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A location- and scale-free goodness-of-fit statistic for the
exponential distribution based on maximum correlations

Aurea Granéa* and Josep Fortianab

aStatistics Department, Universidad Carlos III de Madrid, Getafe Spain; bDepartament
de Probabilitats Lògica i Estadística, Universitat de Barcelona, Spain

(Received 2 July 2007; final version received 3 March 2008 )

We propose a goodness-of-fit statistic, Qn, based on Hoeffding’s maximum correlation (Fortiana and Grané
2003) to test the composite hypothesis that the data come from the two-parameter exponential family. We
study its small and large sample properties, and we obtain tables of the critical values of Qn and some power
curves. We compare our statistic with the Shapiro-Wilk statistic for exponentiality and the Gini statistic.
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1. Introduction

Most goodness-of-fit statistics can be interpreted as measures of proximity between two distribu-
tions: empirical and hypothesized. The statistic we propose in this paper is based on Hoeffding’s
maximum correlation between two probability distribution functions F1 and F2, with second-order
moments, which is equal to

ρ+(F1, F2) =
∫ 1

0 F−
1 (p) F−

2 (p) dp − μ1 μ2

σ1 σ2
, (1)

where F−
i is the left-continuous pseudoinverse of Fi, μi = E(Fi) and σ 2

i = var(Fi), i = 1, 2 [1].
Here the notation E(F) represents the expected value of any random variable whose probability
distribution function is F , and analogously for var(F ). Since ρ+(F1, F2) equals 1 if and only if
F1 = F2 (almost everywhere) up to a scale and location change, the quantity ρ+(Fn, F ) has been
used in previous works [2–4] as a qualitative measure of goodness-of-fit of an iid sample, with
empirical distribution function Fn, to a given distribution F . In this article, we use Hoeffding’s
maximum correlation to construct a statistic for testing the composite hypothesis of exponentiality
when the location and scale parameters are both unknown. More precisely, given n iid ∼ F random
variables, we will test

H0 : F = Exp(α, β), (α, β) ∈ R × R+, (2)
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where Exp(α, β) is the exponential distribution with unknown location and scale parameters,
F(x; α, β) = 1 − exp −(x − α)/β, x ≥ α, −∞ < α < +∞ and β > 0. Note that the standard
exponential corresponds to α = 0, β = 1. The two-parameter exponential distribution is closely
related to several well-known distributions with statistical applications, as the generalized Pareto,
the gamma and the Weibull distributions and it is frequently used in reliability theory, life testing
and the theory of stochastic processes. In the context of reliability theory, the parameter α is also
referred as a threshold parameter. There are many types of problems in which either the response
will not occur below some threshold value or the phenomenon can not be measured below that
value. Sometimes, the location parameter α is interpreted as the minimum (or the guarantee)
time before which no failure occurs; a negative location parameter is indicative of quiescent
failures (failures that occur before a product is used for the first time) or of problems with the
manufacturing, packaging or shipping processes (see [5–7] for some examples and applications).

Let y1, . . . , yn be n iid ∼ F random variables with empirical distribution function Fn and let
y(1), . . . , y(n) be the order statistic. We propose the statistic

Qn = snρ
+(Fn, F )

1/n
∑n

i=1 biy(i)

, (3)

where s2
n is the sample variance and coefficients bi , in the denominator, are such that

∑n
i=1 bi = 0,

to test the null composite hypothesis of exponentiality.
In Section 2, we provide a formula for computing the numerator of Equation (3) under the null

composite hypothesis (see Lemma 2.1) which does not require the knowledge or estimation of
the location and scale parameters. This is the reason why we state that statistic (3) can be used to
test the composite hypothesis that the data come from the two-parameter exponential family.

Since we want to develop a test based on Qn, our first aim is to determine its critical values,
that is,

a ∈ R such that P(Qn > a) = ε,

where ε ∈ (0, 1) is a fixed significance level. Defining the auxiliary function

La
n = snρ

+(Fn, F ) − a

n

n∑
i=1

biy(i), (4)

the problem of finding the critical values of Qn reduces to find

a ∈ R such thatP(La
n > 0) = ε.

