Chapter VI: Introduction to Statistical Inference - Exercises

Bernardo D'Auria

Statistics Department

Universidad Carlos III de Madrid

GROUP 89 - COMPUTER ENGINEERING

2010-2011

The lifetime of a system up to a failure can be modeled by an exponential random variable $T \sim Exp(\lambda)$. During some time we take notes of the duration of the system between failures and we get the following data measured in hours: 18,94, 22, 143, 114. Estimate the parameter λ of the exponential distribution using the Moments' Method.

The lifetime of a system up to a failure can be modeled by an exponential random variable $T \sim Exp(\lambda)$. During some time we take notes of the duration of the system between failures and we get the following data measured in hours: 18,94, 22, 143, 114. Estimate the parameter λ of the exponential distribution using the Moments' Method.

SOLUTION:

Since *T* is an exponential random variable we have $\lambda = \frac{1}{\mathbb{E}[T]}$. Therefore the Moments' Method we get $\hat{\lambda} = \frac{1}{T}$. We can compute $\overline{T} = \frac{18+94+22+143+114}{5} = 78.2$ hours and therefore an estimation for λ is given by $\hat{\lambda} = 178.2 = 0.013$ fault/hour.

We want to estimate the mean μ of a random variable. To do this we measure 10 samples and we compute the sample mean \bar{X} and their variance $s_{\bar{X}}^2$. Say if the following sentences are true or false

a) For the Central Limit Theorem we know that μ is a Normal random variable.

- a) For the Central Limit Theorem we know that μ is a Normal random variable. False
- b) \overline{X} is an estimator for X.

- a) For the Central Limit Theorem we know that μ is a Normal random variable. False
- b) \overline{X} is an estimator for X. False
- c) If we want to estimate μ we need at least 50 samples.

False

Exercise

- a) For the Central Limit Theorem we know that μ is a Normal random variable. False
- b) \overline{X} is an estimator for X. False
- c) If we want to estimate μ we need at least 50 samples.
- d) Given a sample set of data, the sample mean is a number and not a random variable.

- a) For the Central Limit Theorem we know that μ is a Normal random variable. False
- b) \overline{X} is an estimator for X. False
- c) If we want to estimate μ we need at least 50 samples. False
- d) Given a sample set of data, the sample mean is a number and not a random variable. True
- e) The sample mean \bar{X} is always Normal distributed.

- a) For the Central Limit Theorem we know that μ is a Normal random variable. False
- b) \overline{X} is an estimator for X. False
- c) If we want to estimate μ we need at least 50 samples. False
- d) Given a sample set of data, the sample mean is a number and not a random variable. True
- e) The sample mean \bar{X} is always Normal distributed. False
- f) If X is Normal then \overline{X} is always Normal.

- a) For the Central Limit Theorem we know that μ is a Normal random variable. False
- b) \overline{X} is an estimator for X. False
- c) If we want to estimate μ we need at least 50 samples. False
- d) Given a sample set of data, the sample mean is a number and not a random variable. True
- e) The sample mean \bar{X} is always Normal distributed. False
- f) If X is Normal then \overline{X} is always Normal. **True**
- g) To lower the variance of \bar{X} to the half of it, we have to take at least 100 samples.

- a) For the Central Limit Theorem we know that μ is a Normal random variable. False
- b) \overline{X} is an estimator for X. False
- c) If we want to estimate μ we need at least 50 samples. False
- d) Given a sample set of data, the sample mean is a number and not a random variable. True
- e) The sample mean \bar{X} is always Normal distributed. False
- f) If X is Normal then \overline{X} is always Normal. **True**
- g) To lower the variance of \overline{X} to the half of it, we have to take at least 100 samples. False
- h) Since the sample mean is an unbiased estimator, we know for sure that $\bar{X} = \mu$.

- a) For the Central Limit Theorem we know that μ is a Normal random variable. False
- b) \overline{X} is an estimator for X. False
- c) If we want to estimate μ we need at least 50 samples. False
- d) Given a sample set of data, the sample mean is a number and not a random variable. True
- e) The sample mean \bar{X} is always Normal distributed. False
- f) If X is Normal then \overline{X} is always Normal. **True**
- g) To lower the variance of \overline{X} to the half of it, we have to take at least 100 samples. False
- h) Since the sample mean is an unbiased estimator, we know for sure that $\bar{X} = \mu$. False

The random variable X_1 is distributed according to a Normal $N(\mu, \sigma^2)$, and the random variable X_2 , independent form the previous one, is distributed as a $N(2\mu, 3\sigma^2)$. We take a sample of size n_1 of the former variable and a sample of size n_2 of the latter.

To estimate the value of the parameter μ we use the estimator $\hat{\mu} = a\bar{x}_1 + b\bar{x}_2$ where *a* and *b* are constants and \bar{x}_1 and \bar{x}_2 are the sample means of the two samples.

What conditions should the constants *a* and *b* satisfy to have that the estimator μ is unbiased?

The random variable X_1 is distributed according to a Normal $N(\mu, \sigma^2)$, and the random variable X_2 , independent form the previous one, is distributed as a $N(2\mu, 3\sigma^2)$. We take a sample of size n_1 of the former variable and a sample of size n_2 of the latter.

To estimate the value of the parameter μ we use the estimator $\hat{\mu} = a\bar{x}_1 + b\bar{x}_2$ where *a* and *b* are constants and \bar{x}_1 and \bar{x}_2 are the sample means of the two samples.

What conditions should the constants *a* and *b* satisfy to have that the estimator μ is unbiased?

SOLUTION:

The distributions for the sample means are $\bar{x}_1 \sim N(\mu, \frac{\sigma^2}{n_1})$ and $\bar{x}_2 \sim N(2\mu, \frac{3\sigma^2}{n_1})$.

 $\mathbb{E}[\hat{\mu}] = \mathbb{E}[a\bar{x}_1 + b\bar{x}_2] = a\mathbb{E}[\bar{x}_1] + b\mathbb{E}[\bar{x}_2] = (a+2b)\mu$ and to have a null bias the two constants have to satisfy the relation a + 2b = 1.