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Abstract

This paper presents a distribution-free multivariate Kolmogorov—-Smirmov goodness-of-fit test. The test uses a statistic
which is built using Rosenblatt’s transformation and an algorithm is developed to compute it in the bivariate case.
An approximate test, that can be easily computed in any dimension, is also presented. The power of these multivariate
tests is studied in a simulation study. (©) 1997 Elsevier Science B.V.
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1. Introduction

Goodness-of-fit tests have been developed mostly for univariate distributions and, except for the case of
multivariate normality, very few references can be found in the literature about multivariate goodness-of-
fit tests (see, Krishnaiah, 1980; Kotz and Johnson, 1985 and D’Agostino and Stephens, 1986). A general
approach based on empirical process theory can be found in Shorack and Weliner (1986) and Einmahl and
Mason (1992).

In principle, the chi-square test can be applied for testing the goodness of fit of any multivariate distribution
but it is unknown what is the best way to choose the cell limits and what is the best statistic to be used.
Moore and Stubblebine (1981) suggested choosing as cell boundaries the concentric hyperellipses centered at
the sample mean and with shape determined by the inverse of the covariance matrix. However, much work
need to be done on the properties of this test.

The two most important classes of tests of goodness of fit based on the empirical distribution function
of a random sample, the Kolmogorov—Smirnov statistic and the Cramer-von Mises group, have not been
extended to the multivariate case. The problem is that the probability distribution of these multivariate
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statistics is not distribution free as in the univariate case. Rosenblatt (1952) proposed a simple transfor-
mation of an absolutely continuous p-variate distribution into the uniform distribution on the p-dimensional
hypercube and suggested using this transformation to build multivariate goodness-of-fit tests. Rincon-Gallardo,
Quesenberry and O’Reilly (1979) consider this transformation for testing multinormality but a general multi-
variate Kolmogorov—Smimov goodness-of-fit test, which is feasible to apply, has not yet been developed. The
distribution function of the Cramer-von Mises statistic in the multivariate case has been studied by a number
of authors (see Kotz and Johnson, 1985, pp. 35-39) but again, we do not have a general multivariate test of
goodness of fit based on this statistic that can be readily applied.

Several procedures have been developed for testing multivariate normality. Among these procedures, the
most often used are the tests based on multivariate measures of skewness and kurtosis (Mardia, 1970,
Malkovich and Afifi, 1973; Small, 1980; Schwager and Margolin, 1982), the multivariate Shapiro~Wilks
statistics (Royston, 1983), radii and angles test (Koziol, 1986) and tests based on the multivariate Box—Cox
transformation (Velilla, 1995). Other procedures to check for multivariate normality have been proposed by
Csorgo (1986), Mudholkar et al. (1992) and Ghosh and Ruymgaart (1992).

In this paper we present two multivariate goodness-of-fit tests. In Section 2 we introduce a muitivariate
goodness-of-fit statistics which is distribution free and reduces to the Kolmogorov—Smirnov statistic in the
univariate case. The computation of the proposed statistic is a problem in itself, and in this section we develop
another statistic that can be easily computed for any dimension. Section 3 presents a procedure to compute the
test statistics in the bivariate case. In Section 4 we explore the power of these two tests in testing multivariate
normality and in assessing the fit of the Morgenstern distribution. The loss of power of the simplified statistic
seems to be small, suggesting that it is a promising alternative for multivariate goodness-of-fit testing in any
dimension. Finally, Section 5 includes some concluding remarks.

