Tema 7: Ejercicios de Inferencia en una población Normal

Bernardo D'Auria

Departamento de Estadística
Universidad Carlos III de Madrid

GRUPO 12 - I.T.I.G.

Otros

14 Y JUNIO97

Un proceso de rellenado de envases produce, cuando funciona correctamente, un peso promedio de $200\,g$ por envase. Una muestra aleatoria de 9 envases presentó los siguientes contenidos (en gramos):

Asumiendo que la distribución de la población es normal, contrastar a un nivel de significación del 5% la hipótesis de que el proceso está funcionando correctamente, frente a la alternativa bilateral.

214	197	197	206	208	201	197	203	209			
(Nota: $\bar{x} = 203.55$, $\hat{S} = 6.12$)											

14 Y JUNIO97

Un proceso de rellenado de envases produce, cuando funciona correctamente, un peso promedio de $200\,g$ por envase. Una muestra aleatoria de 9 envases presentó los siguientes contenidos (en gramos):

Asumiendo que la distribución de la población es normal, contrastar a un nivel de significación del 5% la hipótesis de que el proceso está funcionando correctamente, frente a la alternativa bilateral.

214	197	197	206	208	201	197	203	209			
(Nota: $\bar{x} = 203.55$, $\hat{S} = 6.12$)											

Solución:

No hay evidencia suficiente, con un nivel de significación del 5%, para rechazar la hipótesis nula.

16

Basándonos en una muestra de tamaño n=18 de una población normal, se concluye que un intervalo de confianza del 95% para la media es

$$IC(0.95): \mu \in (17, 19)$$

- a) Realiza un intervalo de confianza para la varianza del 90%
- b) ¿Cuál será el resultado del contraste

$$H_0: \mu = 16; \quad H_1: \mu \neq 16$$

con un nivel de significación del 5%?

16

Basándonos en una muestra de tamaño n=18 de una población normal, se concluye que un intervalo de confianza del 95% para la media es

$$IC(0.95): \mu \in (17, 19)$$

- a) Realiza un intervalo de confianza para la varianza del 90%
- b) ¿Cuál será el resultado del contraste

$$H_0: \mu = 16; \quad H_1: \mu \neq 16$$

con un nivel de significación del 5%?

SOLUCIÓN:

- a) IC90%: $\sigma^2 \in (2.49, 7.92)$;
- b) Se rechaza, con $\alpha = 0.05$ que $\mu = 16$.

17

Se tiene una muestra aleatoria simple de tamaño n de una variable aleatoria X. Se realiza el contraste

$$H_0: \sigma^2 \ge 10; \quad H_1: \sigma^2 < 10 \text{ con } \alpha = 0.05$$

y se rechaza H_0 .

Decir para cada una de las siguientes cuestiones, si son verdaderas, falsas, o inciertas

- a) El contraste no es válido, pues no sabemos si el tamaño muestral es grande o pequeño
- b) Si X es normal, el contraste será siempre válido aunque n sea pequeño
- c) Si el tamaño muestral es grande, la distribución de referencia será la normal estándar, pero si es pequeño será la t_{n-1}
- d) Sólo usaremos la distribución de referencia t_{n-1} si X es normal
- e) La distribución de referencia es χ^2_n si utilizamos como estimador de σ^2 a \hat{S}^2 y χ^2_{n-1} si utilizamos el estimador insesgado
- f) El intervalo de confianza de nivel de confianza 0.95 no contendrá el valor 10.

17

Se tiene una muestra aleatoria simple de tamaño n de una variable aleatoria X. Se realiza el contraste

$$H_0: \sigma^2 \ge 10; \quad H_1: \sigma^2 < 10 \text{ con } \alpha = 0.05$$

y se rechaza H_0 .

Decir para cada una de las siguientes cuestiones, si son verdaderas, falsas, o inciertas

- a) El contraste no es válido, pues no sabemos si el tamaño muestral es grande o pequeño
- b) Si X es normal, el contraste será siempre válido aunque n sea pequeño
- c) Si el tamaño muestral es grande, la distribución de referencia será la normal estándar, pero si es pequeño será la t_{n-1}
- d) Sólo usaremos la distribución de referencia t_{n-1} si X es normal
- e) La distribución de referencia es χ^2_n si utilizamos como estimador de σ^2 a \hat{S}^2 y χ^2_{n-1} si utilizamos el estimador insesgado
- f) El intervalo de confianza de nivel de confianza 0.95 no contendrá el valor 10.

