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Abstract

Several techniques for resampling dependent data have already been proposed. In

this paper we use missing values techniques to modify the moving blocks jackknife

and bootstrap. More specifically, we consider the blocks of deleted observations in the

blockwise jackknife as missing data which are recovered by missing values estimates

incorporating the observation dependence structure. Thus, we estimate the variance

of a statistic as a weighted sample variance of the statistic evaluated in a “complete”

series. Consistency of the variance and the distribution estimators of the sample

mean are established. Also, we apply the missing values approach to the blockwise

bootstrap by including some missing observations among two consecutive blocks and

we demonstrate the consistency of the variance and the distribution estimators of

the sample mean. Finally, we present the results of an extensive Monte Carlo study

to evaluate the performance of these methods for finite sample sizes, showing that

our proposal provides variance estimates for several time series statistics with smaller

mean squared error than previous procedures.
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1 Introduction

The classical jackknife and bootstrap, as proposed by Quenouille (1949), Tukey (1958)

and Efron (1979), are inconsistent in the case of dependent observations. During

recent years these methods have been modified in order to account for the dependence

structure of the data. The main existing procedures could be broadly classified as

model based and model free. Model based procedures fit a model to the data and

resample the residuals which mimic the i.i.d. errors of the model (see, e.g., Freedman

(1984), Efron and Tibshirani (1986), Bose (1990) and Kreiss and Franke (1992)).

Model free procedures consider blocks of consecutive observations and resample from

these blocks as in the independent case (see, e.g. Carlstein (1986), Künsch (1989)

and Liu and Singh(1992)). Sherman (1998) compares these approaches in terms of

efficiency and robustness and concludes that for moderate sample sizes the model

based variance estimators provide a small gain under the correct model and, under

mild misspecification, have bias similar to model free estimators while being more

variable.

In this paper we are interested in the moving blocks jackknife (MBJ) and the

moving blocks bootstrap (MBB) introduced in Künsch (1989) and also in Liu and

Singh (1992). These methods allow us to estimate the variance of statistics defined

by functionals of finite dimensional marginal distributions, which include robust es-

timators of location and scale, least-squares estimators of the parameters of an AR

model and certain versions of the sample correlations.

As is usual in jackknife methods, the variance estimator is obtained by a weighted

sample variance of the statistic evaluated in a sample where some observations (blocks
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of consecutive observations, in this case) are deleted or downweighted. Künsch (1989)

showed that the MBJ that smooth transitions between observations left out and ob-

servations with full weight reduces the bias. Other bias reducing resampling methods

are: linear combinations of block bootstrap estimators with different block sizes, pro-

posed by Politis and Romano (1995), and the matched-block bootstrap of Carlstein

et al. (1998) that suggests using some block joining rule favoring blocks that are more

likely to be close.

When the time series has strong dependence structure, computing autocovariance

by deleting blocks of observations is likely to produce bias. An alternative procedure

is to assume that the block of observations is missing. For independent data, delet-

ing observations is equivalent to assume that these observations are missing but for

autocorrelated data, as shown in Peña (1990), the two procedures are very different.

Deleting a block of data effectively means to substitute the observations in the block

by their marginal expectation. Treating the block as missing is equivalent to substi-

tuting the observations in the block by their conditional expectations given the rest

of the data. This is the procedure we propose in this paper. In our case, the obser-

vations left out in the MBJ are considered as missing data and they are substituted

by a missing value estimate which takes into account the data dependence structure.

Thus, the variance estimator is a weighted sample variance of the statistic evaluated

in a “complete” series. This procedure could be interpreted as smooth transition

between the two parts with full weight in the blockwise jackknife.

Also, we extend this idea to the blockwise bootstrap, defining a block of missing

values between the blocks that form the bootstrap resample. Thus, the procedure
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resembles a block joining engine. In some sense, the matched-block bootstrap has a

common point with the procedure that we propose in this paper, in particular with

their autoregressive matching.

In Section 2 we define the MBJ with missing values techniques (M2BJ) and the

moving block bootstrap with missing values techniques (M2BB). In Section 3 we

present the missing values estimation procedures. In Section 4 the results about

consistency of both methods as variance and distribution estimators for the sample

mean are presented. Finally, the results of a simulation study comparing the MBJ

and the M2BJ, and the MBB and the M2BB are presented in Section 5. All proofs

are given in an Appendix.

