimate itself. 
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If, however, we regard the parameter, or more realistically a component Os, say, as of intrinsic 
interest, the question becomes one of whether Os, keeps its physical interpretation as a slope, a 
quantile, or whatever. Of course, as Professor Cook notes, similar questions arise in his discussion, 
both as regards the specification of the parameter of interest and as regards the perturbing para- 
meter w; in particular it is necessary that his co is chosen so that the Euclidean metric used to 
determine curvature is meaningful. Such questions about parameterization are addressed to some 
extent in as yet unpublished work of N. Reid's and mine. 

It will be clear that I found Professor Cook's paper very stimulating. 

Dr P. Prescott (Southampton University): May I express my appreciation to Professor Cook 
for a stimulating paper which I have enjoyed very much. I am certain that close examination of 
influence graphs will form a most useful generalization of diagnostic data analysis procedures and 
it is likely that this work will prompt further research into ways of assessing the shapes of 
influence graphs in addition to consideration of its direction of maximum curvature. There are, 
however two matters about which I am concerned. 

The first point which worries me concerns the evaluation of maximum curvature or of 
examination of the shape of the lifted line in the direction of maximum curvature. The relevance 
of any numerical "benchmark" selected to assess "largeness" for the maximum curvature, and 
therefore providing cause for concern about the analysis, will change with the dimensionality of 
w. We have seen that it is possible to extend w to include case weights, explanatory variable 
perturbations, changes in the correlation structure and other sensible perturbations to the data 
or to the model. In the most general case w could contain a large number of elements, well in 
excess of the number of observations. Analytical evaluation of the maximum curvature will no 
doubt be very difficult in these cases but numerical methods may be feasible. Care needs to be 
exercised in assessing the importance of a specific perturbation identified in this way from 
amongst many others. 

I used the term "benchmark" earlier rather than "critical value" in this context since I believe 
that it is inappropriate to assess the "significance" of a large curvature, or of the peakedness of a 
lifted line plot, by means of a formal significance test. Professor Cook does not mention critical 
values but does suggest that further research could involve simulations and this causes me some 
concern. There will always be an element of choice in the form of perturbation to be considered. 
In fact we are advised by the author that "w must be chosen carefully so that the application 
is sensible". I suspect that in practice the form of w will also depend on an initial examination 
of the data. Professor Cook has warned of these difficulties and dangers in his conclusions but it 
should be stressed that anyone considering using simulation methods to determine critical values 
for maximum curvature should keep in mind that the element of selection of the form of co could 
lead to inappropriate conclusions. 

The following contributions were received in writing, after the meeting. 

Mr R. Beckman (Los Alamos Nat. Lab., USA): Professor Cook is to be congratulated; the 
paper he presented here is outstanding. It is destined to become a classic. While the author 
devotes most of his examples to linear regression, the real worth of the paper is the notion that 
local influence may be assessed for most likelihood based procedures. Influence is no longer 
restricted to linear models. 

There are four minor points which I would like to make. First, it is not clear that Cmax = 2 
"serves as a useful general reference". The maximum curvature is a function of the perturbation 
scheme, and only experience will allow one to judge its relative size. This is made clear by the 
author's scale functions S for the perturbation of the explanatory variables in linear regression. 
From the author's equation (41) the curvature is directly proportional to the square of the scale 
s1. ITherefore, as demonstrated in the rat example, the curvature may take on any value. 

In the explanatory variables case Professor Cook has left the choice of s1 arbitrary. I think it 
best at this point to require the s1 to be either the range or standard deviation of the jth 
explanatory variable, as either of these choices will leave the curvature scale invariant. Experience 
will then dictate the size of "significant" curvatures. 

Implementation of these procedures in moderate sized problems will lead to some numerical 
headaches. The matrix F with moderate n can become so large that the computation of eigen- 
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values and eigenvectors becomes a problem. Even the author's mathematical "tricks" between 
equations (37) and (38) do not lead to the eigenvector lmax ; it is critical to know Imax and hence 
the direction of the maximum curvature. 

The choice of the perturbation scheme may be a problem. The author has provided the 
machinery to assess local influence in so many ways-perturbation of the ys, perturbation of the 
xs, perturbation of the case weights-that one is left with the possibility of using different 
perturbation schemes until some significant local influence factor is found. Is it possible that all 
data sets will exhibit some form of local influence? 