In Section 2, we compute the exact expectation and variance of La
n and we prove that this auxiliary

function depends linearly on the scale parameter and does not depend on the location parameter
(see Propositions 2.1 and 2.2). In fact, the restriction imposed on coefficients bi’s in the denomi-
nator of Equation (3) is necessary to avoid the dependence of La

n on the location parameter. As a
consequence, since both the numerator and denominator of Qn depend linearly only on the scale
parameter (and they do not depend on the location parameter), the Qn statistic is location- and
scale-free.

In Sections 3 and 4, we select a set of coefficients bi’s and we determine the asymptotic
distribution of the resulting auxiliary function La

n and the critical values of the test based on the
corresponding Qn statistic. For a sample size of n = 20, we study the power of the test based
on this Qn and we compare it with those of the tests based on the Shapiro–Wilk statistic and the
Gini statistic. In Section 5, we analyse two data sets, and in Table 1 we reproduce some of the
approximate asymptotic critical values of the test based on this Qn.
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Table 1. Approximate asymptotic critical values of the bilateral and
unilateral test based on Qn for a 5% significance level.

Two-tail One-tail

n Lower Upper Lower Upper

20 3.146304 4.320201 3.251234 4.192144
21 3.160088 4.314727 3.264053 4.192066
22 3.173227 4.310192 3.276208 4.192224
23 3.185770 4.306386 3.287757 4.192541
24 3.197759 4.303155 3.298751 4.192963
25 3.209234 4.300380 3.309236 4.193450
26 3.220228 4.297969 3.319251 4.193972
27 3.230775 4.295852 3.328831 4.194508
28 3.240903 4.293973 3.338008 4.195045
29 3.250639 4.292289 3.346810 4.195570
30 3.260006 4.290764 3.355261 4.196076
40 3.337582 4.280157 3.424729 4.199531
50 3.394754 4.272683 3.475477 4.200289
60 3.439147 4.266099 3.514688 4.199350
70 3.474911 4.259991 3.546184 4.197461
80 3.504560 4.254222 3.572218 4.195059
90 3.529652 4.248786 3.594213 4.192399

100 3.551117 4.243842 3.613121 4.189627
150 3.626893 4.222365 3.679269 4.176155
200 3.671637 4.208274 3.720112 4.164680

2. Definition of the test statistic and small sample properties of La
n

Let y1, . . . , yn be n random variables iid ∼ F = Exp(α, β) with empirical distribution function
Fn, and let y(1), . . . , y(n) be the order statistic.

LEMMA 2.1 If s2
n is the sample variance, then sn ρ+(Fn, F ) is an L-statistic, 1/n

∑n
j=1 lj y(j),

with coefficients

lj = (n − j) log(n − j) − (n − j + 1) log(n − j + 1) + log(n), 1 ≤ j ≤ n,

where, conventionally, 0 log 0 = 0.

Proof Using formula (1) for Fn and F = Exp(α, β) and that the expectation and variance of
Exp(α, β) are α + β and β2, respectively, we have that

sn ρ+(Fn, F ) = 1

β

(∫ 1

0
F−

n (p) F−(p) dp − (α + β) ȳn

)
. (5)

The part that corresponds to the integral in (5) is

∫ 1

0
F−

n (p) F−(p) dp =
n−1∑
i=0

∫ (i+1)/n

i
n

(α − β log(1 − p)) y(i+1) dp

= α

n

n∑
j=1

y(j) − β

n

n−1∑
i=0

y(i+1)

[
(n − i) log(n − i) − (n − i − 1) log(n − i − 1) − log(n) − 1

]
.
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Letting j = i + 1,∫ 1

0
F−

n (p) F−(p) dp = α + β

n

n∑
j=1

y(j)

+ β

n

⎛
⎝ n∑

j=1

[
(n − j) log(n − j) − (n − j + 1) log(n − j + 1) + log(n)

]
y(j)

⎞
⎠.

Notice that the (α + β)/n
∑n

j=1 y(j) = (α + β)ȳn; hence the part between parenthesis in Equation
(5) is equal to

β

n

⎧⎨
⎩

n∑
j=1

[
(n − j) log(n − j) − (n − j + 1) log(n − j + 1) + log(n)

]
y(j)

⎫⎬
⎭.

