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ABSTRACT. This paper presents an axiomatic characterization of the
Owen set of transportation games. In the characterization we use six
properties including consistency (CONS2) and splitting and merging (SM)
which are firstly proposed and defined for this setup in the present paper.
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1. INTRODUCTION

In transportation situations, how to obtain the optimal solution
for a single decision-maker is well known but a new problem
arises when the agents involved cooperate and they have to
distribute the obtained profit or saving among each other. In
the cooperative game theory literature, we can find many gen-
eral procedures (solution concepts) for distributing the total
amount obtained by a set of agents among each other. In order
to select the most suitable procedure of distribution or alloca-
tion, it is usual to characterize the solution concepts through
different sets of properties. Nowadays, many operations re-
search problems are studied from a game theoretical point of
view introducing the very realistic multiple agents component
in the analysis of such problems. For a survey on this inter-
esting topic see Borm et al. (2002). In particular, transportation
situations are studied from a game theoretical point of view in
Samet et al. (1984), Sánchez-Soriano (1998) and Sánchez-So-
riano et al. (2001) among others.

The purpose of this paper is to investigate certain aspects of
transportation games and give an axiomatic characterization of
its Owen set (a solution concept related to the dual optimal
solutions of the transportation problem). To achieve this
objective, we look at two operations research problems closely
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related to transportation situations: assignment situations and
linear production situations. Assignment situations and linear
production situations were studied from a game theoretical
point of view in Shapley and Shubik (1972) and Owen (1975)
respectively. A very interesting property in assignment games is
that the core and the Owen set of the game coincide. This fact
does not occur in linear production situations and transporta-
tion situations. Sasaki (1995) provided two characterizations of
the core of assignment games and hence of its Owen set, and
van Gellekom et al. (2000) provided a characterization of the
Owen set of linear production games. Transportation situations
occupy an intermediate position in between assignment and
linear production situations because assignment situations are a
special case of transportation situations and these can be
rewritten as linear production situations. This particular posi-
tion and relationship make us look into the properties used to
characterize the Owen set of assignment games and linear
production games to find the set of properties that characterize
the Owen set of transportation games.

This paper consists of three sections. In the next section we
present the most relevant definitions and results for the trans-
portation situations and related games. We study the properties
of the Owen set in Section 3. We consider two types of prop-
erties which are related to those introduced by Sasaki (1995) to
characterize the core of assignment games, and by van
Gellekom et al. (2000) to characterize the Owen set of linear
production games. In the final section, we provide a charac-
terization of the Owen set in transportation situations.

2. TRANSPORTATION SITUATIONS AND GAMES

A transportation situation is determined by a tuple
T ¼ ðP;Q;B; p; qÞ, where P and Q are, respectively, the sets of
supply points and demand points. The transport of one unit of
the goods from supply point i to demand point j generates a
non-negative profit of bij. The matrix B ¼ ½bij�i2P;j2Q contains all
the profits per unit of the goods. The supply at point i 2 P
equals pi units of the goods and the demand j 2 Q is qj units
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where both pi and qj are non-negative integers. The vectors
p ¼ ðpiÞi2P and q ¼ ðqjÞj2Q contain, respectively, the supplies
and demands of the goods. The set of transportation situations
is denoted by GT.

A transportation plan for T 2 GT is a matrix l ¼ ½lij�i2P;j2Q
where lij � 0 is the number of units of the goods that will be
transported from supply point i to demand point j. A supply
point i 2 P can supply at most pi units of the goods, and a
demand point j 2 Q wants to receive at most qj. The maximal
profit that can be obtained in this situation is

max
X

ði;jÞ2P�Q

bijlijjl is a transportation plan

8<
:

9=
;:

A transportation plan l is also called a feasible solution for
the above transportation program T. We denote by OpðTÞ the
set of optimal solutions for this program. Our interest is how to
distribute the total profit among the agents when they coop-
erate, i.e., to propose a vector ðx; yÞ 2 <P � <Q such thatX

i2P
xi þ

X
j2Q

yj ¼
X

ði;jÞ2P�Q

bijl
�
ij;

where l�‰OpðTÞ.
A well-known approach to distribute the total profit is to

define a game for each transportation situation. Given T 2 GT,
the corresponding transportation game (N;w) is a cooperative
transferable utility (TU) game with player set N ¼ P [Q. Let
S � N;S 6¼ £, be a coalition of players and define PS ¼ P \ S
and QS ¼ Q \ S. If S ¼ PS or S ¼ QS, there are either only
suppliers or demanders present, then no transport can take
place and the worth wðSÞ of coalition S equals zero. Otherwise,
the worth wðSÞ depends upon the transportation plans for this
coalition. A transportation plan lðSÞ for coalition S is a
transportation plan for the transportation problem TS ¼ PS;ð
QS;½bij�i2PS;j2QS

; ðpiÞi2PS
; ðqjÞj2QS

Þ. By convention wð£Þ ¼ 0.

Now, when thinking about how to share the profit among
the suppliers and the demanders, one can consider sharing it
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according to some game theoretic solution concept for TU-
games. For instance, one way is to do so according to an ele-
ment in the core of the transportation game (N;w), i.e.,

CðwÞ¼ ðx;yÞ 2<P�<Q

X
i2P

xiþ
X
j2Q

yj ¼wðNÞ and

X
i2PS

xiþ
X
j2QS

yj �wðSÞ; for all S�N;S 6¼£

��������

8>><
>>:

9>>=
>>;:

If a core-element is proposed as a distribution of the total profit
wðNÞ, then each coalition S will get at least as much as it can
obtain on its own, therefore no coalition has an incentive to split
off. The transportation games have non-empty core and are
superadditive but not convex. Thus, for an arbitrary transpor-
tation game we can always select a core element, but with great
difficulty. Owen (1975) introduced the class of linear production
games and presented a method to find a non-empty subset of the
core of these games. Since a transportation game can be seen as
a special case of linear production games, we can use this
method to derive core elements. This set is the so-calledOwen set
of the transportation situation, which is defined by

OwenðTÞ ¼

ðx; yÞ 2 <P � <Q
xi ¼ piui; 8i 2 P; yj ¼ qjvj; 8j 2 Q;

with ðu; vÞ 2 OdðTÞ

�����
( )

;

where OdðTÞ is the set of optimal solutions of the dual program
of the (relaxed) transportation program for the grand coalition,
i.e.,

min
X
i2P

piuiþ
X
j2Q

qjvjjuiþvj� bij; ui;vj� 0; for all i2P; j2Q

( )
:

Note that each element ui; i 2 P; vj; j 2 Q, of a vector
ðu; vÞ 2 OdðTÞ is the mean profit that an agent will obtain per
unit from the supply or demand. Therefore, an element
ðpiui; qjvjÞi2P;j2Q of the Owen set is a vector of profits that
players receive from the supply or demand.

Assignment situations are a special case of transportation
situations when all supplies pi; i 2 P, and demands qj; j 2 Q,
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equal 1. Hence, an assignment situation can be represented as
A ¼ ðP;Q;BÞ. Assignment games were introduced by Shapley
and Shubik (1972). They proved that the core of an assignment
game is the non-empty set of optimal solutions of the dual
program of the (relaxed) assignment program for the grand
coalition, i.e., CðwÞ ¼ OdðAÞ ¼ OwenðAÞ. In the sequel, we will
denote the set of assignment situations by GA and the core of
the assignment game CðwÞ by CðAÞ.

In general, the Owen set does not coincide with the core of a
transportation game. See Sánchez-Soriano et al. (2001) for a
detailed analysis of the relationship between the core and the
Owen set of a transportation situation.

A solution concept W on GT is a map, which assigns to every
T ¼ ðP;Q;B; p; qÞ 2 GT a non-empty set of available distribu-
tions Ø 6¼ WðTÞ � <P �<Q:

3. PROPERTIES

This section is devoted to the properties of the Owen set. We
begin with those properties which are common to general
games, or, at least to two-sided market games. We end up with
the definition of two new properties which are related to those
introduced by Sasaki (1995) to characterize the core of
assignment games, and by van Gellekom et al. (2000) to char-
acterize the Owen set of linear production games.

DEFINITION 1. A solution W on GT satisfies:

(EFF) Efficiency, if xðPÞ þ yðQÞ ¼ wTðP [QÞ; 8ðx; yÞ 2
WðTÞ; 8T 2 GT.

(IR) Individual Rationality, if ðx; yÞ � 0; 8ðx; yÞ 2 WðTÞ;
8T 2 GT.

(CR) Couple Rationality, if xi þ yj�wTðfi; jgÞ¼bijminfpi;
qjg; 8i 2 P; 8j 2 Q; 8ðx; yÞ 2 WðT Þ; 8T 2 GT.

(CONT) Continuity, if for every ðP;Q;B; p; qÞ 2 GT and every
sequence fTk ¼ ðP;Q;Bk; p; qÞgk2N of transportation
problems and elements fðxk; ykÞ 2 WðT kÞgk2N, such
that: (a) Bk ! B (i.e. bkij ! bij, for all i 2 P; j 2 Q); (b)
ðxk; ykÞ ! ðx; yÞ, it follows that ðx; yÞ 2 WðTÞ.
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PROPOSITION 1. The Owen Set satisfies (EFF), (IR), (CR)
and (CONT) on GT.

Proof. Since every allocation in the Owen set is a core ele-
ment, it is obvious that the Owen set satisfies (EFF), (IR) and
(CR). To prove the continuity of the Owen set, let fTk ¼
ðP;Q;Bk; p; qÞgk2N, fðxk; ykÞ 2 OwenðTkÞgk2N, and let T ¼ ðP;
Q;B; p; qÞ and ðx; yÞ, such that (i) Bk ��!

k!1
B and (ii)

ðxk; ykÞ ��!
k!1

ðx; yÞ.
ðxk; ykÞ 2 OwenðT kÞ, 8k 2 N then there exists ðuk; vkÞ 2

OdðTkÞ such that

xki ¼ piu
k
i ; 8i 2 P and ykj ¼ qjv

k
j ; 8j 2 Q; 8k 2 N: ð1Þ

Then, it follows from condition (ii) that

uki ¼
xki
pi
��!
k!1

xi
pi
; 8i 2 P and vkj ¼

ykj
qj
��!
k!1

yj
qj
; 8j 2 Q:

ð2Þ

Let ðu; vÞ given by ui ¼ xi=pi; 8i 2 P, and vj ¼ yj=qj; 8j 2 Q. We
will show that ðu; vÞ 2 OdðTÞ.

ðuk; vkÞ 2 OdðT kÞ; 8k 2 N, then ðuk; vkÞ � 0, and uki þ vkj �
bkij; 8i 2 P; 8j 2 Q. Therefore, taking (i) into account, it follows
that ðu; vÞ ¼ limk!1ðuk; vkÞ 2 FdðTÞ, where FdðTÞ is the feasible
set of the dual program of the (relaxed) transportation program
for the grand coalition.

Now, in order to prove the optimality of ðu; vÞ, we will find a
feasible solution l for the transportation program T (i.e.
l 2 FpðTÞ) with the same value for the objective function.

Since ðuk; vkÞ 2 OdðTkÞ; 8k 2 N, then for all k 2 N, there
exists lk 2 OpðT kÞ � FpðT kÞ such thatX

i2P

X
j2Q

bkijl
k
ij ¼

X
i2P

piu
k
i þ

X
j2Q

qjv
k
j :

Note that the feasible set FpðT kÞ ¼ FpðTÞ, for all k 2 N, and
FpðTÞ is compact. Then, the sequence flkgk2N � FpðTÞ has a
convergent subsequence flkkgk2N. Let l0 2 FpðTÞ its limit, then
on the one hand
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lim
k!1

X
i2P

piu
kk
i þ

X
j2Q

qjv
kk
j

 !
¼ lim

k!1

X
i2P

X
j2Q

bkkij l
kk
ij ¼

X
i2P

X
j2Q

bijl
0
ij:

ð3Þ
On the other hand,

lim
k!1

X
i2P

piu
kk
i þ

X
j2Q

qjv
kk
j

 !
¼
X
i2P

piui þ
X
j2Q

qjvj: ð4Þ

Thus, from (3) and (4) it follows that ðu; vÞ 2 OdðTÞ. Then,
ðx; yÞ 2 OwenðTÞ. (

The following property was introduced by Sasaki (1995) to
characterize the core on assignment problems. Since the core
coincides with the Owen set in the assignment problems, we will
look at it in order to define a new consistency property for
transportation situations. Then, we will use this new consis-
tency to characterize the Owen set.

DEFINITION 2. A solution U on GA satisfies consistency
(CONS), if for all A ¼ ðP;Q;BÞ 2 GA, for all ðx; yÞ 2 UðAÞ and
for all ðP;QÞ � ðP;QÞ, such that there exists a feasible assign-
ment l 2 FpðAÞ with
(i) xðPÞ þ yðQÞ ¼

P
ði;jÞ2P�Q bijlij,

(ii) lij ¼ 0, for all pair ði; jÞ 2 ðPnPÞ �Q or ði; jÞ 2 P� ðQnQÞ,
(iii)

P
i2P xi þ

P
j2Q yj ¼

P
ði;jÞ2P�Q bijlij,

it follows that ðxjP; yjQÞ 2 UðP;Q;BjP[QÞ.