The last problem I see is not confined to the procedures given here. The author has stated, 
and I reiterate, that accommodation of influential cases is not addressed in this work. With all 
the procedures given to us in the last few years, the practitioners are left with the uneasy feelings 
of estimation errors when the influence flag is raised. Until now however all influence measures 
dealt with case deletion. The logical mode of accommodation therefore was removal of the 
influential case. I am not sure what accommodation means in the case of local influence. 

Once again, Professor Cook is to be congratulated on such a significant work. 

Dr R. W. Farebrother (University of Manchester): The maximum likelihood estimator of j3 
in the model 

y- Xif + e e ?j IN(0, aJo) 

is given by 

b(t) = (X'X)Y- X'y 

if aJ = a2 and by 

b(w) = [X'D(w)XI X'D(w)y 

if aJ a2 /wj. The difference between these two estimators is 

b(w) - b(c) = [X'D(w)XI -1 X'D(w) [y -Xb(0OI 
and thus 

Kv = e'D(w)X [X'D(w)XI -1 X'D(w)e/(a2v'v) 
is a measure of the proportionate effect on b(w) of a small change in w from w t to w =t + v. 

Now D(w) = D(t) + D(v), D(t) = In and X'e = 0 so that we may approximate 2Kv by 

Cv= 2e'D(v)X(X'X) -1 X'D(v)e/(u2 v' v) 
or 

C 2v'D(e)X(X'X)'1 X'D(e)v/(a2 V'V) 

which is identical to the author's C1 statistic (29) if we set wo = t, a = 11 v 11 and I = v/ll v 11 in his 
equation (10). 

The values of v which minimize Cv for all y may readily be obtained by solving X'D(v)Q = 0 
or 

n 
xiqjkV ? = 1, 2, . . .p, k = 1, 2, . l -p, 

1- 1 

for v where Q is an n x (n -p) matrix satisfying Q'X 0 and Q'Q = In-. 
In general the value of v which maximizes Cv is not known but if p = 1 and.X is an n x 1 

column of ones then it is given by v= e. If we set v = e and o2 = e'e/n when p> 1 then we 
obtain the statistic 

Ce = 2e,q X(X X) -' X'esq l(n'4) 
which is closely related to Breusch and Pagan's ( 1979), p. 1 289) statistic 

BP= eq Z(Z'Z) 1 Z'esql(2&4) - n/2 
for testing for heteroscedasticity of the form a2 = h(zt ). 
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Professor S. Geisser (University of Minnesota, USA): I would like to briefly sketch a Bayesian 
approach to the perturbation problem that has been discussed by Professor Cook. Let L(d(y), 0) 
be the loss in making decision d on observing y when 0 is true. Assume that P,(0 I y) is the 
"perturbed" posterior distribution of 0 obtained from the perturbed likelihood l(O I Y) and 
prior distribution g.,(O). Then for each C Q2 let Lw(d(y)) be the expected loss and d * 
minimize this loss so that 

L (d, = min L .,(d) . 
d 

Hence perturbations in w show how decision d< will vary from d* with a corresponding 
differential loss L(d<,) - L(d*)). The latter is presumably expressed in a well defined and under- 
stood unit of measurement. This formal approach can be used for a subset of the parameter set 
or more importantly for predictions where a predictive loss function and a predictive distribution 
replace the parametric loss and distribution functions respectively. 

In many situations where a decision is either not the immediate goal or is embedded in the 
reporting of the posterior or predictive distribution, i.e., a clearly informative summary which 
can be used for inferences or decisions by others at some future time, Kullback-Leibler 
divergences are useful measures of the effects of model perturbation. 

For example one such divergence is 

IPW, Pw0E [ln Pw (O LY)1 
o [ W pW(O Y)] 

where the expectation is taken over P.(O I y), the perturbed posterior density of 0. Another 
potentially useful divergence is its counterpart I(pwo, P.). Other measures could also be 
entertained. For example 

5wb = max I P,(o I y) -PW (d I y)| 

will also be informative. In each of these cases a perturbation graph of the influence of w on the 
measure provides a revealing summary of the potential perturbation effect. 