2. The multivariate Kolmogorov—Smirnov statistic

Given a sample xj,...,x, of i.i.d. random variables with distribution function F, consider the problem of
testing Hy : F =Fy versus H, : F # F,, where F; is some specified distribution function. In the univariate case,
Hj can be tested using the Kolmogorov—Smirnov statistic

D, = sup |Fy(x) — F(x)|,
xeR

where F, is the empirical distribution function of the sample. It is also well known that this statistic is
distribution free and it can be expressed as

D,= sup |Gu(u)—ul, 2.1)

ogu<l

where G,(u) is the empirical distribution function of the uniform 0-1 transformed sample u; = Fo(x;), for
i=1,...,n. The distribution-free property of the Kolmogorov—Smirnov statistic is derived from the result that
any continuous random variable X with distribution function F can be transformed to a uniform random
variable Y by the transformation Y =F(X). A similar result holds for a continuous multivariate random
variable X, as it is shown in the following theorem, due to Rosenblatt (1952).

Theorem 1. Let X =(Xi,...,X,) be a random vector with joint density

SO, exp) = fix) 2 [x1) - folxp X1, X p-1),
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and define the transformation Y =T(X) by

Y =F(X),
Y =FXi|X,....Xi—1), i=2,...,p. (2.2)
Then Yy,...,Y, are i.id. uniform 0-1.

The probability distribution function of the statistic

sup |F(x) — F(xi,...,xp)|,

xERP
where F, is the empirical distribution function, is not distribution-free. However, we could use the transfor-
mation defined in Theorem 1 to test whether the values (yy,...y,) are a sample from a uniform distribution
on the p-dimensional hypercube. The natural extension of the statistic (2.1) to the multivariate case is

dp = sup |Gu(¥) — y1 -+ ypl; (2.3)
y

where G, is the empirical distribution function of the transformed sample y = T'(x). The statistic defined by
(2.3) is not invariant because a relabelling of the components of X would give a different transformation
(2.2) and, therefore, a different value of (2.3). We can take advantage of this lack of uniqueness to build a
more powerful procedure as follows.

Let us define the sequence of transformations

¥l = F(),
vl =F@ |zl \....2) i=2...,p,

where (zlj ,‘..,zé), for j=1,..., pl, is the jth permutation of the variables (x1,...,x,). Under the null hypoth-
esis dj = sup,,, |Gu(»7) — y{ - ypl, is distribution free in the class of continuous multivariate distributions.

The p! statistics d,{ are not independent and if we use all of them to build the test we run into the standard
problem of multiple testing. However, we can use the Bonferroni inequality to obtain an upper bound to the
global significance level of a test in which the dj statistics are used with a significant level of «. Therefore,
we define the multivariate Kolmogorov—Smirnov statistic by

D, = max d,{, (2.4)
Ji=1,2,..

and if we wish to have a global significant level, «,, the Bonferroni inequality leads to testing each dJ with
a significant level a =ag/p!.

The statistic is computed sequentially and in general it will not be necessary to evaluate all the p! transfor-
mations. The procedure is to check one by one the transformed samples, comparing the Kolmogorov—Smirnov
statistics with the percentiles of the D, distribution. The null hypothesis is rejected when one of the statistics
is greater than the percentile. Otherwise, we continue with the next transformation. Unfortunately, and unlike
in the univariate case, the computation of (2.3) is very involving, as it is shown in the next section, in which
we present an algorithm for the case p=2. Although this algorithm could be extended to the p > 2 case,
the computation difficulties appear to be considerable. A much simpler approach is to build the test from the
statistic d, which is defined as the supremum on the set of transformed sample points 4,

d, = sup |Gu(3’) — ¥{ -+~ ¥il.
yi€d
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Table 1
Monte-Cario approximation to the percentiles of the bivariate Kolmogorov—Smirnov statistic distribution D,, with 10000 replications