Finally, dividing by β, we get an expression for sn ρ+(Fn, F ), which does not require the
knowledge or the estimation of the parameters. �

As a consequence of Lemma 2.1, under the null composite hypothesis H0: F = Exp(α, β),
where (α, β) ∈ R × R+, the statistic Qn defined in Equation (3) can be written as:

Qn =
∑n

i=1 li y(i)∑n
i=1 bi y(i)

,

where li = (n − i) log(n − i) − (n − i + 1) log(n − i + 1) + log(n), for i = 1, . . . , n and bi’s
coefficients are such that

∑n
i=1 bi = 0. Hence, in order to test the composite hypothesis that the

data come from the two-parameter exponential family, and for a given set of coefficients bi’s, it
is possible to compute the value of Qn without knowing or estimating the values of the location
and scale parameters.

2.1. Small sample properties of La
n under exponentiality

The transformation xi = (yi − α)/β, for i = 1, . . . , n, gives n iid ∼ Exp(0, 1) random variables.
If x(1), . . . , x(n) is the order statistic, we denote the expected value of x(i) by

mi = E(x(i)), i = 1, 2, . . . , n,

and the covariance of x(i) and x(j) by

vij = E
(
(x(i) − mi)(x(j) − mj)

)
, i, j = 1, 2, . . . , n,

and let

m = (m1, . . . , mn)
′, V = (

vij

)
1≤i,j≤n

,

be the mean vector and the covariance matrix of the order statistic from the standard exponential,
respectively. Explicit formulae for mi and vij for the Exp(0, 1) distribution [8] are

mi =
i∑

k=1

(n − k + 1)−1, i = 1, 2, . . . , n,

vij =
min(i,j)∑

k=1

(n − k + 1)−2.
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PROPOSITION 2.1 The function La
n defined in Equation (4) does not depend on the location

parameter and can be written as a linear combination of the order statistic from the standard
exponential,

β

n

n∑
j=1

ca
nj x(j),

with coefficients

ca
nj = (n − j) log(n − j) − (n − j + 1) log(n − j + 1) + log(n) − a bj , 1 ≤ j ≤ n,

where, conventionally, 0 log 0 = 0.

Proof From Lemma 2.1, definition (4) is written as

La
n = 1

n

n∑
j=1

ca
nj y(j),

where

ca
nj = (n − j) log(n − j) − (n − j + 1) log(n − j + 1) + log(n) − a bj , 1 ≤ j ≤ n.

Using the transformation above,

La
n = 1

n

n∑
j=1

ca
nj (α + β x(i)) = α

n

n∑
j=1

ca
nj + β

n

n∑
j=1

ca
nj x(i).

To prove the proposition, we need to see that the first summatory is null:

n∑
j=1

ca
nj =

n∑
j=1

[
(n − j) log(n − j) − (n − j + 1) log(n − j + 1) + log(n) − a bj

]

= −n log(n) + n log(n) − a

n∑
j=1

bj = 0,

where we have used that
∑n

j=1 bj = 0. �

So far we have proved that the auxiliary function La
n depends linearly only on the scale param-

eter, and consequently, the Qn statistic is location- and scale-free and can be written as a quotient
of L-statistics from the standard exponential distribution.

PROPOSITION 2.2 The exact expectation and variance of the function La
n defined in

Equation (4) are

E(La
n) = β

n
c′
n m, Var(La

n) = β2

n2
c′
n V cn,

where cn = (ca
n1, . . . , c

a
nn)

′.

Proof Defining x = (x(1), . . . , x(n))
′, then La

n = β

n
c′
n x. �
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The expressions for the expectation and variance of the auxiliary function La
n can be made more

explicit if we consider the vectors b = (b1, . . . , bn)
′ and l = (l1, . . . , ln)

′, where

lj = (n − j) log(n − j) − (n − j + 1) log(n − j + 1) + log(n), 1 ≤ j ≤ n.

Since cn = (l − a b), then

E(La
n) = β

n
(l − a b)′ m,

Var(La
n) = β2

n2
(l′Vl − 2a l′Vb + a2 b′Vb).