Similarly for prediction one would use the predictive distribution F.(z I y) in place of the 
posterior distribution. Generally perturbations will have much less of an effect on prediction 
than they do on estimation, see for example my rejoinder to discussion, Geisser (1982). In 
addition one would also expect that the smaller the sample size the less the effect of the 
perturbation. Thus the interpretation of LD(w) as an asymptotically useful feature will, it 
appears, overemphasize the effect of the perturbation for small or moderate sample sizes. This, 
of course, would not happen under the Bayesian approach discussed here. 

Professor C. J. Nachtsheim (University of Minnesota, USA): Reading this paper has been 
enjoyable and thought provoking. Professor Cook has developed an amazingly general method 
for assessing the stability of statistical models to perturbations in assumptions. As indicated in 
the paper, applications in regression and general linear models seem unlimited. Part of my 
enthusiasm for the method, however, springs from the potential I see for its use in statistics 
when the objective function is other than the likelihood. 

In optimal experimental design, for instance, the objective function is often the determinant 
of the information matrix. For approximate (continuous) optimal designs, this matrix is a function 
of the support points and the variances and the design weights associated with each point. Using 
Professor Cook's approach, one might assess the criticality of assumptions concerning the variance 
of the response at each design point. Alternatively, one might assess the sensitivity of the determ- 
inant to perturbations in the weights or the supports. Since, in practice, it may be difficult to 
precisely achieve the desired weights and treatment combinations, such diagnostic information 
could be of use. Some preliminary work concerning perturbations of design weights suggests that 
many standard optimal designs are relatively insensitive to perturbations of the optimal weights. 
Assessment of the influence of perturbations to the support points is slightly more complicated, 
since many are often on the boundary of the design space. The derivative of the criterion 
function with respect to the coordinates of such points is usually nonzero; thus, without modifica- 
tion (i.e., transformation of the design space if possible) the method will not strictly apply. 
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In light of current industrial emphasis on off-line quality control, practitioners are often 
concerned that the response, y(x), be insensitive to minor perturbations from the solution point 
x*, found via response surface analysis. The impact of worst-case local perturbations is easily 
assessed, if x* is an unconstrained local maximum. In this case F is simply the Hessian of the 
regression function y(x) evaluated at x* and Imax is the eigenvector associated with the largest 
eigenvalue of F. Inspection of the lifted line generated by Imax, then, would reveal (locally) 
the worst case decline in the predicted response, with accompanying implications for on-line 
quality control or further research. Of course, canonical analysis of F is often standard procedure 
when analysing response surfaces. Professor Cook's work suggests that additional, useful diagnostic 
information can be obtained in this situation from an inspection of Cmax and the lifted line 
generated by Imax 

Professor D. Peiia (Universidad Politecnica de Madrid): This lucid paper helps to clarify 
important issues on the assessment of influence in statistical models. In fact, the perturbation 
scheme used in the paper points out that the key issue in the study of influence is not the case- 
deletion technique, but the assumption of lack of knowledge about the reliability of one 
observation or subset. 

Thus, the assessment of global influence should be made assuming that the observation is 
missing. Of course, for the linear model, both approaches are equivalent but they are not for 
dependent data as time series. It has been shown (Penia, 1984, 1986) that this missing value 
approach leads to sensible diagnostic measures of influence for ARIMA models, whereas the case- 
deleting does not. Suppose, for instance, that the data are generated by the dynamic linear 
model: 

yt =p +b'xt + q Yt__i + O'at- +at 
where p is a global level parameter, b, 1 and 0 are vectors of unknown parameters and xt is a 
vector of explanatory variables, Y-_1 = (Yt- ..Yt--p) a vector of lagged values of the response 
and at-, = (at,, . at-q) a vector of white noise. This model includes the standard linear model 
(q' = 0' = O ), ARIMA models (b' = 0) and dynamic transfer function model. The model has a 
level parameter, ,i, a scale parameter a 2, and a vector of structural parameters ,3B = (b' Ipo 0'). 
Let fi, ,3 be the ML estimators of these parameters; &; and , the variance and covariance matrix 5 23 of these estimators; ,i(i), f3(i) the ML estimators treating the ith observation as missing; a2 the 
usual unbiased estimator of the variance a2; and a(2 this same estimator when the ith observation 
is missing. Then, we define: 

(1) The influence on the global level as 

DL(i) = - _?(i))2 /a,2 

(2) The influence on the structural parameters as 

DS(i) = ( - :(i) )1 y ( -:(i)) 

this statistic can be decomposed to separate the effects on the components of 3. 