n 0.25 0.2 0.15 0.1 0.05 0.025 0.01 0.00s 0.0025 0.001
10 0.4024 0.4172 0.4368 0.4606 0.4964 0.5285 0.5717 0.5979 0.6167 0.6393
11 0.3862 0.4011 0.4191 0.4422 0.4766 0.5093 0.5473 0.5760 0.5944 0.6192
12 0.3714 0.3861 0.4035 0.4282 0.4630 0.4950 0.5297 0.5553 0.5793 0.6110
13 0.3564 0.3703 0.3874 0.4085 0.4419 04731 0.5055 0.5273 0.5455 0.5729
14 0.3464 0.3585 0.3745 0.3961 0.4284 0.4566 0.4901 0.5124 0.5341 0.55%6
15 0.3339 0.3456 0.3611 0.3822 0.4141 0.4399 0.4705 0.4952 0.5116 0.5405
20 0.2922 0.3037 0.3170 0.3349 0.3618 0.3859 0.4154 0.4346 0.4505 0.4868
25 0.2643 0.2745 0.2862 0.3014 0.3254 0.3454 0.3770 0.4011 0.4150 0.4482
30 0.2420 0.2517 0.2621 0.2769 0.2989 0.3206 0.3427 0.3629 0.3785 0.4082
40 0.2103 0.2182 0.2284 0.2409 0.2596 0.2789 0.3009 0.3140 0.3334 0.3467
50 0.1892 0.1960 0.2048 0.2161 0.2350 0.2512 0.2679 0.2802 0.2909 0.3045
60 0.1744 0.1805 0.1879 0.1986 0.2148 0.2293 0.2473 0.2591 0.2740 0.2903

30 0.1506 0.1563 0.1637 0.1729 0.1869 0.1998 0.2139 0.2277 0.2392 0.2544
100 0.1364 0.1419 0.1477 0.1558 0.1675 0.1798 0.1926 0.2008 0.2090 0.2196

150 0.1110 0.1152 0.1203 0.1270 0.1376 0.1464 0.1572 0.1643 0.1710 0.1798
200 0.0965 0.1000 0.1044 0.1098 0.1187 0.1265 0.1378 0.1456 0.1516 0.1562
300 0.0792 0.0822 0.0858 0.0905 0.0977 0.1041 0.1121 0.1169 0.1229 0.1283
Table 2

Monte-Carlo approximation to the percentiles of the approximated bivariate Kolmogorov—Smirnov statistic distribution D,, with 2000
replications

n 0.25 0.2 0.15 0.1 0.05 0.025 0.01 0.005 0.0025 0.001
10 0.3083 0.3232 0.3422 0.3689 0.4095 0.4434 0.4870 0.5221 0.5551 0.5939
11 0.2943 0.3097 0.3290 0.3524 0.3921 0.4258 0.4624 0.4921 0.5080 0.5261
12 0.2863 0.3015 0.3184 0.3415 0.3786 0.4092 0.4536 0.4866 0.5046 0.5270
13 0.2744 0.2884 0.3062 0.3279 0.3599 0.3899 0.4268 0.4628 0.4864 0.5134
14 0.2656 0.2791 0.2963 0.3170 0.3519 0.3828 0.4228 0.4505 0.4790 0.5124

15 0.2575 0.2703 0.2863 0.3060 0.3365 0.3679 0.4080 0.4278 0.4435 0.4750
20 0.2274 0.2393 0.2530 0.2706 0.2974 0.3227 0.3545 0.3712 0.3946 0.4167

25 0.2071 0.2172 0.2308 0.2460 0.2698 0.2932 0.3230 0.3386 0.3564 0.3772
30 0.1911 0.2005 0.2120 0.2260 0.2488 0.2700 0.2966 0.3123 0.3343 0.3563
40 0.1676 0.1752 0.1849 0.1997 0.2190 0.2388 0.2602 0.2767 0.2934 03110
50 0.1531 0.1604 0.1693 0.1815 0.1986 0.2130 0.2334 0.2451 0.2584 0.2746
60 0.1418 0.1489 0.1572 0.1678 0.1829 0.1960 0.2155 0.2286 0.2416 0.2611
80 0.1248 0.1303 0.1377 0.1473 0.1608 0.1730 0.1884 0.1986 0.2091 0.2224

100 0.1132 0.1184 0.1248 0.1327 0.1455 0.1566 0.1710 0.1817 0.1873 0.1935
150 0.0935 0.0978 0.1029 0.1096 0.1201 0.1293 0.1393 0.1455 0.1511 0.1618
200 0.0826 0.0862 0.0903 0.0954 0.1042 0.1129 0.1237 0.1306 0.1382 0.1447
300 0.0687 0.0718 0.0752 0.0795 0.0869 0.0940 0.1015 0.1065 0.113 0.1181

When r is large,

will be close to D,, as it is shown in the simulation results reported in Section 4.

