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Abstract

In this note we analyze the relationship between one-step ahead prediction errors and interpolation
errors in time series. We obtain an expression of the prediction errors in terms of the interpolation errors
and then we show that minimizing the sum of squares of the one step-ahead standardized prediction
errors is equivalent to minimizing the sum of squares of standardized interpolation errors.
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1 Introduction
It is well known that the likelihood function of an ARMA(p, q) process can be written in terms of the one step
ahead prediction errors using the conditional distribution of each observation given the previous data. This
is called the prediction error decomposition. The Maximum Likelihood Estimate (MLE) of the parameters
can be computed by minimizing the concentrated likelihood function, which depends on the one-step ahead
prediction errors. The interpolation problem consists in the estimation of a missing observation by using the
past and future values of the time series. The interpolator which minimizes the mean squared error criterion
is computed by the expected value of the observation given the rest of the sample. The interpolation error
is the difference between the interpolated value and the true value of the observation. In the state-space
form of ARMA models, the interpolator is obtained with some smoothing algorithm, such as the fixed point
smoother (FPS) (see Anderson and Moore, 1979).
The aim of this note is to show the relationship between prediction errors and interpolation errors and

to prove that the parameter values which minimize the mean squared prediction error are the same as those
which minimize the mean squared interpolation errors. This note is organized as follows. In section 2 we
introduce the notation and briefly review the Fixed Point Smoothing algorithm. In section 3, we first obtain
an expression of the one step ahead prediction error in terms of the interpolation errors, second we derive
the covariances between interpolation errors and third we show that minimizing the sum of squares of the
one step-ahead standardized prediction errors leads to the same result than minimizing the sum of squares
of the standardized interpolation errors. Section 4 illustrates the result in the simplest case of a first order
autoregresssive process.

2 Kalman Filter and fixed point smoothing
Let {zt} be a process following a zero mean stationary and invertible ARMA(p, q) model,

φ (B) zt = θ (B)ut, (1)

where φ (B) = 1 − φ1B − ... − φpB
p, θ (B) = 1 − θ1B − ... − θqB

q and {ut} is a sequence of independent
N(0,σ2) variables. We denote the vector of ARMA parameters in (1) by β = (φ1, ...,φp, θ1, ..., θq)
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sample generated by this process by z = (z1, ..., zT )
0, where T is the sample size. Let Σz be the covariance

matrix of z, then the likelihood function is:

L(z|β,σ2) = (2π)−T
2 |Σz|−

1
2 exp

µ
−z

0Σ−1z z
2

¶
.

Let zt|t−1 = E [zt|zt−1, ..., z1] for t = 1, ..., T , be the one step ahead predictions obtained by minimizing
the mean squared errors, where z1|0 = E [z1], and let et = zt − zt|t−1 be the corresponding one step
ahead prediction errors with variances E

h¡
zt − zt|t−1

¢2i
= σ2v2t|t−1, and where var (z1) = σ2v21|0. The

log-likelihood, `
¡
z|β,σ2¢ = logL ¡z|β,σ2¢, can be written as:

`(z|β,σ2) = −T
2
log 2πσ2 − 1

2

TX
t=1

log v2t|t−1 −
1

2σ2

TX
t=1

e2t
v2t|t−1

,

and the maximum likelihood estimate of σ2 is given by,

bσ2MLE =
1

T

TX
t=1

e2t
v2t|t−1

, (2)

and, using (2), the maximum likelihood estimate of β, bβMLE, maximizes the concentrated log-likelihood
given by,

S (β) =
1

T

TX
t=1

log v2t|t−1 + log

Ã
TX
t=1

e2t
v2t|t−1

!
.

The state-space representation for ARMA(p, q) models proposed by Jones (1980) is obtained by defining
r = max {p, q + 1}, with:

zt = H
0xt,

xt = Fxt−1 +Gut,
(3)

where H = (1, 0, ..., 0)
0, xt =

¡
zt, zt+1|t, ..., zt+r−1|t

¢0
, G = (1,ψ1, ...,ψr−1)

0, and:

F =


0 1 0 · · · 0
...

...
...

. . .
...

...
...

