Tema 5: Ejercicios de Introducción a la inferencia estadística

Bernardo D'Auria

Departamento de Estadística
Universidad Carlos III de Madrid

GRUPO 12 - I.T.I.G.

24 de Abril 2008

М9

Para estimar la media de una población de media μ y varianza σ^2 se utiliza el estimador

$$\hat{x} = \sum_{i=1}^{n} \omega_i x_i,$$

donde $\omega_i \geq 0$ para todo $i, \sum_{i=1}^n \omega_i = 1$, siendo las x_i los valores muéstrales. Calcular la media y la varianza de este estimador.

M9

Para estimar la media de una población de media μ y varianza σ^2 se utiliza el estimador

$$\hat{x} = \sum_{i=1}^{n} \omega_i x_i,$$

donde $\omega_i \geq 0$ para todo $i, \sum_{i=1}^n \omega_i = 1$, siendo las x_i los valores muéstrales. Calcular la media y la varianza de este estimador.

SOLUCIÓN:

$$\mathbb{E}[\hat{x}] = \mu$$

$$\mathbb{E}[\hat{x}] = \mu;$$

$$\mathbb{V}\operatorname{ar}[\hat{x}] = \sum_{i=1}^{n} \omega_i^2 \sigma^2.$$

SEP. 2001 Y M16

Los siguientes datos corresponden a la longitud (en milímetros) de piezas fabricadas por una máquina

86 80 119 88 12 91 103 99 108 96						
91 103 99 108 96	37	87	109	111	109	104
72 200 77 200 70	22	12	88	119	80	86
104 98 98 83 10	6	96	108	99	103	91
	07	10	83	98	98	104
79 87 94 92 97	7	97	92	94	87	79

Sabiendo que $\sum_{i} x_{i} = 2451 \text{ y} \sum_{i} x_{i}^{2} = 243505$:

- a) Calcular un estimador insesgado para la media de la población.
- b) Calcular un estimador insesgado para la varianza de la población.

SEP. 2001 Y M16

Los siguientes datos corresponden a la longitud (en milímetros) de piezas fabricadas por una máquina

104	109	111	109	87
86	80	119	88	122
91	103	99	108	96
104	98	98	83	107
79	87	94	92	97

Sabiendo que $\sum_{i} x_{i} = 2451$ y $\sum_{i} x_{i}^{2} = 243505$:

- a) Calcular un estimador insesgado para la media de la población.
- b) Calcular un estimador insesgado para la varianza de la población.

SOLUCIÓN:

- a) $\hat{\mu} = 98.04$;
- b) $\hat{\sigma^2} = \frac{n}{n-1} \left(\overline{x^2} \bar{x}^2 \right) = 133.71.$

-16

La duración de un sistema hasta que se produce un fallo por causas fortuitas se puede modelizar con una distribución exponencial

$$T \sim \operatorname{Exp}(\lambda)$$
.

Durante un tiempo se anota el tiempo que ha estado el sistema funcionando hasta que se produjo un fallo.

Se obtienen así los siguientes valores de duraciones en horas:

Estima el parámetro λ de la exponencial utilizando el método de los momentos.

16

La duración de un sistema hasta que se produce un fallo por causas fortuitas se puede modelizar con una distribución exponencial

$$T \sim \text{Exp}(\lambda)$$
.

Durante un tiempo se anota el tiempo que ha estado el sistema funcionando hasta que se produjo un fallo.

Se obtienen así los siguientes valores de duraciones en horas:

Estima el parámetro λ de la exponencial utilizando el método de los momentos.

SOLUCIÓN:

 $\hat{\lambda} = 0.013$ averías/hora.