The percentiles of the distribution of D, and ﬁn can be computed by Monte-Carlo simulation, sampling
from independent uniforms 0-1. In this case, y/ =F(x;) for i=1,...,p and j=1,..., p!. Therefore, D, is
equal to the Kolmogorov—Smirnov statistics for one transformation. Tables 1 and 2 present the percentiles of



A. Justel et al. | Statistics & Probability Letters 35 (1997) 251259 255

Table 3
Monte-Carlo approximation to the bivariate Kolmogorov—Smirnov-Lilliefors statistic distribution D:, with 2000 replications

n 0.25 0.2 0.15 0.1 0.05 0.025 0.01 0.005 0.0025 0.001

10 0.3060 03145 0.3249 0.3389 0.3610 0.3813 0.4010 0.4192 0.4363 0.4515

11 0.2941 0.3032 0.3138 0.3268 0.3474 0.3673 0.3887 0.4096 0.4204 0.4337
12 0.2823 0.2909 0.3012 0.3151 0.3367 0.3554 0.3791 0.3922 0.4055 0.4353
13 0.2732 0.2813 0.2906 0.3029 0.3210 0.3396 0.3616 0.3794 0.3904 0.4048
14 0.2638 0.2715 0.2803 0.2928 03122 0.3299 0.3508 0.3672 0.3798 0.4062
15 0.2557 0.2633 0.2720 0.2845 0.3023 0.3171 0.3352 0.3539 0.3663 0.3786
20 0.2244 0.2314 0.2395 0.2499 0.2659 0.2806 0.3012 0.3145 0.3295 0.3451
25 0.2033 0.2095 0.2167 0.2266 0.2417 0.2550 0.2706 0.2841 0.2947 0.3105
30 0.1862 0.1920 0.1987 0.2079 02218 0.2346 0.2474 0.2569 0.2674 0.2811
40 0.1636 0.1684 0.1746 0.1820 0.1927 0.2032 0.2159 0.2291 0.2364 0.2504
50 0.1471 0.1512 0.1563 0.1631 0.1735 0.1830 0.1940 0.2017 0.2140 0.2220
60 0.1347 0.1386 0.1433 0.1493 0.1599 0.1692 0.1799 0.1864 0.1915 0.2040
80 0.1174 0.1207 0.1252 0.1303 0.1382 0.1468 0.1561 0.1625 0.1669 0.1740
100 0.1055 0.1086 0.1126 0.1175 0.1250 0.1328 0.1402 0.1456 0.1511 0.1600
150 0.0869 0.0894 0.0926 0.0964 0.1027 0.1087 0.1155 0.1204 0.1245 0.1322
200 0.0818 0.0845 0.0877 0.0925 0.0994 0.1057 0.1138 0.1188 0.1241 0.1270

300 0.0598 0.0614 0.0635 0.0660 0.0699 0.0735 0.0774 0.0807 0.0834 0.0886

the statistics D, and D, for the bivariate case, in the standard situation in which Fy is completely specified
by H().

In many cases, the parameters of the distribution Fjy are unknown and need to be estimated. Then the
percentiles of Table 1 are not exact, and the distribution of the statistic when the parameter are estimated
from the sample need to be computed again. Let D, be this statistic. Note that, as in the univariate case, when
the null hypothesis is rejected using Table 1, no further computations are necessary because the percentiles

* .
of D, are always smaller than those of D,. As an example, Table 3 presents the Monte-Carlo percentiles of

the distribution of D: in the particular case of testing normality and when the parameter are estimated by the
sample mean and the sample covariance matrix. The statistic of this Table 3 can, therefore, be regarded as
the multivariate generalization of the Kolmogorov—Smirnov-Lilliefors statistic.