SOLUCIÓN:

Todas las cuestiones son falsas.

18

Se tiene una muestra aleatoria simple de tamaño n=15 de una variable aleatoria X de distribución desconocida. A partir de las estimaciones \bar{x} y \hat{s}^2 se realiza el contraste

$$H_0: \mu \ge 10; \quad H_1: \mu < 10 \text{ con } \alpha = 0.05$$

y se rechaza H_0 .

Decir para cada una de las siguientes cuestiones, si son verdaderas, falsas, o inciertas

- a) Al tener un tamaño muestral pequeño, el contraste solo sera valido si usamos la distribución t_{n-1} de distribución de referencia
- b) Si *X* no es normal, no podremos hacer el contraste con las herramientas estadísticas que hemos estudiado
- c) Si X es normal podemos utilizar tanto la t_{n-1} como la Z de distribución de referencia para hacer dicho contraste
- d) Como hemos rechazado H_0 sera imposible que la población tenga una media muestral mayor que 10
- e) Como hemos rechazado H_0 con $\alpha=0.05$, la probabilidad de equivocarnos y que la población tenga $\mu\geq 10$ es 0.05

18

Se tiene una muestra aleatoria simple de tamaño n=15 de una variable aleatoria X de distribución desconocida. A partir de las estimaciones \bar{x} y \hat{s}^2 se realiza el contraste

$$H_0: \mu \ge 10; \quad H_1: \mu < 10 \text{ con } \alpha = 0.05$$

y se rechaza H_0 .

Decir para cada una de las siguientes cuestiones, si son verdaderas, falsas, o inciertas

- a) Al tener un tamaño muestral pequeño, el contraste solo sera valido si usamos la distribución t_{n-1} de distribución de referencia
- b) Si *X* no es normal, no podremos hacer el contraste con las herramientas estadísticas que hemos estudiado
- c) Si X es normal podemos utilizar tanto la t_{n-1} como la Z de distribución de referencia para hacer dicho contraste
- d) Como hemos rechazado H_0 sera imposible que la población tenga una media muestral mayor que 10
- e) Como hemos rechazado H_0 con $\alpha=0.05$, la probabilidad de equivocarnos y que la población tenga $\mu\geq 10$ es 0.05

Solución:

19

Se tiene una muestra aleatoria simple de tamaño n=18 de una variable aleatoria X de distribución desconocida. A partir de las estimaciones \bar{x} y \hat{s}^2 se realiza el contraste

$$H_0: \mu \ge 0; \quad H_1: \mu < 0 \text{ con } \alpha = 0.05$$

y se rechaza H_0 .

Decir para cada una de las siguientes cuestiones, si son verdaderas, falsas, o inciertas

- a) Al tener un tamaño muestral pequeño, el contraste solo sera valido si usamos la distribución t_{18} de distribución de referencia
- Si X no es normal, utilizaremos la N(0, 1) como distribución de referencia para el contraste.
- c) Como hemos rechazado H_0 sera imposible que el p-valor sea mayor que 0.05
- d) Si tenemos que p-valor= 0.10 aceptaremos H_0
- e) Si tenemos que p-valor= 0.10, entonces el contraste

$$H_0: \mu \leq 0; \quad H_1: \mu > 0$$

tiene p-valor= 0.20

19

Se tiene una muestra aleatoria simple de tamaño n=18 de una variable aleatoria X de distribución desconocida. A partir de las estimaciones \bar{x} y \hat{s}^2 se realiza el contraste

$$H_0: \mu \ge 0; \quad H_1: \mu < 0 \text{ con } \alpha = 0.05$$

y se rechaza H_0 .

Decir para cada una de las siguientes cuestiones, si son verdaderas, falsas, o inciertas

- a) Al tener un tamaño muestral pequeño, el contraste solo sera valido si usamos la distribución t_{18} de distribución de referencia
- Si X no es normal, utilizaremos la N(0, 1) como distribución de referencia para el contraste.
- c) Como hemos rechazado H_0 sera imposible que el p-valor sea mayor que 0.05
- d) Si tenemos que p-valor= 0.10 aceptaremos H_0
- e) Si tenemos que p-valor= 0.10, entonces el contraste

$$H_0: \mu \leq 0; \quad H_1: \mu > 0$$

tiene p-valor= 0.20

Solución: