TALLER DE ESTADÍSTICA

Descripción de datos temporales

El objetivo de esta práctica es familiarizarse con las técnicas de descripción de datos temporales y con algunas de las opciones del programa SPSS/PC relacionadas con estas técnicas. Para los ejemplos se utilizará el fichero best-x4.3 correspondiente al estudio del número de pasajeros de líneas aéreas estudiado en clase.

1. ¿Cómo definir una serie temporal en SPSS/PC?

Para trabajar con datos temporales primero introducimos los datos (ver sección &Cómointroducir datos en SPSS/PC? en las prácticas 1 y 2) y a continuación definimos las fechas con: Datos \hookrightarrow Definir fechas. En el ejemplo:

- 1. $[Datos] \hookrightarrow [Definir fechas].$
- 2. En el cuadro Los casos son: seleccionamos la opción Años, meses.
- En el cuadro El primer caso es:, en la opción Año escribimos 1949, y en la opción Mes escribimos 1.

Como resultado obtenemos tres nuevas variables: dos numéricas year_, y month_ y una cadena de caracteres date_.

2. Representación gráfica

Para estudiar gráficamente una serie temporal utilizamos $|Gráficos| \hookrightarrow |Secuencia|$. En el ejemplo:

- 1. Gráficos \hookrightarrow Secuencia
- 2. Pasamos al cuadro Variables: la variable airpass, y pasamos la variable DATE al cuadro Etiquetas del eje del tiempo: Por último, Aceptar.

Notemos que es posible representar la variable airpass transformada mediante Logaritmo, Diferencia, o Diferencia ciclo. Pero, en el ejemplo lo haremos de otra manera, definiendo una nueva variable log_air mediante:

- (a) Seleccionamos | Transformar | \hookrightarrow | Calcular ... |
- (b) En el cuadro Variable de destino: escribimos log_air.
- (c) Seleccionamos la función LN(exrp_num) con el botón ▲, y seleccionamos la variable airpass con el botón ▶. En el cuadro Expresión numérica: obtenemos LN(airpass). Por último, Aceptar.

En este punto, podemos obtener un gráfico de la nueva variable log_air como antes lo hicimos con la variable original airpass.

3. Tendencia lineal determinista

Para obtener la pendiente y el término constante de la recta tenemos que utilizar la opción Analizar \hookrightarrow Regresión \hookrightarrow Lineal entre la variable temporal (log_air) y una nueva variable con el índice de llegada de cada dato (tiempo). En lo que sigue, ilustramos una manera de construir esta variable tiempo:

- a Seleccionamos | Transformar | \hookrightarrow | Calcular ... |.
- b En el cuadro Variable de destino: escribimos tiempo.
- c En el cuadro Expresión numérica: escribimos (year_ 1949)*12 + month_. El resultado es una variable que toma valores 1, 2, ..., 144.

Finalmente, obtenemos la recta de la tendencia, y una representación gráfica mediante:

- 1. **Analizar** \hookrightarrow Regression \hookrightarrow Lineal.
- 2. Pasamos al cuadro Dependiente: la variable log_air, y al cuadro Independientes: la variable tiempo.
- 3. Seleccionamos la opción Guardar, y en Valores pronosticados marcamos No tipificados.

		Coeficientes no estandarizados		Coeficientes estandarizados		
Modelo		В	Error típ.	Beta	t	Sig.
1	(Constante)	87,653	7,716		11,359	,000
	TIEMPO	2,657	,092	,924	28,778	,000

a. Variable dependiente: AIRPASS

- 4. Gráficos \hookrightarrow Secuencia.
- 5. Pasamos al cuadro Variables: la variables log_air y pre_1, y pasamos la variable DATE al cuadro Etiquetas del eje del tiempo: .

