Bernardo D'Auria

Statistics Department

Universidad Carlos III de Madrid

GROUP 89 - COMPUTER ENGINEERING

November 30th, 2010

True or false? The general linear model (multiple regression)

 $y_i = \beta_0 + \beta_1 x_{1i} + \ldots + \beta_K x_{Ki} + e_i$

assumes that:

a) The regressors X_1, \ldots, X_K follow a normal distribution.

True or false? The general linear model (multiple regression)

 $y_i = \beta_0 + \beta_1 x_{1i} + \ldots + \beta_K x_{Ki} + e_i$

assumes that:

a) The regressors X_1, \ldots, X_K follow a normal distribution.

b) The variance of X_1, \ldots, X_K must be constant.

True or false? The general linear model (multiple regression)

 $y_i = \beta_0 + \beta_1 x_{1i} + \ldots + \beta_K x_{Ki} + e_i$

Chapter IX: Regression - Exercises

- a) The regressors X_1, \ldots, X_K follow a normal distribution.
- b) The variance of X_1, \ldots, X_K must be constant. False
- c) The response variable Y conditional on the observed values \vec{x} must be constant.

True or false? The general linear model (multiple regression)

$$y_i = \beta_0 + \beta_1 x_{1i} + \ldots + \beta_K x_{Ki} + e_i$$

- a) The regressors X_1, \ldots, X_K follow a normal distribution.
- b) The variance of X_1, \ldots, X_K must be constant. False
- c) The response variable Y conditional on the observed values \vec{X} must be constant. False
- d) The term of error *e* should be homoskedastic.

Exercise

True or false? The general linear model (multiple regression)

 $y_i = \beta_0 + \beta_1 x_{1i} + \ldots + \beta_K x_{Ki} + e_i$

- a) The regressors X_1, \ldots, X_K follow a normal distribution.
- b) The variance of X_1, \ldots, X_K must be constant. False
- c) The response variable Y conditional on the observed values \vec{X} must be constant. False
- d) The term of error *e* should be homoskedastic.
- e) The effects of the variables that are not included in the regressors have a joint effect that can be modeled as normal with mean zero.

Exercise

True or false? The general linear model (multiple regression)

 $y_i = \beta_0 + \beta_1 x_{1i} + \ldots + \beta_K x_{Ki} + e_i$

- a) The regressors X_1, \ldots, X_K follow a normal distribution.
- b) The variance of X_1, \ldots, X_K must be constant. False
- c) The response variable Y conditional on the observed values \vec{X} must be constant. False
- d) The term of error e should be homoskedastic. **T**
- e) The effects of the variables that are not included in the regressors have a joint effect that can be modeled as normal with mean zero. **True**
- f) Parameters $\beta_0, \beta_1, \ldots, \beta_K$ must be positive.

Exercise

True or false? The general linear model (multiple regression)

 $y_i = \beta_0 + \beta_1 x_{1i} + \ldots + \beta_K x_{Ki} + e_i$

- a) The regressors X_1, \ldots, X_K follow a normal distribution.
- b) The variance of X_1, \ldots, X_K must be constant. False
- c) The response variable Y conditional on the observed values \vec{X} must be constant. False
- d) The term of error *e* should be homoskedastic. **True**
- e) The effects of the variables that are not included in the regressors have a joint effect that can be modeled as normal with mean zero. True
- f) Parameters $\beta_0, \beta_1, \ldots, \beta_K$ must be positive. False

True or false? Be the following multiple regression model:

 $Y = 10 + 0.5X_1 - 3X_2 + e$

with $e \sim N(0, \sigma^2 = 1)$.

- a) If $X_1 = 0$ and $X_2 = 0$ then $Y \sim N(10, 1)$.
- b) If $X_1 = 1$ and $X_2 = 1$ then Y = 12.
- c) If $X_1 = 1$ and $X_2 = 1$ then $Y \sim N(7.5, 1)$.
- d) If If $X_1 = 1$ and $X_2 = 1$ then $\hat{Y} = 7.5$.
- e) If If $X_1 = 1$ and $X_2 = 1$ then Y = 7.5.
- f) If If $X_1 = 1$ and $X_2 = 1$ then $E[Y|X_1, X_2] = 10$.

True or false? Be the following multiple regression model:

 $Y = 10 + 0.5X_1 - 3X_2 + e$

with $e \sim N(0, \sigma^2 = 1)$. a) If $X_1 = 0$ and $X_2 = 0$ then $Y \sim N(10, 1)$. True b) If $X_1 = 1$ and $X_2 = 1$ then Y = 12. False c) If $X_1 = 1$ and $X_2 = 1$ then $Y \sim N(7.5, 1)$. True d) If If $X_1 = 1$ and $X_2 = 1$ then $\hat{Y} = 7.5$. True e) If If $X_1 = 1$ and $X_2 = 1$ then Y = 7.5. False f) If If $X_1 = 1$ and $X_2 = 1$ then $E[Y|X_1, X_2] = 10$. False

True or false? Be the following multiple regression model:

 $Y = 10 + 0.5X_1 - 3X_2 + e$

with $e \sim N(0, \sigma^2 = 1)$.

- a) If X_1 increases by one unit and X_2 stays constant, the mean of Y increases by 10 + 0.5 = 10.5 units.
- b) If X₁ increases by one unit and X₂ stays constant, the mean of Y increases by 0.5 units.
- c) If X₂ increases by one unit and X₁ stays constant, Y decreases on average by 3 units.

True or false? Be the following multiple regression model:

 $Y = 10 + 0.5X_1 - 3X_2 + e$

with $e \sim N(0, \sigma^2 = 1)$.

- a) If X_1 increases by one unit and X_2 stays constant, the mean of Y increases by 10 + 0.5 = 10.5 units. False
- b) If X_1 increases by one unit and X_2 stays constant, the mean of Y increases by 0.5 units. **True**
- c) If X_2 increases by one unit and X_1 stays constant, Y decreases on average by 3 units. **True**