...
... 0

0 0 0 · · · 1
φr φr−1 φr−2 · · · φ1


where ψ(B) = φ (B)−1 θ (B) = 1 +

P∞
i=1 ψiB

i, and zt+j|t = E [zt+j |zt, ..., z1] with E
h¡
zt+j − zt+j|t

¢2i
=

σ2v2t+j|t. With this representation, the Kalman Filter computes the log-likelihood through the recursions:

xt|t−1 = Fxt−1|t−1
Σt|t−1 = FΣt−1|t−1F 0 +Q

Kt = Σt|t−1H
³
v2t|t−1

´−1
xt|t = xt|t−1 +Kt

¡
zt − zt|t−1

¢
Σt|t = (I −KtH

0)Σt|t−1,

(4)

for t = 1, ..., T , where zt|t−1 = H 0xt|t−1, v2t|t−1 = H
0Σt|t−1H, Q = GG0 and,

xt|s = E [xt|z1, ..., zs]
σ2Σt|s = cov [xt|z1, ..., zs] . s, t = 1, ..., T
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The initial conditions are x1|0 = x0|0 = 0 and σ2Σ1|0 = σ2Σ0|0 = cov(x0) and σ2 is estimated with (2).
Suppose now that we want to interpolate the observation at time t = h. The interpolated value,

E
£
zh|z(h)

¤
= z

(h)
h|T , where z(h) = {zi : i = 1, . . . , T, i 6= h} is obtained in two steps. First, we assume that

the value zh is missing and compute the estimation of the state variables with the Kalman Filter under this
condition. Second, we compute the interpolated value by going backwards with the Fixed Point Smoothing
algorithm. The situation in which zh is not observed can be represented by the state-space model,

zt =
³
1− I(h)t

´
H 0xt + I

(h)
t wt,

xt = Fxt−1 +Gut,
(5)

where I(h)t is a dummy variable such that I(h)t = 0, t 6= h and I(h)h = 1 and wt represents independent N (0, 1)
variables, independent of zh. The Kalman Filter applied to this situation is given by,

x
(h)
t|t−1 = Fx

(h)
t−1|t−1

Σ
(h)
t|t−1 = FΣ

(h)
t−1|t−1F

0 +Q

K
(h)
t =

³
1− I(h)t

´
Σ
(h)
t|t−1H

³
v
2,(h)
t|t−1

´−1
x
(h)
t|t = x

(h)
t|t−1 +K

(h)
t

³
zt − z(h)t|t−1

´
Σ
(h)
t|t = (I −

³
1− I(h)t

´
K
(h)
t H 0)Σ(h)t|t−1,

(6)

for t = 1, ..., T , where z(h)t|t−1 =
³
1− I(h)t

´
H 0x(h)t|t−1 + I

(h)
t wt, v

2,(h)
t|t−1 =

³
1− I(h)t

´
H 0Σ(h)t|t−1H + I

(h)
t , and,

x
(h)
t|s = E [xt|z1, ..., zs]
Σ
(h)
t|s = cov [xt|z1, ..., zs] .

s, t = 1, ..., T

All the values have the subscript h in order to distinguish between the Kalman Filter with the observation
at t = h and without it. Of course, for t < h, x(h)t|t−1 = xt|t−1. Note that for t = h, v

2,(h)
h|h−1 = 1.

Second, we use the Fixed Point Smoothing (FPS) algorithm to obtain the interpolated value, that can
be derived as follows. Consider the augmented process yt = [ x0t xa0t ]0, such that, xat = xat−1 and xah = xh
with state-space form given by, ·

xt
xat

¸
=

·
F 0
0 I

¸ ·
xt−1
xat−1

¸
+

·
G
0

¸
ut

zt =
h ³

1− I(h)t

´
H 0 0

i · xt
xat

¸
+ I

(h)
t wt.

Now, applying the Kalman Filter to the augmented process yt, for t ≥ h, with the initial condition
Σah|h−1 = Σ

(h)
h|h−1, the FPS works as follows, (see Gómez and Maravall (1994) for more details):

Ka
t =

³
1− I(h)t

´³
Σat|t−1

´0
H
³
v
2,(h)
t|t−1

´−1
x
(h)
h|t = x

(h)
t|t−1 +K

a
t

³
zt − z(h)t|t−1

´
Σ
(h)
h|t = Σ

(h)
h|t−1 −

³
1− I(h)t

´
Σat|t−1H (K

a
t )
0

Σat+1|t = Σ
a
t|t−1

³
F −

³
1− I(h)t

´
FK

(h)
t H 0

´0
.

(7)

We note that for t = h, the FPS gives Ka
h = 0, x

(h)
h|h = x

(h)
h|h−1, Σ

(h)
h|h = Σ

(h)
h|h−1 and Σ

a
h+1|h = Σ

a
h|h−1F

0.

The interpolation value for zh is z
(h)
h|T = H

0x(h)h|T and the corresponding interpolated error is given by,

ih = zh − z(h)h|T , (8)

with E
£
i2h
¤
= σ2

³
H 0Σ(h)h|TH

´
.
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3 A relationship between prediction and interpolation errors in
ARMA processes

In this section, we analyze the relationship between interpolation and prediction errors and obtain an ex-
pression for the prediction error in terms of the interpolation errors. This relationship allows us to obtain
the covariance matrix of the interpolation errors. We also show that the parameter values which minimize
the sum of squares of the standardized one step-ahead prediction errors are the same that minimize the sum
of squares of the standardized interpolation errors. This main result is summarized in the following theorem:

Theorem 1 Let z = (z1, ..., zT )
0 be a time series generated by the stationary and invertible ARMA(p, q)

process in (1). Let ih be the interpolation error of the observation at t = h and let eh, . . . , eT be one step
ahead prediction errors assuming that all the observations are known. Then, ih can be written as follows,

ih = c
(h)
h eh + c

(h)
h+1eh+1 + . . .+ c

(h)
T eT (9)

where the coefficients c(h)h , . . . , c
(h)
T are given by,

c
(h)
h = 1−H 0

TX
i=h+1

Ka
i b
h
i c

(h)
t = −H 0

Ã
Ka
t −

TX
i=t+1

Ka
i b
h
i

!
, t = h+ 1, . . . , T, (10)

and the coefficients bst are given by,

bh+it = H 0F t−h−iKh −H 0F
t−h−iX
j=1

K
(h)
h+jb

h+i
h+j , bht = H

0F t−hKh −H 0F
t−h−1X
j=1

K
(h)
h+jb

h+i
h+j , (11)

for i = 0, . . . , t− h− 1.

Proof. Let,
e
(h)
t = zt − z(h)t|t−1, t = h+ 1, . . . , T (12)

be the prediction errors assuming that observation at t = h is missing. The relationships in (7) provide the
following expression for the interpolated value z(h)h|T :

z
(h)
h|T = z

(h)
h|h−1 +H

0Ka
t+1

³
zh+1 − z(h)h+1|h

´
+ ...+H 0Ka

T

³
zT − z(h)T |T−1

´
and by (8) and (12),

ih = eh −H 0Ka
t+1e

(h)
h+1 − ...−H 0Ka

T e
(h)
T . (13)

We will obtain an expression of the errors e(h)t in terms of the prediction errors et, for t > h. For (12), we
have:

e
(h)
t = zt − zt|t−1 + zt|t−1 − z(h)t|t−1 = et + zt|t−1 − z(h)t|t−1.

Using the Kalman Filters in (4) and (6), it can be shown that:

zt|t−1 − z(h)t|t−1 = H
0F t−hKheh +H

0F t−h−1
³
Kh+1eh+1 −K(h)

h+1e
(h)
h+1

´
+ . . .+H 0F

³
Kt−1et−1 −K(h)

t−1e
h
t−1
´
,

and, therefore,

e
(h)
t = H 0F t−hKheh +H

0F t−h−1
³
Kh+1eh+1 −K(h)

h+1e
(h)
h+1

´
+ . . .+H 0F

³
Kt−1et−1 −K(h)

t−1e
(h)
t−1
´
+ et. (14)
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Consequently, starting from e
(h)
h+1 = eh+1 +H

0FKheh, we obtain the values of e
(h)
t in terms of eh, . . . , et

as:
e
(h)
t = et + b

t−1
t et−1 + · · ·+ bht eh,

where the coefficients bst are obtained recursively from (13) and (14), and are given by,

bh+it = H 0F t−h−iKh −H 0F
t−h−iX
j=1

K
(h)
h+jb

h+i
h+j , bht = H

0F t−hKh −H 0F
t−h−1X
j=1

K
(h)
h+jb

h+i
h+j ,

for i = 0, . . . , t− h− 1, which shows (9) with the coefficients in (10).
Some consequences are as follows. First, E [ih] = 0. Second, the variance of ih is given by,

var (ih) = E
¡
i2h
¢
= E

Ã TX
t=h

c
(h)
t et

!2 = σ2
TX
t=h

³
c
(h)
t

´2
v2t|t−1.

Third, if m > h, then,

cov (ih, im) = σ2
TX
t=m

c
(h)
t c

(m)
t v2t|t−1.