2 Resampling algorithms

2.1 Moving missing block jackknife

Let X1, . . . , XN be observations from a stationary process {Xt}t∈Z with joint dis-

tribution ρ. Let us suppose that the statistic TN , whose variance or distribution

we want to estimate, is defined by TN = TN (ρN ), where ρN is the empirical mea-

sure of X1, . . . , XN . As noted by Künsch (1989), it is impossible to estimate ρN

without assuming some structure for the stationary processes. Thus, we suppose

that TN can be written as a functional of empirical m-dimensional distributions, i.e.

TN = T (ρm
N ), where ρm

N = n−1
∑n

t=1 δYt is an empirical m-dimensional marginal mea-

sure, n = N −m+1, Yt = (Xt, . . . , Xt+m−1) are blocks of m consecutive observations

and δy denotes the point mass at y ∈ Rm.
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The MBJ deletes or downweights blocks of m-tuples in the calculation of ρm
N :

ρ
m,(j)
N = (n− ‖wn‖1)−1

n∑
t=1

(1− wn(t− j)) δYt , (1)

where ‖wn‖1 =
∑l

i=1 wn(i) and j = 0, 1, . . . , n− l. The weights satisfy 0 ≤ wn(i) ≤ 1

for i ∈ Z, and wn(i) > 0 iff 1 ≤ i ≤ l, and l is the length of the downweighted block.

Note that wn(i) = 1 for 1 ≤ i ≤ l corresponds to the deletion of blocks, in such a

case the optimal order of l = l(n) is O(n1/3). Bühlmann and Künsch (1994) propose

a method for selecting the block length in blockwise bootstrap which can be modified

for blockwise jackknife. Künsch (1989) suggest to use wn(i) = h((i − 1)/2) where

function h : (0, 1) → (0, 1) is symmetric about x = 1/2.

The MBJ variance estimator of TN is defined as

σ̂2
Jack = (n− ‖wn‖1)2n−1(n− l + 1)−1‖wn‖−2

2

n−l∑
j=0

(
T

(j)
N − T

(·)
N

)2
, (2)

where T
(j)
N = TN (ρm,(j)

N ) is the j-th jackknife pseudo-value, T
(·)
N = (n−l+1)−1

∑n−l
j=0 T

(j)
N

and ‖wn‖2
2 =

∑l
i=1 wn(i)2.

In our approach we will use the following expression to calculate ρm
N :

ρ̃
m,(j)
N = n−1

(
n∑

t=1

(1− wn(t− j)) δYt +
n∑

t=1

wn(t− j)δ
Ŷt,j

)
, (3)

where Ŷt,j is an estimate of Yt supposing that Yt is a missing value in the j-th sample,

and then calculate T̃
(j)
N = TN (ρ̃m,(j)

N ), for j = 0, 1, . . . , n − l. Ŷt,j is a missing value

estimate which takes into account the data dependence structure. In Section 3, we

present in detail a method for obtaining Ŷt,j for stationary and invertible linear pro-

cesses. Note that in (3), instead of eliminating the blocks indexed by j + 1, . . . , j + l,

we consider those l + m − 1 consecutive observations as missing in the time series
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sequence. The M2BJ and variance estimator is defined by

σ̃2
Jack = n(n− l + 1)−1‖wn‖−2

2

n−l∑
j=0

(
T̃

(j)
N − T̃

(·)
N

)2
. (4)

Also, we are interested in the distribution of TN . We define the following jackknife-

histograms, as in the subsampling method of Politis and Romano (1994):

HN (x) = (n− l + 1)−1
n−l∑
j=0

1
{

τll
−1(n− l)(T (j)

N − TN ) ≤ x
}

, (5)

for the MBJ, and

H̃N (x) = (n− l + 1)−1
n−l∑
j=0

1
{

τll
−1(n− l)(T̃ (j)

N − TN ) ≤ x
}

, (6)

for the M2BJ, where τl is an appropriate normalizing constant (typically τl =
√

l),

and 1{E} denotes the indicator of the event E.

2.2 Moving missing block bootstrap

In the case of bootstrap, we will use the circular block bootstrap (CBB) of Politis and

Romano (1992) and Shao and Yu (1993) which can be described as follows. First,

the sample is “extended” with l − 1 observations:

Xi,n =


Xi if i ∈ {1, . . . , n}

Xi−n if i ∈ {n + 1, . . . , n + l − 1}
(7)

Second, define blocks of l consecutive observations Zi,n = (Xi,n, . . . , Xi+l−1,n). Then

{Zi,n}n
i=1 is used to obtain resamples (Z∗

1 , . . . , Z∗
s ) such that Pr∗{Z∗

j = Zi,n} = 1/n,

and this implies that Pr∗{X∗
j = Xi} = 1/n. The number s of blocks in the bootstrap

resample is selected such that n ≈ sl. Then, the bootstrap estimator is T ∗
N = TN (ρ∗N ),

where ρ∗N = n−1
∑n

t=1 δZ∗
t
. The bootstrap variance and distribution of T ∗

N ,

Var∗ (T ∗
N ) = E∗ [(T ∗

N − E∗ [T ∗
N ])2

]
(8)
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and

Pr∗
{

(sl)1/2(T ∗
N − E∗ [T ∗

N ]) ≤ x
}

(9)

are used as variance and distribution estimators of TN .

Other blockwise bootstraps have been proposed; for instance, the moving blocks

bootstrap (MBB) of Künsch (1989) and Liu and Singh (1992), the non-overlapping

block bootstrap (NBB) based on Carlstein (1986), and the stationary bootstrap (SB)

of Politis and Romano (1994).

The method that we propose can be described as follows: given a CBB resample

(Y ∗
1 , . . . , Y ∗

s ), i.e. s blocks of l consecutive observations, the idea of moving missing

blocks bootstrap (M2BB) is to introduce a block Ŷ ∗
j of k “observations” between two

consecutive blocks. For simplicity, we will use a fixed block size k for the blocks

included and we will always introduce a final block in order to have ks missing ob-

servations. Thus, the M2BB resample is (Y ∗
1 , Ŷ ∗

1 , Y ∗
2 . . . , Ŷ ∗

s−1, Y
∗
s , Ŷ ∗

s ). Notice that

the M2BB resample has s(l + k) observations, meanwhile the CBB resample has sl

observations.

Another way of interpreting the M2BB resample is to put l+k as the block size in

the CBB, and then to consider the last k observations in each block as missing values.

Notice that it is possible to implement M2BB using other blockwise bootstraps as the

above mentioned procedures.

The M2BB estimator is T̃ ∗
N = TN (ρ̃∗N ), where ρ̃∗N = n−1

∑n
t=1 δ

Ŷ ∗
t
, and Ŷ ∗

t = Y ∗
t

if t ∈ {1, . . . , l, l + k + 1, . . . , 2l + k, . . . , (s− 1)(l + k) + 1, . . . , (s− 1)(l + k) + l} and

Ŷ ∗
t is properly an estimate, otherwise. Then the bootstrap variance and distribution
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of T̃ ∗
N ,

Var∗
(
T̃ ∗

N

)
= E∗

[(
T̃ ∗

N − E∗
[
T̃ ∗

N

])2
]

(10)

and

Pr∗
{

(s(l + k))1/2
(
T̃ ∗

N − E∗
[
T̃ ∗

N

])
≤ x

}
, (11)

are used as variance and distribution estimators of TN .

3 Missing values techniques

There are a number of alternatives which can be used to obtain Ŷt for stationary and

invertible linear processes, see e.g. Harvey and Pierse (1984), Ljung (1989), Peña

and Maravall (1991), and Beveridge (1992), and for some nonlinear processes as in

Abraham and Thavaneswaran (1991). In this paper we will use the generalized least

squares method presented in Peña and Maravall (1991).

If {Xt}t∈Z is a stationary process that admits an AR(∞) representation: Φ(B)(Xt−

µ) = et, where Φ(B) =
∑∞

j=0 φjB
j , B is the backshift operator and E[Xt] = µ, let

zt = Xt − µ, and assume that the finite series zt has m missing values at times

T1, T2, . . . , Tm with Ti < Tj . We fill the holes in the series with arbitrary numbers vTi

and construct an “observed” series Zt by:

Zt =


zt + ωt, if t ∈ {T1, T2, . . . , Tm}

zt, otherwise
(12)

where vt = zt + ωt and ωt is an unknown parameter. In matrix notation, we have

Z = z + Hω, (13)
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where Z and z are the series expressed as a N×1 vector, H is N×m matrix such that

HTi,i = 1 and Hi,j = 0 otherwise, and ω is a m × 1 vector of unknown parameters.

Let Σ be the N ×N autocovariance matrix of the series zt, then the generalized least

squares estimator of ω is

ω̂ = (H ′Σ−1H)−1H ′Σ−1Z, (14)

and the missing values estimates are obtained by

Ẑ = Z −Hω̂ = Z −H(H ′Σ−1H)−1H ′Σ−1Z. (15)

Note that Ẑ obtained in (15) does not depend on the “arbitrary” value of ω. On

the other hand, expression (15) assumes that µ and Σ are known. In order to make

feasible the above estimation method we propose to substitute them by the sample

mean X̄ and by an autoregressive estimator Σ̂, respectively (see, Lemmas 3 and 4).

When we apply this method to the j-th jackknife resample, we consider that

observations Xj+1, . . . , Xj+l are missing values, i.e., there are m = l consecutive

missing values and the matrix H = Hj takes the form

Hj =


0j×l

Il×l

0N−(l+j)×l


N×l

(16)

In the case of the bootstrap, we have m = kdn/(l + k)e missing observations,

where l is the length of the block in the bootstrap resample and k is the number of

missing observations between two consecutive blocks. The matrix H is fixed and has
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the following expression

H =



0l×k 0l×k · · · 0l×k 0l×k

Ik×k 0k×k · · · 0k×k 0k×k

...
...

. . .
...

...

0l×k 0l×k · · · 0l×k 0l×k

0k×k 0k×k · · · 0k×k Ik×k


. (17)

We will use vt = zt (then omegat = 0) in expression (15), in such a case

z − Ẑ = H
(
H ′Σ−1H

)−1
H ′Σ−1z, (18)

and since z = X − µ and defining Ẑ = X̂ − µ, we have

X − X̂ = H
(
H ′Σ−1H

)−1
H ′Σ−1(X − µ), (19)

which is a more tractable expression. For the bootstrap, the X in (19) is replaced by

the X∗ forming the bootstrap resample.

Instead of expression (15), we could use the following nonparametric interpolator

proposed by Bosq (1996):

Ẑτ =

∑
t∈Oτ

ZtK ((Zτ,s − Zt,s))∑
t∈Oτ

K ((Zτ,s − Zt,s))
, (20)

where K is an strictly positive s-dimensional kernel, Zτ,s denote the s observed values

near to Zτ and Oτ = {t : Zt and Zt,s are observed}. Expression (20) may be inter-

preted as an approximation of E [Zτ |Zτ,s]. The implementation of M2BJ and M2BB

using (20) as an interpolator will be subject of future research.
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4 Consistency results

We now study consistency for the sample mean of the proposed missing values ap-

proaches for jackknife and bootstrap. This case corresponds to m = 1, T (F 1) =∫
x dF 1(x) = E[Xt] = µ. We will show that both procedures provide consistent es-

timators of the variance and the distribution of the sample mean. Theorems 1 and

3 present the fundamental results for the jackknife and Theorems 4 and 5 for the

bootstrap. Also in Theorem 2 we establish the consistency of the MBJ of Künsch

(1989) as a distribution estimator of linear statistics. Notice that Theorem 1, 2 and

3 can be extended to statistics with linear influence function.

Starting with the MBJ with missing values replacement we have that, according

to (3), the statistic evaluated in the j-th completed resample is

T̃
(j)
N = n−1

(∑n
t=1 (1− wn(t− j))Xt +

∑n
t=1 wn(t− j)X̂t,j

)
= TN − n−1

∑n
t=1 wn(t− j)(Xt − X̂t,j),

(21)

where TN = n−1
∑n

t=1 Xt. First, we will consider the expression
∑n−l

j=0(T̃
(j)
N − TN )2.

The use of TN as a central measure seems more natural than T̃
(·)
N because TN = T (F 1

N )

(see Liu and Singh (1992)). We have that

n(T̃ (j)
N − TN ) = −

n∑
t=1

wn(t− j)(Xt − X̂t,j) = −w′
n,j(X − X̂j), (22)

where wn,j = (wn(1− j), . . . , wn(n− j))′ and X̂j =
(
X̂1,j , . . . , X̂n,j

)′
, with

X̂t,j =


Xt if wn(t− j) = 0

X̂t if wn(t− j) > 0.

(23)

In order to prove the consistency of jackknife variance estimator we will use the

following proposition established in Berk (1974):
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Proposition 1 Suppose that {Xt}t∈Z is a linear process such that
∑∞

i=0 φixt−i = et,

where {et}t∈Z are independent and identically distributed r.v.’s with E[et] = 0 and

E[e2
t ] = σ2, and φ0 = 1. Assume also that Φ(z) =

∑∞
i=0 φiz

i is bounded away from

zero for |z| ≤ 1. Then, there are constants F1 and F2, 0 < F1 < F2, such that

2πF1 ≤ ‖Σ‖spec ≤ 2πF2 and (2πF2)−1 ≤ ‖Σ−1‖spec ≤ (2πF1)−1, (24)

where Σ is the autocovariance matrix of {Xt}t∈Z and ‖Σ‖spec = max
{√

λ : λ is

eigenvalue of Σ′Σ
}

denotes the spectral norm.