(3) The influence on the scale is given by 

Dv(i) = (a( - (i) 
The application of these definitions to regression models leads to statistics similar to those pro- 
posed previously: the statistic suggested by Cook (1977) is (DS + DL)IP, whereas DFFITS- 
advocated by Belsley et al. (1980)-is (DS +DL) (1 +DV), being a mixture of the three kinds of 
effects. Note that Dv is equivalent to the likelihood ratio test for outliers in linear models. 

However, the application of this missing value approach to dependent data leads to substitute 
each observation by its forecast using the rest of the data, instead of deleting it, that seems a much 
more sensible procedure. Therefore, the missing value approach is more general, and includes as 
particular case for independent data the well known case-deletion procedure. I believe that this 
same idea can be used in some other fields-as Jacknife or cross-validation-that are based on the 
case-deletion technique. 

In contrast from the deleted approach, the procedure advocated in this paper to study local 
influence based on the likelihood displacement, seems to provide sensible solutions for dependent 
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as well as independent data. For instance, for the AR(l) process; 

Yt= PYt-i +at 
it is straightforward to show, using the conditional likelihood l(1 I Yi), that the curvature is 

C 2e? z4/n, 
where zi-I = Yi/Sy, Sy = Yt /n, es Yt -Yt-i 

In closing, I would like to congratulate Professor Cook for this very interesting and stimulating 
paper. 

Mr G. J. S. Ross (Rothamsted Experimental Station): The author has provided us with some 
very interesting new diagnostic tools which are important not only for evaluating past analyses 
but for designing future investigations. However there may be simpler methods of arriving at 
the same conclusions which are worth considering. 

In the discussion of Atkinson (1982) I drew attention to the fact that reciprocals of the 
diagonal elements of P,, widely known as the Hat-matrix, are numbers between 1 and n which 
may be interpreted as replication factors, being the size of a sample of independent observations 
with given x which estimate E(y) with the same precision as the fitted model. The quantity 
ri= 1l/hi I therefore termed "effective replication", by analogy with results from completely 
randomized designs. Effective replication turns out to be a useful idea in the present context, 
that of assessing local influence in linear and nonlinear regression. A paper on this subject has 
been submitted (Ross, 1986). 

Consider first the Rat Data, fitting all three variables. The effective replication for Case 3 is 
only 1.175 which implies that the observation is nearly self-estimating, and that whatever value 
of y was observed would be fitted with a small residual. This occurs in linear regression when the 
value of x is a design outlier, and so a visual examination of the data quickly reveals that 
X3 = xl /200 except for Case 3, so that almost a whole degree of freedom is available to estimate 
Y. In nonlinear regression effective replication may also be computed using the local design 
matrix, and it shows that extreme points are more self estimating if they are on the steepest part 
of the fitted function. 

The effect of changing the,weighting of a given point may be expressed as the relative change 
in effective replication at other points. Effective replication may also be calculated at other values 
of x, so that curves or surfaces may be drawn showing which range of x constitutes the set of 
"neighbours" of a given point, whose expectations are influenced by that point. Thus the idea is 
equally useful for determining the effect of additional observations (deSign implications) as of 
removing observations. 

Dr C. L. Tsai (New York University, USA): This interesting paper clearly demonstrates the 
value of geometry in statistics. Professor Cook proposes a normal curvature measure for the 
influence graph and shows how this can be used to assess the consequences of certain model 
perturbations. This assessment requires an objective criterion for judging whether the curvature 
measure is large or not. One possibility would be to compare the observed curvature calculated 
from the given data set with a bootstrap distribution of curvature found using simulation. 

An alternative approach for judging thIe significance of model perturbations is based on hypo- 
thesis testing. Let LD*(w) = L(O) - L(6wJIw). This is the log likelihood ratio test statistic for 
testing the null hypothesis w = w0. Therefore, - 2LD*(wi) has an asymptotic chi-squared 
distribution with degrees of freedom q. In order to avoid calculating w', Cox and Hinkley ( 1974, 
Chapter 9) suggest the score test given by 

S = W- E(Iw)E )E-) - I E( A) T 
E( L)- E(A)W ) 

where Iw =(-a2L(6 I w)/awawwT), L and Z\ are respectively defined in equations (12) and (14), 
and E denotes the expectation operator. The statistic S is also distributed asymptotically chi- 
squared. If the expectation E is removed and the resulting statistic denoted S*, then, by comparing 
S* and Cmin, we see that if Cmin is large, then S* will also tend to be large, providing evidence 
against the null hypothesis that w = w0. Perhaps Professor Cook would comment further on this 
connection between his geometrical approach and the hypothesis testing approach. 