If we could compute the exact distribution of Qn, we could find the exact critical values of the
test based on Qn. In [2], we were able to compute the distribution of a similar statistic for testing
exponentiality when the location parameter α was specified. Unfortunately, in the general case, it
is not easy to compute this distribution, even for a fixed set of coefficients bi’s. This is the reason
why in the following sections, we select a specific set of coefficients bi’s and we determine the
asymptotic critical values of the resulting Qn using the auxiliary function La

n and applying the
general theory of L-statistics.

3. Asymptotic distribution of La
n under exponentiality

In order to compute the asymptotic distribution of La
n, applying the general asymptotic theory

for L-statistics, coefficients ca
ni should be of the form ca

ni = J a
n (i/n), where J a

n is bounded and
continuous a.e. (F−) (see [9] or [10] for a general explanation of this theory). Since ca

ni = li − a bi ,
and coefficients li already satisfy these conditions, these restrictions should only be imposed on
coefficients bi .As far as here, the only restriction imposed on coefficients bi is that

∑n
i=1 bi = 0. Of

course, there are many sets of bi’s that could be selected, but in order to illustrate the methodology
we have chosen:

bi = i

n
− n + 1

2n
, for i = 1, 2, . . . , n.

With these coefficients, we have the following result:

PROPOSITION 3.1 Under the composite null hypothesis H0 : F = Exp(α, β), where (α, β) ∈
R × R+,

(i) Let μa
n = E(La

n), σ 2
n,a = n var(La

n), then

μa
n = β

[
log

(
nn

n!
)1/n

− a

n

(
n

2
− n + 1

4

)]
,

σ 2
n,a = β2[A0(n) + A1(n) a + A2(n) a2],

with A0(n), A1(n), and A2(n) functions depending only on n, and the sequence {σ 2
n,a}

converges to σ 2
a = β2(2 − 37/36 a + a2/6), as n → ∞.

(ii) We have the following convergences in law

√
n

[
La

n − μa
n

] L−−−−→
n−→∞ N

(
0, σ 2

a

)
, (6)

√
n

[
La

n − μa
n

]
σ 2

n,a

L−−−−→
n−→∞ N(0, 1). (7)
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Proof (i) From the asymptotic theory of L-statistics (see [10, Ch. 19] for the notation and the
constructions used), La

n can be written as

La
n =

∫ 1

0
J a

n (t) F−
n (t) dt,

where F−
n is the pseudo–inverse of the empirical distribution and

J a
n (t) = n(1 − t) log

(
1 − t

1 − t + 1/n

)
+ log

(
1

1 − t + 1/n

)
− a

(
t − n + 1

2n

)
.

The expectation of La
n under the null hypothesis, can be expressed as

μa
n =

∫ 1

0
J a

n (t) F−(t) dt,

where F−(t) = α − β log(1 − t), 0 ≤ t ≤ 1. Alternatively, it can be computed directly,

μa
n = β

n

⎛
⎝ n∑

j=1

ljmj − a

n∑
j=1

bjmj

⎞
⎠ , (8)

wheremj = E(x(j)), for j = 1, . . . , n.The first part of Equation (8) is the expectation of snρ
+,

m∑
j=1

lj mj =
n−1∑
j=1

([
(n − j) log(n − j) − (n − j + 1) log(n − j + 1)

] j∑
k=1

1

n − k + 1

)

+ log(n)

n∑
j=1

(
j∑

k=1

1

n − k + 1

)
. (9)

Note that the first summatory of Equation (9) can be written as

n−1∑
j=1

([
(n − j) log(n − j) − (n − j + 1) log(n − j + 1)

] j∑
k=1

1

n − k + 1

)

= − log n + (n − 1) log(n − 1)

[
n∑
n

1

k
−

n∑
n−1

1

k

]
+ (n − 2) log(n − 2)

[
n∑

n−1

1

k
−

n∑
n−2

1

k

]

+ · · · + 2 log 2

[
n∑
3

1

k
−

n∑
2

1

k

]
= − log n −

n−1∑
2

log j = − log(n!).