3. An algorithm to compute the bivariate Kolmogorov-Smirnov statistic

In a one-dimensional sample, the empirical distribution changes only at the observed points, and the univari-
ate Kolmogorov—Smirnov statistic is obtained by evaluating the distance between the empirical and theoretical
distribution functions at these points. Nevertheless, when the dimension p is larger than one, the empirical
distribution function jumps on an infinite number of points. For instance, suppose that p =2 and (x, y1) is
the observed point with the smallest first coordinate. Then the empirical distribution function changes at all
the points (x, y1) with x>x;. Here we develop a procedure for calculating the Kolmogorov-Smimov statistic
(2.4) in the two-dimensional case by evaluating it on a finite set.

Since Theorem 1 holds, we may assume that u; =(x1,¥1),...,4, = (X, ¥») is a random sample from two
independent uniform 0-1 distributions. In this context, the pair (x;, y;) is called an intersection point if x; < x;
and y; > y;. For u=(x, y) we define the superior distance D (u) =(G,(u) — G(u)) and the inferior distance
D (u) = (G(u)— Gy(n)), where G is the distribution function of two independent uniform random variables on
(0,1) and G, is the empirical distribution function. Also, the left empirical distribution function in # is defined
as Gy(u~ )= lim,_ ¢ G,(x — & y — ¢). The proof is based on the behavior of the lateral Kolmogorov—Smirnov
statistics D; = sup, D; (#) and D, = sup, D, (u).
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Lemma 1. If xo = yo =0, then D; = maxye; D (v), where I ={(x;, y:)|x <xj, yi2y;; 1,j=0, 1,...,n}. El-
ements in the set I are: the pair (0,0), the observed points and the intersection points.

Proof. For each u=(x,y) in the unit square, x*=ux;, = max;—o,1,..{%|%<¥x, ¥ <y} and Y=y, =
max;—o,1,...{ ¥ | i <¥, % <x}. The relationship between the coordinates is given by x,, < max{x <x| y; <y}
=x;, and y;, < max{y;<y|x<x}=yp, Hence, (x*,y*)€l. By the definition of (x*, y*), it is immediate
that Gu(x, ¥) = Ga(x¥, y) = G,(x, y*) and the set {x; |x €(x*,x], y;€(y* y]} is empty. Then Gy(x",y*)=
Go(x*, ) + Gu(x, %) — Gu(x, y) = Gy(x, y) and, therefore, for each u

D (u) = Gy(x,y) — G(x, ») < Gu(x", y*) — G(x*, y*) < max D, (v).
v
Hence the lemma follows.

Lemma 2. If xo=0, yo= 1, x,11 =1 and y,41 =0, then D; =maxyep (G(v) — G.(v™)), where P = {(x;, yi)|x;
>x, yi<ys Lji=0,1,...,n+ 1}. Elements in set P are the pair (1,1), the intersection points and the
projections of the observed points on the right and on the top unit-square borders.

Proof. For each u=(x, y) in the unit square, x* =x, = min; =o,1,..,n+1{% | % > x} and y* = y,, =min;_.q,1,.. n+1
{»ilyi >y, x;<x}. Obviously, xz, >x>xp, and y, >y Hence, (x*, y*) is in the set Q= {(x;, i) |x; >
x; 5,j=0,1,...,n+ 1} =PU{(x;, ) |x; > X, y; > yis bi,j= l,...,n}.