This content downloaded from 163.117.20.121 on Tue, 24 Nov 2015 10:08:44 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


166 Discussion of Professor Cook's Paper [No. 2, 

The author replied later in writing, as follows. 
I am grateful to the discussants for their kind reception of this paper and for their many 

stimulating and penetrating comments. The overlap between the contributors remarks seems 
sufficient to justify arranging my reply by rather broad topics. 

Invariance and benchmarks 
Professor Loynes perceives two difficulties with the proposed methodology: (1) neither Cl 

nor 1max is invariant with respect to reparameterization and (2) C1 depends on the details of the 
perturbation permitted. To address these issues it is necessary to distinguish between a repara- 
meterization of an influence graph and its definition. According to most texts on differential 
geometry (e.g. Millman and Parker, 1977), a reparameterization of an influence graph 
a: S2 - Rq+l is a smooth one-to-one function g: U* -e U. The reparameterized influence 
graph is then a* =a(g(w*)) = (gT(w*), LD(g(co*)) for c'* in U*. Under this defintion, the 
maximum curvature is in fact invariant with respect to reparameterization, a standard result in 
differential geometry. In contrast, Professor Loynes is concerned about invariance with respect to 
certain modifications of the perturbation scheme itself. This can be illustrated by using Professor 
Loynes' example where the case-weights X are taken as co =g(co*) = (1 + (*)12. In this 
situation, the case weights are perturbed through the parameterization provided by co*, but the 
elements of g(co*) are still case-weights no matter how they are parameterized. In showing that 
the curvature under o* is 4 of the original curvature, Professor Loynes implicitly used the 
influence graph gT - (CO*T, LD(c.*)) which is distinct from a since it is not defined in terms 
of case-weights. But this disagreement may be largely a matter of terminology. 

The concern that neither the curvature nor the direction of maximum curvature is invariant 
with respect to seemingly unimportant changes in the perturbation scheme.does appear to be 
important. For progress it is necessary to specify the invariance properties that are required. 
Suppose, for example, that two case-weights are to be perturbed so that COT = (U1, co2). Further, 
let co* denote parameters defined by UT = (104*, 100c*). Should we require that the influence 
graphs aT = (&,T, LD(co)) and 1T = (Co*T, LD(co*)) have identical values for Cl and Imax? The 
answer seems to be "definitely not" since the perturbation schemes are fundamentally different: 
at is based on case-weight perturbations while , is based on perturbations of different fractional 
case-weights, w* and w*. The answer may be clearer if we view the co's as perturbations of 
explanatory variables rather than case-weights. 

On the other hand, it may be worthwhile to investigate the invariance properties of Cl and 
Imax under identical coordinate transformations of c. Specifically, do the influence graphs 
aT -- (CUT LD(co)) and 1T = (co*T, LD(c.*)) have the same values for Cl and Imax when 
cii = k(coi ), i = 1, . . ., q, where k is a smooth one-to-one function? For this situation, oa and ,B 
yield identical values for Imax' but the curvature for ,B is [tk/3co*I2 times the curvature for ot, 
where the derivative of k is evaluated at the value of c0* which yields the postulated model. 
When perturbing case-weights and k(co*) =(1 +Xc*)/2, [3k/aco*12 -, as mentioned by 
Professor Loynes. Thus, Imax is invariant under identical coordinate transformations, but Cl 
depends on the selected coordinate form. This dependence does not seem to be a serious problem, 
since the functional relationship between Cl's for different coordinate forms can be used to 
transfer interpretation from one form to the other. Dr Beckman describes two possible 
approaches when perturbing explanatory variables and k is restricted to scale transformations. 
With experience either approach should work. More generally, the comparative approach 
mentioned by Professor Loynes should prove useful. In fact, this is essentially how I determined 
the benchmark Cmax = 2: My experience indicates that Cmax = 2 is a useful rough guide when 
perturbing case-weights in linear models, but its usefulness may not extend to other models or 
other perturbation schemes. When working with parameters co* rather than case-weights, per se, 
the corresponding benchmark is 2 [ak/aco* 12 as indicated above. Recall, however, that an 
inspection of Imax may be worthwhile regardless of the size of Cmax since Imax can identify 
global problems that are not manifest locally. 