And the second summatory of Equation (9)

log(n)

n∑
j=1

(
j∑

k=1

1

n − k + 1

)
= log(n) n.

The second part of Equation (8) is the expectation of
∑n

j=1 bjx(j),

n∑
j=1

bj mj =
n∑

j=1

[(
j

n
− n + 1

2n

) j∑
k=1

1

n − k + 1

]
. (10)
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The first summand of Equation (10) is

n∑
j=1

(
j

n

j∑
k=1

1

n − k + 1

)
=

(
n

2
+ n + 1

4

)
,

and the second summand of Equation (10) is equal to

−n + 1

2 n

n∑
j=1

j∑
k=1

1

n − k + 1
= 1

n

n + 1

2
.

Finally, we have

μa
n = β

n

[
− log(n!) + n log(n) − a

(
n

2
+ n + 1

4
− n + 1

2

)]
.

The variance of La
n is var(La

n) = σ 2
n,a/n, where

σ 2
n,a =

∫ 1

0

∫ 1

0
J a

n (s) J a
n (t)[min(s, t) − s t] dF−(s) dF−(t). (11)

Because of the symmetry of the function in the integrand, the region to integrate can be
reduced to

σ 2
n,a = 2 β2

∫ 1

0

(
J a

n (s)

∫ s

0
J a

n (t)
t

1 − t
dt

)
ds.

We divide the region {(s, t) ∈ R
2 : 0 ≤ s ≤ 1, 0 ≤ t ≤ s} in three parts, namelyA, B and C,

A =
{
(s, t) ∈ R

2 : 0 ≤ s ≤ 1 − 1

n
, 0 ≤ t ≤ s

}
,

B =
{
(s, t) ∈ R

2 : 1 − 1

n
≤ s ≤ 1, 0 ≤ t ≤ 1 − 1

n

}
,

C =
{
(s, t) ∈ R

2 : 1 − 1

n
≤ s ≤ 1, 1 − 1

n
≤ t ≤ s

}
,

and we consider the following approximations for log(1 − s + 1/n):

log

(
1 − s + 1

n

)
≈ log(1 − s) +

m∑
k=1

(−1)k+1

k
(n(1 − s))−k, (12)

when s < 1 − 1/n, and

log

(
1 − s + 1

n

)
≈ log

(
1

n

)
+

m∑
k=1

(−1)k+1

k
(n(1 − s))k, (13)

when s ≥ 1 − 1/n.
We have used Mathematica to compute these integrals, using the approximations up

to m = 2 for (12) and m = 5 for (13) and we have obtained that the variance of La
n is a

polynomial of second degree in a.
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Since J a
n is continuous and bounded a.e. (F−), to compute σ 2

a = limn→∞ σ 2
n,a , we can

commute the limit with the integral, hence we substitute

J a(t) = lim
n→∞ J a

n (t) = −
[

1 + log(1 − t) + a

(
t − 1

2

)]

for J a
n in integral (11). Analogously, since the function in the integrand is symmetrical,

σ 2
a = 2 β2

∫ 1

0

(
J a(s)

∫ s

0
J a(t)

t

1 − t
dt

)
ds

= 2β2
∫ 1

0

[
1 + log(1 − s) + a

(
s − 1

2

)] ∫ s

0

[
1 + log(1 − t) + a

(
t − 1

2

)]
t

1 − t
dt ds

= β2

(
2 − 37

36
a + a2

6

)
.

(ii) The convergence of Equation (6) is obtained from Theorem 1 of [10, pp. 664–665].
Convergence (7) is immediate from Equation (6) and from the fact that σ 2

a = limn→∞ σ 2
n,a .

�

To compute the critical values, we have used the normal approximation based on Equation (7)
which, having a higher convergence rate than Equation (6), gives a more powerful test.

The critical value a is obtained from solving the equation

−√
n

μa
n

σn,a

= cε,

where cε is the (1 − ε)–quantile of the standard normal distribution. We have developed a
Mathematica program that computes these critical values, given n. Some of them are
reproduced in Table 1.