4. Media móvil centrada de orden k

Para obtener la serie de tendencias utilizamos los siguientes pasos:

```
1. |\text{Transformar}| \hookrightarrow |\text{Crear serie temporal} \dots |
```

- En la opción Función: elegimos Media móvil centrada, y en la opción Amplitud: escribimos k, en el ejemplo k = 3.
- Por último pasamos la variable log_air al cuadro Nuevas variables con el botón
 ▶, y Aceptar.

Obtenemos una nueva variable log_ai_1 con las medias móviles centradas. Notemos que esta nueva serie tiene k/2 observaciones faltantes al principio de la serie y k/2 observaciones faltantes al final.

En el siguiente gráfico representamos la serie original, y sus medias móviles de orden 3, y 20:

5. Diferenciar la serie

Para obtener la serie diferenciada utilizamos los siguientes pasos:

- 1. Transformar \hookrightarrow Crear serie temporal ...
- 2. En la opción Función: podemos elegir Diferencia o Diferencia Estacional si deseamos una u otra diferencia, y en la opción Orden elegimos el número de diferencias, en el ejemplo tomamos Orden = 1.

Obtenemos una nueva variable log_ai_3 con la serie diferenciada regularmente y log_ai_4 con la serie diferenciada estacionalmente. Notemos que estas nuevas series tienen 1 y 12 observaciones faltantes al principio de la serie, respectivamente.

En la siguiente figura representamos la serie original X_t , y sus correspondientes series diferenciadas $(X_t - X_{t-1}, X_t - X_{t-12}, y X_t - X_{t-1} - X_{t-12} + X_{t-13})$, es decir en la última serie diferenciamos regular y estacionalmente). ¿Cuál de las series diferenciadas se aproxima más a una componente Irregular?

6. Descomposición estacional

Para obtener la descomposición estacional, utilizamos los siguientes pasos:

- 1. $|Analizar| \hookrightarrow |Series temporales| \hookrightarrow |Descomposición estacional ...$
- Pasamos al cuadro Variables: la variable log_air con el botón ▶, y en la opción Modelo elegimos Aditivo.

Obtenemos 4 nuevas variables:

- err_1 Residuos del modelo ajustado, es decir $I_t = X_t T_t S_t$.
- sas_1 Serie desestacionalizada, i.e. $X_t S_t$.
- saf_1 Coeficientes estacionales, i.e. S_t
- sas_1 Tendencia estimada sobre la serie desestacionalizada, i.e. T_t .

MODEL: MOD_1.

Results of SEASON procedure for variable LOG_AIR Additive Model. Equal weighted MA method. Period = 12.

	Seasonal
Period	index
1	-,086
2	-,115
3	,018
4	-,013
5	-,009
б	,115
7	,216
8	,204
9	,064
10	-,076
11	-,216
12	-,101

The following new variables are being created:

Name	Label
ERR_1	Error for LOG_AIR from SEASON, MOD_1 ADD EQU 12
SAS_1	Seas adj ser for LOG_AIR from SEASON, MOD_1 ADD EQU 12
SAF_1	Seas factors for LOG_AIR from SEASON, MOD_1 ADD EQU 12
STC_1	Trend-cycle for LOG_AIR from SEASON, MOD_1 ADD EQU 12

Ejercicio 1. El fichero best-x5.3 contiene los datos de las temperaturas medias mensuales en Madrid entre 1988 y 1997 (en grados centígrados).

- (a) Obtener la serie desestacionalizada y representarla (por separado y en el mismo gráfico que la serie original).
- (b) Obtener y representar (en un gráfico con la serie desestacionalizada) la tendencia lineal determinista. Representar los residuos.
- (c) Obtener la tendencia de la serie desestacionalizada con una media móvil de orden 25. Representarla sobre la serie desestacionalizada. Representar los residuos.
- (d) Diferenciar la serie desestacionalizada y representarla.
- (e) Comparar los tres procedimientos de extraer la tendencia para obtener una serie estacionaria.

En http://halweb.uc3m.es/omar/ se encuentran los ficheros de datos ASCII: best-x4.3, best-x5.3 a utilizar en esta práctica.