The following theorem can be found in Sasaki (1995).

THEOREM 1. Let U a solution on GA which satisfies (CONS)
and (CONT). IfUðAÞ � CðAÞ, for all A 2 GA, thenU � C on GA.

The Owen set satisfies (CONS) on GA (because it coincides with
the core on that class), but not on GT. Instead of (CONS) the
Owen set satisfies on GT a slightly different version of the
consistency property.
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DEFINITION 3. A solution W on G T satisfies (CONS2), if for
all T ¼ ðP;Q;B; p; qÞ 2 GT, for all ðx; yÞ 2 WðTÞ, and for all
ðP;QÞ � ðP;QÞ, such thatX

i2P

xi þ
X
j2Q

yj ¼ wðP [QÞ

it verifies that ðxjP; yjQÞ 2 WðP;Q;BjP[Q; pjP; qjQÞ.

PROPOSITION 2. The Owen set satisfies (CONS2) on GT

Proof. Let T ¼ ðP;Q;B; p; qÞ 2 GT, and let ðx; yÞ 2OwenðTÞ
and ðP;QÞ � ðP;QÞ, satisfying the above condition.

Since ðx; yÞ 2 OwenðTÞ, there exists ðu; vÞ 2 OdðTÞ such that
xi ¼ piui; 8i 2 P and yj ¼ qjvj; 8j 2 Q.

Clearly, ðujP; vjQÞ belongs to FdðTP[QÞ andX
i2P

piui þ
X
j2Q

qjvj ¼
X
i2P

xi þ
X
j2Q

yj ¼ wðP [QÞ;

so ðujP; vjQÞ 2 OdðTP[QÞ. Therefore, ðxjP; yjQÞ 2 OwenðP;Q;
BjP[Q; pjP; qjQÞ. (

The following lemma will be useful in the axiomatic char-
acterization of the Owen set.
LEMMA 1. Let W a solution on GT satisfying (EFF) and
(CONS2). Then W satisfies (CONS) on GA.

Proof. Let A ¼ ðP;Q;BÞ 2 GA, ðx; yÞ 2 WðAÞ and
ðP;QÞ � ðP;QÞ satisfying the conditions in Definition 2. By
efficiency and condition (i), the matching l is an optimal
assignment for A. And hence, by condition (ii), the matching
ljP�Q is an optimal assignment for AjP[Q. Therefore, by con-
dition (iii), it is satisfied thatX

i2P

xi þ
X
j2Q

yj ¼ wðP [QÞ:

Since W satisfies (CONS2), it follows that ðxjP; yjQÞ 2 WðP;Q;
BjP[QÞ. (

N. LLORCA ET AL.222



To each transportation situation T ¼ ðP;Q;B; p; qÞ 2 GT a
representatives assignment situation AT ¼ ðPT;QT;BTÞ 2 GA

can be associated by splitting every supply point i 2 P into pi
supplier representatives and every demand point j 2 Q into qj
demander representatives. In this way, we will have a set of
suppliers PT ¼ fðirÞ; i 2 P; 1 � r � pig and another set QT ¼
fðjcÞ;j 2 Q; 1 � c � qjg of demanders. The profit generated by
matching a supplier (ir) and a demander (jc) is bTir;jc :¼ bij.
Clearly, the corresponding operations research problems in
both situations are equivalent, as are the optimal solutions.

The following property adapts the property of shuffle (van
Gellekom et al., 2000) to the context of transportation situations.
Note that our property is much less restrictive. We restrict our-
selves to integer divisions and unions and we do not ask for
permutation invariance. In our context, the following property
can be interpreted in terms of a non-manipulability condition.

DEFINITION 4. A solution W on GT satisfies Splitting and
Merging (SM) if for every T 2 GT the following conditions are
satisfied:

(S) If ðx; yÞ2WðTÞ, then there exists ðxAT

; yA
TÞ2WðATÞ such that

xi ¼
Xpi
r¼1

xA
T

ir ; 8i 2 P; yj ¼
Xqj
c¼1

yA
T

jc ; 8j 2 Q: ð5Þ

(M) If ðxAT

; yA
TÞ 2 WðAT Þ, then the distribution ðx; yÞ 2 WðTÞ,

where

xi ¼
Xpi
r¼1

xA
T

ir ; 8i 2 P; yj ¼
Xqj
c¼1

yA
T

jc ; 8j 2 Q: ð6Þ

PROPOSITION 3. The Owen Set satisfies (SM).