4. Power of Qn

In this section, we consider three families of probability distributions, frequently used as alter-
natives to the two-parameter exponential distribution, in the context of reliability theory and life
testing. These alternatives are of the form F(x; θ1, θ2). In each case, we fix one of the parameters,
and let the other vary in its specific range.

• A1. Generalized Pareto, whose distribution function is

F(x; a, k) = 1 −
(

1 − k

a
x

)1/k

, a > 0,

with 0 ≤ x < ∞, if k ≤ 0, and 0 ≤ x ≤ a/k, if k > 0. See [11] for notation and relations.
• A2. Gamma with shape parameter α and scale parameter β, whose density function is

f (x; α, β) = 1

�(α) βα
xα−1 e−x/β, α, β > 0, x ≥ 0.

• A3. Weibull with shape parameter α and scale parameter β, whose density function is

f (x; α, β) = α

βα
xα−1 exp

{
−

(
x

β

)α}
, α, β > 0, x ≥ 0.
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We have compared the power of the test based on Qn with the tests based on other location- and
scale-free statistics for testing exponentilaity, such as the Shapiro–Wilk statistic [12]:

W = n (x̄ − x(1))
2

(n − 1)
∑n

i=1(xi − x̄)2
(14)

and the Gini statistic [13]:

G =
∑n

i=1(2 i − n − 1) x(i)

n (n − 1) x̄
. (15)

Power against an alternative distribution F(x; θ1, θ2) has been estimated by the relative fre-
quency of values of the statistic in the critical region for N = 500 simulated samples of size n

of F(x; θ1, θ2). For F(x; θ1, θ2), we have taken distributions in each of the families A1–A3 with
one fixed parameter and let the other vary within its range. For each family, we have taken 30
different values of the free parameter.

As it is explained in [14], a useful measure in describing distributions is the coefficient of
variation, CV, which is defined as the quotient between the mean and the standard deviation of the
distribution being considered. This coefficient is closely related to the failure rate (or hazard rate)
since CV > 1 for decreasing failure rate (DFR) distributions, CV < 1 for increasing failure rate
(IFR) distributions and CV = 1 for distributions with constant failure rate. The gamma and the
Weibull alternatives are IFR for α > 1 and DFR for 0 < α < 1. For α = 1, they both reduce to
the Exp(0, β) with constant failure rate. The generalized Pareto is IFR for k > 0 and DFR k < 0.
When k = 0, the generalized Pareto reduces to the Exp(0, a). We have observed that the right tail
of Qn is significant for DFR alternatives, whereas the left tail is significant for IFR alternatives.
Consequently, if CV is known for a given distribution, we can develop a one-sided test more
powerful than the two-sided default test.

Figure 1. (a)–(c) Two-tail power curves for the tests based on Qn, W and G for (a) the A1 family with a = 1, (b) the
A2 family with β = 1 and (c) the A3 family with β = 1. (d)–(f): One-tail power curves for the tests based on Qn, W and
G for (d) the A1 family with a = 1, (e) the A2 family with β = 1, and (f) the A3 family with β = 1.



Statistics 11

Figure 1 shows the power for both bilateral and unilateral tests at 5% significance level, for
n = 20. Looking at the graphs, we can conclude that the Qn statistic is good in detecting family
A1, whereas for families A2 and A3, it is only reasonably good when CV < 1. In the other cases,
the Gini statistic is the best one. It also can be observed that the test based on the Shapiro–Wilk
statistic is biased for the Weibull alternative.

5. Data analysis

In this section, we apply the test of exponentiality based on the statistic

Qn =
∑n

i=1 liy(i)∑n
i=1(i/n − (n + 1)/(2n))y(i)

,

where li = (n − i) log(n − i) − (n − i + 1) log(n − i + 1) + log(n), for i = 1, . . . , n, with
the convention 0 log 0 = 0, to two real data sets, in order to determine whether the data come from
the two-parameter exponential distribution. In Figure 2, we depict the histograms of these data sets.

5.1. Data set 1

Grubbs [15] gives the following mileages for the failure times of 19 personnel carriers: 162, 200,
271, 302, 393, 508, 539, 629, 706, 777, 884, 1008, 1101, 1182, 1463, 1603, 1984, 2355, 2880.
He considers these data to follow a two-parameter exponential distribution.