Since F is continuous and increasing, the inferior distance is bounded by

Dy (u) = G(u) — Gy(u) < G(x*, y*) — Gy(u)
= G(x*, y*) — 1irr(1) G,(x* — &, y* — )+ liII(l) Gu(x* — &, y* — &) — Gy(u)
< meaé((G(v) - Gy(v7)) + lin}) Gu(x* — &, y* — &) — Gy(u). (3.1)

Because of the definition of (x¥, y*), Gu(#) = lim;_o G,(x* —¢&, y) = lim._o Gy(x, y* — ¢) and the set {(x;, y:)
|x € (x,x*), yi € (3, ")} is empty. The left empirical distribution function verifies
lirr[l] Gy(x* — &, y" — &)= 1in(1) Gu(x*,y—&)+ lin}) G,(x, y* — &) — Gu(u) = G,(u). 3.2)
£— &e— E—

In addition, if (x*, y*)€Q — P, we define x*¥ = min {x |x > x¥, y: < y*}. Then the pair (x”,y*) is in P,
G(x¥, y*) < G(x”,y*) and the set {(x,y:)|x € [x*,x"), yi €(—o0,y*)} is empty. Hence, lim; o Gu(x"” —
g, y* — &) =lim,_o Gu(x* — &, y* — ¢) and

G, y*) = lim Ga(x* — &, y* — £) < max (G(v) = Ga(v7)). (3.3)

By (3.1)—(3.3), max,cp (G(v) — Gy(v™)) is a superior bound for D, (u).
Finally, let up = (xo, yo) be given by up =arg max,ep(G(v) — Gu(v™)), then

max (G(®) = Go(v™)) = lim (Glxo — & y0 = &) = Galxo — .30 = £))
=lim D, (xo — & Yo — €).
£—0
Hence, D, = mea}))((G(v) — Gy,(v™)) = sup, D, (#) and the lemma follows.
v

Theorem 2. If p=2, the Kolmogorov—Smirnov statistic (2.4) is

Dn :uEHII,aDXEP {Gn(u) - G(u)a G(v) - G"(v— )}
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The Kolmogorov~Smirnov statistics may be expressed as D, = max{D;', D;"} and the proof is straightfor-
ward by Lemmas 1 and 2. [

As a consequence of Theorem 2, D, may be obtained by evaluating the distance in a finite amount of points
which ranks from 3# to 3n+ (’2’) depending on the sample configuration. The theorem leads to the following
procedure to compute the Kolmogorov—Smirnov statistic (2.4): (1) compute the maximum distance in the
observed points, D} = max;_1,., D} (#;); (2) compute the maximum and minimum distances in the intersection
points, D =max; j—1 _, {D}(x;, ¥:)|x; >x;, y; <y} and D} =2/n—min; j—1 . {D;} (x;, ;) |x; >xi, ¥; < yi};
(3) compute the maximum distance among the projections of the observed points on the right unit-square

observed points on the top unit-square border, Dﬁ =1/n~min;_,__,DF(x;,1); and (5) compute the maximum
D,=max{D},D%,D3, D}, D;}.

4. Some simulation results

The power of the exact and the approximate multivariate Kolmogorov—Smirnov statistics when used as a
normality test and as a general multivariate goodness-of-fit test have been investigated. In the first case, the
null hypothesis is bivariate normal with mean g =0 and covariance matrix

5o ( 1 05 )
05 1
The alternative distribution is (1 — &)N(0, 2) + ¢N(u, X) for several values of ¢ and u. Table 4 shows the
power of the normality test. As we may have expected, the power increases with » and is larger for the exact
test than for the approximate one. However, for moderately large n (n = 50 say) the power of the approximate
test is very close to that of the exact one. Table 4 shows that both tests are very powerful when n is large
and ¢ > 0.2.