Proof. We begin by proving the splitting part. We outline the
proof as follows. Let T 2 GT and ðx; yÞ 2 OwenðTÞ, then there
exists ðu; vÞ 2 OdðTÞ such that xi ¼ piui, for all i 2 P, and
yj ¼ qjvj, 8j 2 Q.

Let AT 2 GA the assignment situation derived from T. It can
easily be checked that ðuA; vAÞ 2 OdðATÞ, where
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uAir ¼ ui ¼
xi
pi
; 8i 2 P; 1 � r � pi;

vAjc ¼ vj ¼
yj
qj
; 8j 2 Q; 1 � c � qj:

Then, the allocation ðxAT

; yA
TÞ defined as

xAir ¼ uAir ¼
xi
pi
; 8i 2 P; 1 � r � pi;

yAjc ¼ vAjc ¼
yj
qj
; 8j 2 Q; 1 � c � qj;

belongs to OwenðATÞ, with xi ¼
Ppi

r¼1 x
A
ir , for all i 2 P, and

yj ¼
Pqj

c¼1 y
A
jc, for all j 2 Q.

For the merging condition, let ðxAT

; yA
TÞ 2 OwenðATÞ. No-

tice that for an assignment situation, A 2 GA, OwenðAÞ ¼
OdðAÞ. It can easily be checked that the vector ð�u; �vÞ of averages
prices, given by

�ui ¼
Ppi

r¼1 x
AT

ir

pi
; 8i 2 P; �vj ¼

Pqj
c¼1 y

AT

jc

qj
; 8j 2 Q;

belongs to OdðTÞ. Therefore, the allocation ðx; yÞ given by
xi ¼ pi�ui; 8i 2 P, and yj ¼ qj�vj; 8j 2 Q, belongs to OwenðTÞ and

xi ¼
Xpi
r¼1

xA
T

ir ; 8i 2 P; yj ¼
Xqj
c¼1

yA
T

jc ; 8j 2 Q: (

4. AXIOMATIC CHARACTERIZATION

Now, we offer an axiomatization involving the properties
analyzed in the previous section. We will show that the set of
axioms we have considered are logically independent.

THEOREM 2. There is a unique solution on GT that satisfies
(EFF), (IR), (CONS2), (CR), (SM), and (CONT), and it is the
Owen set.

Proof. Let W solution on GT that satisfies (EFF), (IR),
(CONS2), (CR), (SM), and (CONT).
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First, we will prove that W � Owenð�Þ. Let T 2 GT, and
ðx; yÞ 2 WðTÞ. Since W satisfies (SM), then it follows from the
splitting condition that

xi ¼
Xpi
r¼1

xA
T

ir ; 8i 2 P; yj ¼
Xqj
c¼1

yA
T

jc ; 8j 2 Q;

for some ðxAT

; yA
TÞ 2 WðATÞ, where AT is the assignment situ-

ation derived from the transportation situation T. By (IR), it
follows that

xA
T

ir � vA
TðfirgÞ ¼ 0; 8i 2 P; 8r ¼ 1; . . . ; pi;

yA
T

jc � vA
TðfjcgÞ ¼ 0; 8j 2 Q; 8c ¼ 1; . . . ; qj: ð7Þ

On the other hand, because W satisfies (CR),

xA
T

ir þ yA
T

jc � wATðfir; jcgÞ ¼ bir;jc ¼ bij;

8i 2 P; 8j 2 Q; 1 � r � pi; 1 � c � qj: ð8Þ

Then, it follows from (7) and (8) that ðxAT

; yA
TÞ 2 FdðATÞ.

Moreover, since W satisfies (EFF), ðxAT

; yA
TÞ 2 OdðATÞ ¼

OwenðATÞ.
Since Owenð�Þ satisfies (SM), then by the merging condition

it is verified that ðx; yÞ, with

xi ¼
Xpi
r¼1

xA
T

ir ; 8i 2 P; yj ¼
Xqj
c¼1

yA
T

jc ; 8j 2 Q;

belongs to OwenðTÞ.
Next, we will prove that Owenð�Þ � W. We have just proved

that every solution satisfying the above properties is a subso-
lution of the Owen set. Because the Owen set coincides with the
core on GA, then WðAÞ � CðAÞ, for all A 2 GA. Moreover, by
Lemma 1,W satisfies (CONS) on GA, and by hypotheses,W also
satisfies (CONT). Therefore, by Theorem 1, WðAÞ ¼ CðAÞ ¼
OwenðAÞ, for all A 2 GA.