Formulation 
A harder question is how to formulate a new perturbation scheme. Professor Loynes demon- 

strates that the proposed methodology allows great flexibility and that perturbing the entire co- 
variance hnatrix W in a normal linear model can lead to rather curious results when the symmetry 
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W is neglected. I expect that allowing the covariance matrix to be nonsymmetric has serious 
consequences: without symmetry vec(W) can lie in any direction in Rn", but with symmetry 
vec(W) must lie in a lower dimensional subspace and this can have important consequences for 
Cmax and Imax Of course, symmetry is not the only condition that is needed for W to be a valid 
covaiiance matrix. 

The schemes developed in the main paper are based on perturbing case-weights and explanatory 
variables, ideas which seem to be fairly well accepted. New schemes will have to be developed care- 
fully, perhaps following the principles set forth by Weisberg (1983), and grudgingly implemented 
if we are to avoid the pitfall of overuse, as described by Dr Beckman. I expect that Dr Geisser's 
remarks on sample size are true qualitatively, but available evidence indicates that the quantitative 
impact of sample size should not be serious. In linear models, for example, the proposed 
methodology leads to standard graphical methods where the effect of sample size is not parti- 
cularly worrisome. 

Professor Cox appropriately warns that X must be chosen so that the Euclidean metric is 
meaningful, although this present necessity can be removed with a more general development. 
The appropriate choice of a metric seems to be at the heart of the problems that Dr Lawrance 
encountered when considering the possibility of perturbing the transformation parameter X. The 
Euclidean metric is meaningful when perturbing case-weights and I look forward to seeing 
Dr Lawrance's future results on the transformation X(cX). 

These general comments also apply to Dr Lawrance's query about the advantage to be had from 
introducing case-weight perturbations through a variance model that incorporates external 
variables Z. Such an approach can be useful provided that the variance model reflects firm know- 
ledge and influence graph is defined in terms of case-weights, however they are modelled. The 
variance model will serve to concentrate our attention in relevant directions while defining the 
influence graph in terms of case-weights will insure that the Euclidean metric is reasonable. 

I am pleased that Dr Pena found the likelihood displacement to provide sensible solutions for 
dependent as well as independent data. His distinction between a missing value approach and data 
deletion does seem to be useful. 

Diagnostic value 
I am not sure what kind of additional information Dr Lawrance requires to demonstrate the 

relevance of the individual elements of lmax As mentioned in the main paper, these elements 
show how to introduce perturbations to achieve the largest local change in the likelihood displace- 
ment and thus indicate the relative importance of the individual elements of X and provide 
important diagnostic information. I find the illustrations in the main paper to be compelling in 
this regard. Dr Lawrance's comments on the usefulness of considering the slope of an influence 
graph at cX = 0 when perturbing case-weights are quite appropriate. Generally, the tangent plane 
in addition to (20) may be of value for studying the behaviour of an influence graph away from 
the non-perturbing value w0. The value of the tangent plane seems clear, particularly in view of 
the illustrations provided by Dr Lawrance. The value of (20) is under study. However, when 
considering case-weights, (20) will probably add little to what is already known. When perturbing 
a single case-weight, for example, Dr Critchley observes that the entire influence graph depends 
on only two quantities so that the curvature at CX = 0 can recover only a function of what is 
already known to be relevant. 

Turning to Professor Atkinson's challenge, it is clear that any reasonable method that involves 
plotting against x will find the clusters of 30 "good" and 20 "bad" cases in simulated simple 
linear regression data sets constructed according to the method in Rousseeuw (1984). In 
particular, application of the added variable plots discussed in Section 4.3 leads to identification 
of the clusters. (Statistical trivia: with Dr Lawrance's reference to individual coefficient plots, the 
number of distinct names in the literature on this graphical method is at least eight.) If we disallow 
plotting against x, as I expect Professor Atkinson had in mind, and instead attempt to identify the 
clusters by using Imax alone the situation becomes less clear. When perturbing case weighiz, the 
largest absolute elements of Imax always corresponded to the bad cases in data sets with 30 good 
cases and a smaller number (1 to 5 or 6) of bad cases, each data set being generated according to 
the method in Rousseeuw (1984). Thus, Imax might be expected to identify small clusters of 
outliers, but the method seems to break down as the fraction of outliers becomes large. Recall, 
however, that there is a clear difference between outliers and influential cases and that the 
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proposed methods were designed to detect sensitivity rather than complicated structure in the 
data or lack of fit. This serves as a useful reminder that omnipotent diagnostic methods have 
yet to be developed. Similarly, Dr Critchley's comments on the balance between alternative 
influence methodologies are quite appropriate. I was fortunate to be in attendance at the meeting 
of the Multivariate Study Group which he mentions and I share his view on the tractability and 
utility of the influence curve in multivariate analysis. Nevertheless, when the likelihood is funda- 
mental for inference, it should be studied directly. The influence curve takes a circuitous route, 
first concentrating on parameters and then on the selection of an appropriate norm. The likelihood 
seems to take a back seat in this approach. 