Table 5 shows the power of these statistics when the null distribution is Morgenstern (see Morgen-
stern, 1956). We have chosen this distribution because it is very flexible and may have fixed marginal
distribution allowing different degrees of dependency. For instance, it can be used to generalize the Burr—
Pareto-logistic class of distributions (see Johnson, 1987), and also to approximate the Plackett family of
distributions. For some of its applications see Lai (1978). For the uniform marginal case, the joint density

Table 4

Empirical power of the Kolmogorov—Smirnov (D,) and approximated Kolmogorov—Smirnov (Dn) tests with size
a=10.05. The null hypothesis is a N(0, X) and the samples are generated from a normal mixture (1 — e)N(0,2) +

eN(y, )
n=15 n=25 n=50 n=100
Dn D Dy Dy Dn Dy Dy Dy
u=03,3) e=0.1 0.13 0.12 0.16 0.14 0.23 0.21 0.41 0.37
=02 0.27 0.26 0.40 0.38 0.67 0.66 0.94 0.94
e=04 0.73 0.73 0.92 0.92 1.00 1.00 1.00 1.00
u=(3,—-1 e=0.1 0.14 0.12 0.18 0.13 0.27 0.19 0.44 0.33
e=02 041 0.21 0.45 0.32 0.73 0.58 0.96 0.90

e=04 0.76 0.58 0.93 0.84 1.00 0.99 1.00 1.00
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Table 5

Empirical power of the Kolmogorov—Smirnov (D) and the approximated Kolmogorov—Smirnov (£,) tests
of size a. The null hypothesis is a Morgenstern with parameter 0.5 and uniform marginals. The samples are
generated from two independent Beta(a,b)

«=0.05 o« =0.025 a=0.005
n Dy D Dy D, Dy D,
Beta(10, 10) 10 0.966 0.540 0.874 0.420 0.435 0.235
20 1.000 0.881 1.000 0.802 0.998 0.645
50 1.000 1.000 1.000 1.000 1.000 0.991
100 1.000 1.000 1.000 1.000 1.000 1.000
Beta(3, 3) 10 0.294 0.269 0.159 0.156 0.028 0.045
20 0.709 0.515 0.535 0.360 0.220 0.149
50 0.997 0.957 0.983 0.883 0.818 0.638
100 1.000 1.000 1.000 0.999 1.000 0.992
Beta(3, 2) 10 0.214 0.207 0.100 0.091 0.012 0.013
20 0.601 0.522 0411 0.326 0.121 0.082
50 0.993 0.985 0.971 0932 0.683 0.565
100 1.000 1.000 1.000 1.000 0.999 0.996
Beta(0.5, 1) 10 0.624 0.666 0.493 0.526 0.246 0.284
20 0.873 0.880 0.792 0.782 0.568 0.547
50 0.997 0.998 0.991 0.990 0.928 0.929
100 1.000 1.000 1.000 1.000 1.000 1.000
Beta(0.5, 0.5) 10 0.362 0.325 0.249 0.208 0.095 0.074
20 0.577 0.497 0.437 0.351 0.213 0.147
50 0.891 0.862 0.806 0.728 0.504 0.427
100 0.997 0.994 0.983 0.975 0914 0.881

function is

SELx)=1+a2x —D2x —1) 0<x,0<]l ~1<ag],
and it is straightforward to show that for this distribution

Fx)=x, 0<x <1,

F(xa|x)=(—a2x — 1))x +a2x - 1)x3 0<x <1

The alternative distributions are independent Beta distributions with several combination of shape parameters,
to allow for different degrees of asymmetry. In this simulation study, we have chosen o = 0.5. Similar results
were also found for other values of «. The results in Table 5 show that again, as one could expect, for small
n (n=10) the power is very low unless the degree of kurtosis or asymmetry is high. The difference between
the power of the exact and approximate test is negligible for large n (n < 50).

5. Concluding remarks

As in the univariate case, the multivariate Kolmogorov—Smirnov test presented in this paper may provide
a general and flexible goodness-of-fit test, specially for situations when specific tests are yet to be developed.
The main problem in the application of the test is the computation of the statistic in the case p > 2.
An extension of the computing algorithm developed in this paper may be possible, but still the numerical
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complications seem considerable. However, our simulation results show that the approximate Kolmogorov—
Smirnov test statistics introduced in this paper, that is trivial to compute, seems to be a promising alternative
when » is moderately large.
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