Let e=(e1, . . . , eT )
0 and i = (i1, ..., iT )

0 be the vectors of prediction and interpolation errors. The vector
e has a diagonal covariance matrix Σe with elements σ2v2t|t−1, t = 1, ..., T . The vectors e and i are related by

i = Ce, where C is an upper triangular T ×T matrix with elements cuv = c(v)u , u, v = 1, ..., T . Consequently,
the covariance matrix of i is Σi = CΣeC0, and taking into account that i = Ce, we also have that,

i0Σ−1i i=(Ce)
0
(CΣeC

0)−1 (Ce) = e0Σ−1e e.

As a consequence, the parameters that minimize the sum of squares of standardized interpolation errors,
i0Σ−1i i, are the ML estimates, that is the parameters which minimize the sum of squares of standardized
prediction errors, e0Σ−1e e. As a by-product, we get that,

∂
¡
e0Σ−1e e

¢
∂ (φ1, ...φp, θ1, ..., θq,σ2)

=
∂
¡
i0Σ−1i i

¢
∂ (φ1, ...φp, θ1, ..., θq,σ2)

.

4 Illustration
As an illustration, consider an stationary AR(1) model with zero mean and autoregressive parameter φ.
Running the Kalman filter for a realization of this process, z = (z1, . . . , zT )

0, with initial conditions x1|0 =
x0|0 = 0 and Σ1|0 = Σ0|0 =

¡
1− φ2

¢−1
, we get the prediction errors e = (e1, . . . , eT )

0 and their conditional
variances σ2v21|0 = σ2

¡
1− φ2

¢−1
and σ2v2t|t−1 = σ2, t > 1. Running the Kalman filter assuming that the

observation t = h is missing, and then, the FPS algorithm, we get,

Σat+1|t =
½

φ t = h
0 t > h

Ka
t =

½
0 t 6= h+ 1
φ

1+φ2 t = h+ 1

x
(h)
h|t =

½
φxh−1 t = h

φ
1+φ2 (zh−1 + zh+1) t > h

Σ
(h)
h|t =

½
1 t = h
1

1+φ2 t > h
,

implying that the interpolated value is z(h)h|T = φ
1+φ2 (zh−1 + zh+1) with interpolation error ih = zh −

φ
1+φ2 (zh−1 + zh+1). From (13) and (11), we get,

ih =


¡
1− φ2

¢
e1 − φe2 h = 1

1
1+φ2 eh − φ

1+φ2 eh+1 h = 2, . . . , T − 1
eT h = T

, (15)
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which gives the variance of ih,

var (ih) =

(
σ2

1+φ2 h = 2, . . . , T − 1
σ2 h = 1, T

and the covariances between interpolation errors,

cov (ih, im) =


−σ2φ
(1+φ2) m = h+ 1, h = 1, T − 1
−σ2φ
(1+φ2)2

m = h+ 1, h = 2, . . . , T − 2
0 m > h+ 1, h = 1, . . . , T

implying that the interpolation errors are uncorrelated if m− h > 1.
Finally, we show the equality i0Σ−1i i = e0Σ−1e e in the case of an AR(1) model. For that, we note that Σe

can be written as,

Σe = σ2
µ
I +

φ2

1− φ2
U

¶
where U is a matrix which all its elements are 0 except the (1,1) element that is 1. From (15) we have that
i = Ce where the matrix C has elements,

C(i, j) =



¡
1− φ2

¢
(i, j) = (1, 1)

−φ (i, j) = (1, 2)
1

1+φ2 j = i, 2 ≤ i ≤ T − 1
− φ
1+φ2 j = i+ 1, 2 ≤ i ≤ T − 1
1 (i, j) = (T, T )
0 otherwise.

As i0Σ−1i i = e
0C0 (CΣeC 0)

−1 Ce, we only need to show that C0 (CΣeC 0)
−1C = Σ−1e . For that,

CΣeC
0 = Cσ2

µ
I +

φ2

1− φ2
U

¶
C0 = σ2

µ
CC 0I +

φ2

1− φ2
CUC 0

¶
=

= σ2CC0
µ
I +

φ2

1− φ2
(C 0)−1 UC 0

¶
= σ2CC0

µ
I +

φ2

1− φ2
U

¶
.

Therefore,

C 0 (CΣeC0)
−1
C =

1

σ2
C 0
µ
I +

φ2

1− φ2
U

¶−1
(CC 0)−1C =

1

σ2
C 0
¡
I − φ2U

¢
(C 0)−1 =

=
1

σ2

³
I − φ2C0U (C0)−1

´
=
1

σ2
¡
I − φ2U

¢
= Σ−1e .
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