We compute the value of the test statistic obtaining Qn = 3.5571. For a 5% significance level,
the approximate asymptotic critical values are cvleft = 3.13182 and cvright = 4.32689; hence, we
conclude that the data follow a two-parameter exponential distribution.

5.2. Data set 2

Example 6.2 of [5]: Number of cycles (in thousands) of fatigue life for 67 Alloy T7987 specimens
that failed before 300,000 cycles: 94, 96, 99, 99, 104, 108, 112, 114, 117, 117, 118, 121, 121,
123, 129, 131, 133, 135, 136, 139, 139, 140, 141, 141, 143, 144, 149, 149, 152, 153, 159, 159,
159, 159, 162, 168, 168, 169, 170, 170, 171, 172, 173, 176, 177, 180, 180, 184, 187, 188, 189,

Figure 2. Histograms for the (a) data set 1 and (b) data set 2.
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190, 196, 197, 203, 205, 211, 213, 224, 226, 227, 256, 257, 269, 271, 274, 291. They conclude
that the lognormal distribution provides a reasonable fit for these data, but that the inclusion of a
threshold parameter would improve the fit.

We compute the value of the test statistic obtaining Qn = 3.4337. For a 5% significance level,
the approximate asymptotic critical values are cvleft = 3.46492 and cvright = 4.26178; hence, we
conclude that the data do not follow a two-parameter exponential distribution.

Acknowledgement

This research project was partially supported by the Spanish grants SEJ2007-64500 and MTM2006-09920 (Ministry of
Education and Science-FEDER).

References

[1] S. Cambanis, G. Simons, and W. Stout, Inequalities for E k(x, y) when the marginals are fixed, Zeitschrift für
Wahrscheinlichkeitstheorie und verwandte Gebiete 36 (1976), pp. 285–294.

[2] J. Fortiana, and A. Grané, A scale-free goodness-of-fit statistic for the exponential distribution based on maximum
correlations, J. Statist. Plann. Inference 108 (2002), pp. 85–97.

[3] ———, Goodness-of-fit tests based on maximum correlations and their orthogonal decompositions, J. Roy. Statist.
Soc. B 65 (2003), pp. 1–12.

[4] A. Grané, and J. Fortiana, An adaptive goodness-of-fit test, Commun. Statist. A, Theory and Methods 35 (6) (2006),
pp. 1141–1155.

[5] W.Q. Meeker, and L.A. Escobar, Statistical Methods for Reliability Data, John Wiley & Sons, New York, (1998).
[6] L.J. Bain, and M. Engelhardt, Statistical Analysis of Reliability and Life-Testing Models, Marcel Deker Inc.,

New York, (1991).
[7] K.C. Kapur, and L.R. Lamberson, Reliability in Engineering Design, John Wiley & Sons, New York, (1977).
[8] M. Kendall, and A. Stuart, The Advanced Theory of Statistics, 2, C. Griffin and Co, London, (1961).
[9] R.J. Serfling, Approximation Theorems of Mathematical Statistics, John Wiley & Sons, New York, (1980).

[10] G.R. Shorack, and J.A. Wellner, Empirical Processes with Applications to Statistics, John Wiley & Sons, New York,
(1986).

[11] V. Choulakian, and M. Stephens, Goodness-of-fit tests for the generalized Pareto distribution, Technometrics 43
(2001), pp. 478–484.

[12] S. Shapiro, and M. Wilk, An analysis of variance test for the exponential distribution (complete samples),
Technometrics 14 (1972), pp. 355–370.

[13] M. Gail, and J. Gastwirth, A scale-free goodness-of-fit test for the exponential distribution based on the Gini statistic,
J. Roy. Statist. Soc. B 40 (1978), pp. 350–357.

[14] M.A. Stephens, Tests for the exponential distribution, in Goodness-of-fit Techniques M.A. S. R. B. D’Agostino, ed.,
Marcel Dekker, Inc., New York, (1986), pp. 421–459.

[15] F.E. Grubbs, Fiducial bounds on reliability for the two parameter negative exponential distribution, Technometrics
13 (1971), pp. 873–876.