Let ðx; yÞ 2 OwenðTÞ, which satisfies (SM). Then, it follows
from the merging condition that there exist ðxAT

; yA
TÞ 2

OwenðATÞ verifying (5).
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Since WðATÞ ¼ OwenðATÞ, it follows that ðxAT

; yA
TÞ 2

WðATÞ. Thus, taking that W satisfies the merging condition into
account, it is verified that ðx; yÞ 2 WðTÞ: (

PROPOSITION 4. The axioms (EFF), (IR), (CR), (CONS2),
(SM) and (CONT) are logically independent.

Proof. To show the independence of these six axioms we will
prove that for every group of five axioms there exists a solution
which satisfies them all except the sixth one.

(qEFF) Let W
1ðTÞ¼ fðx;yÞ¼ ðpiui;qjvjÞi2P; j2Qjðu;vÞ 2FdðTÞg,

for all transportation situation T 2 GT. Then, the solution
concept W1 trivially satisfies all axioms except efficiency.

Note that every distribution ðx; yÞ ¼ ðpiui; qjvjÞi2P;j2Q with
ui þ vj � bij, for all ði; jÞ 2 P�Q satisfies couple rationality. In
fact,

xi þ yj � piui þ qjvj � minfpi; qjgbij ¼ wðfi; jgÞ;
for all i 2 P; j 2 Q:

The splitting and merging property is trivially accomplished
because the distributions in W1 only relay on the linear pro-
gramming program of the underlying transportation problem,
which is invariant under the operations of merging and split-
ting. With respect to the consistency property, the restriction to
a coalition S � N ¼ P [Q of a feasible solution for the dual
program of the (relaxed) transportation program for the grand
coalition is also feasible for the corresponding dual program of
the (relaxed) transportation program for coalition S.

The proof for continuity resembles that of proposition 1 to a
high degree.

(qIR)The solution concept on GT, W2, defined as

W2ðTÞ¼ ðx;yÞ2<P[Q

X
i2P

xiþ
X
j2Q

yj¼wðNÞ; xi¼piui;yj¼qjvj; 8ði; jÞ2P�Q;

withðu;vÞ2<P[Q s.t. uiþvj�bij;8ði; jÞ2P�Q

������
8<
:

9=
;;

satisfies all axioms except individual rationality. Note that the
non-negativity condition of the dual program has been ignored,
whereas the efficiency condition and couple rationality have
been imposed. With respect to consistency, continuity and
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splitting and merging, the argument is similar to that W1 con-
sidered above, taking into account that efficiency for coalition S
is a necessary condition to ask for consistency.

(qCR) The solution concept on GT, W3, defined as

W3ðTÞ ¼ ðx;yÞ 2<P[Q

X
i2P

xiþ
X
j2Q

yj ¼wðNÞ; xi ¼ piui;

yj ¼ qjvj;ui � 0;vj � 0; 8ði; jÞ 2P�Q

������
8<
:

9=
;;

satisfies all axioms except couple rationality, since the
inequalities ui þ vj � bij, i 2 P; j 2 Q of the dual program have
been ignored, whereas the efficiency condition and individual
rationality have been imposed. With respect to consistency,
continuity and splitting and merging, the argument is similar to
that of W2 considered above.

(qCONS2) The solution concept on GT, W4, defined as

W4ðTÞ ¼ ðp1b11; 0Þ; if jPj ¼ jQj ¼ 1 and p1 ¼ q1
OwenðTÞ; otherwise

�
satisfies all axioms except consistency.

Let us consider the transportation problem T with two

suppliers and two demanders, supply vector p ¼ ð1; 2Þ, demand

vector q ¼ ð1; 1Þ and transportation matrix B ¼ 10 5
5 0

� �
. The

distribution ðx; yÞ ¼ ð5; 0; 5; 0Þ 2 W4ðTÞ and is efficient for
coalition S ¼ f1; 3g, but ðxS; ySÞ ¼ ð5; 5Þ j2W4ðTSÞ ¼ fð10; 0Þg.

(qSM) If we remove the splitting and merging property then
the core satisfies the remaining properties. We refer to Sánchez-
Soriano (1998) for a proof of the continuity.

(qCONT) If we eliminate continuity a solution concept
which chooses the relative interior of the Owen set invalidates
the result.
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