AIternative approa ch es 
Professor Loynes asks if the likelihood displacement is the right criterion. The answer to this 

question will surely depend on context and the statistical philosophy of the investigator. From a 
Bayesian perspective, I am sure that Professor Geisser would answer "no", preferring instead an 
approach based on comparing posterior or predictive densities. This point of view is important 
and was anticipated in the Discussion of the main paper. The essential change necessary to adapt 
the methods for application in Bayesian analyses consists of replacing the likelihood displacement 
with an alternative criterion. For example, an influence graph might be defined as 
(CT, I(pw, p,0 )) where I is a Kullback-Leibler divergence, as defined by Professor Geisser. When 
Co is a vector of case-weights, this approach will connect with the case-deletion methods of 
Johnson and Geisser (1983) in the same way that an influence graph based on the likelihood 
displacement connects with Di. Some work along these lines has been completed by Michael 
Lavine at the University of Minnesota and the results seem promising. 

In a likelihood framework, we should strive for a meaningful overall comparison of the 
postulated and perturbed likelihoods as X varies in Q. Such a comparison should be relevant in 
Bayesian analyses in as much as the likelihood is a key ingredient in the Bayesian paradigm. The 
likelihood displacement provides a summary of the postulated and perturbed likelihoods when 
interest centres on 0 and, as demonstrated in the main paper, it does yield useful data analytic 
information. The alternative formulative formulation sketched by Professor Cox is very interesting 
and I look forward to seeing additional details. Some of the questions posed by Professor Cox have 
been addressed in a recent Minnesota Ph.D. dissertation by Robert McCulloch. 

An answer to Professor Atkinson's question on the relationship between model perturbations 
and the score test for the related elaboration of the model is given by Dr Tsai. Similarly, 
Dr Farebrother develops an interesting connection between the curvature under case-weight 
perturbations and a test statistic for heteroscedasticity. While an understanding of such relation- 
ships may be useful, I view perturbing the model and testing model elaborations as distinct 
diagnostic methodologies. In regression models, for example, deleting a single case to assess its 
influence is philosophically and practically different than performing an outlier test based on an 
elaborated model. Similarly, formal significance tests based on the null (co = co0) distributions 
of Cmax and Imax seem largely irrelevant for the purpose of assessing influence, a view which 
agrees with that expressed by Dr Prescott but which may be opposed to the views expressed by 
Drs Critchley and Tsai. My comments on simulation apply when there is doubt about seriousness 
of potentially important patterns discovered in the data. For example, if any data analytic method 
leads to the discovery of apparent heteroscedasticity, simulation may be useful when there is 
concern that the result may be due to chance in combination with a vigorous inspection of the 
data. 

Design 
Dr Nachtsheim and Mr Ross both suggest the possibility of adapting portions of the proposed 

methodology to address problems in experimental design. The potential here seems great. Some 
connections between influence methods and experimental design are available in the literature. 
Box and Draper (1975), for example, ensure insensitivity to outliers by minimizing 2hh. through 
choice of design. Huber (1977, p. 37) first drew my attention to the idea that l/his might be 
viewed as "the effective number of observations entering into the determination of Yi," and I 
look forward to reading Mr Ross' development of this idea, particularly in nonlinear regression 
where large intrinsic curvatures may cast doubt on the appropriateness of the local design matrix. 
Returning to analysis, Dr Nachtsheim's comments suggest the possibility of using local influence 
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methods to assess the stability of a solution point x* from an estimated response surface. I expect 
that this will lead to a nonlinear model and may overlap with the ideas of Mr Ross. 
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