Condition (24) allows us to establish the asymptotical unbiasedness of σ̃2
Jack. We

substitute in (4) T̃
(·)
N by TN and under standard assumptions we prove in Corollary

1 that the effect of this substitution is negligible.

Lemma 1 If the conditions of Proposition 1 hold, and assuming that wn(i) = 1 if

and only if 1 ≤ i ≤ l, l = l(n) → ∞, and
∑∞

k=1 k|γk| < ∞, then E[nσ̃2
Jack] → σ2

∞ =∑+∞
k=−∞ γk.

Now, we must prove that Var(nσ̃2
Jack) → 0. We have that

Var(nσ̃2
Jack) = (n− l+1)−2‖wn‖−4

2

n−l∑
j=0

n−l∑
i=0

cov(n2(T̃ (j)
N −TN )2, n2(T̃ (i)

N −TN )2). (25)

Note that n2(T̃ (j)
N − TN )2 = w̃′

n,j(X − µ)(X − µ)′w̃n,j , where w̃n,j = Σ−1Hj

(H ′
jΣ

−1Hj)−1H ′
jwn,j , thus the only difference with Theorem 3.3 of Künsch (1989)

is replacing wn,j by w̃n,j . A crucial aspect in his proof is the number of non zero

elements (l = o(n)) in the vector wn,j . The following lemma establishes that w̃n,j =

w̄n,j + o(l−1/2), where w̄n,j has at most l + 4dl1/2e non zero elements.
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Lemma 2 Under the conditions of Lemma 1, and assuming that
∑∞

k=1 k2|γk| < ∞,

we have that w̃n,j = w̄n,j + o(l−1/2) uniform in j = 0, 1, . . . , n− l.

The next result follows by combining the previous lemmas 1 and 2 and Theorem

3.3 of Künsch (1989).

Theorem 1 Under the conditions of Lemma 2, and assuming that E[|Xt|6+δ] < ∞

with δ > 0,
∑∞

k=1 k2α
δ/(6+δ)
k < ∞ where αk are the strong mixing coefficients, and

l = o(n), it follows that nσ̃2
Jack

P−→ σ2
∞.

Corollary 1 Under the conditions of Theorem 1, and assuming that l = o(n1/2), we

have that

nσ̃2
Jack = n2(n− l + 1)−1‖wn‖−2

2

n−l∑
j=0

(
T̃

(j)
N − TN

)2
+ oP (l−1).

The previous results assume that the matrix Σ is known; the next lemma shows

that the consistency result obtained in Theorem 1 holds if we substitute Σ by an

autoregressive estimator Σ̂, i.e., the n×n autocovariance matrix of an AR(p) process,

with p = p(n). We will use the matrix column-sum norm ‖A‖col = max
{∑n

i=1 |aij | :

j = 1, . . . , n
}
, and the vector maximum norm ‖X‖∞ = max {xi : i = 1, . . . , n}.

Lemma 3 Under the conditions of Theorem 1, and assuming that ‖Σ−1‖col < M <

∞, p = o((n/ log n)1/6) , and l = o((n/ log n)2/9), it follows that

nσ̃2
Jack − n̂̃σ2

Jack = oP (1), (26)

where

̂̃σ2

Jack = n(n− l + 1)−1‖wn‖−2
2

n−l∑
j=0

(̂̃
T

(j)

N − TN

)2

, (27)
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and ̂̃T (j)

N = wn,jHj

(
H ′

jΣ̂
−1Hj

)−1
H ′

jΣ̂
−1(X − X̄).

The condition ‖Σ−1‖col < M < ∞ is satisfied by stationary and invertible ARMA

processes. This is a direct consequence of the representation of Σ−1 in Galbraith and

Galbraith (1974). Note that the proof is still valid if ‖Σ−1‖col = O(l1/4−α) for some

α such that 0 < α < 1/4.

Now, we prove that the moving block jackknife (MBJ) of Künsch (1989) could

be used as an estimator of the distribution of a linear statistic. We will use the

analogy between the subsampling method of Politis and Romano (1994) and the

blockwise jackknife. First, we introduce some notation: TN,t = Tb(Xt, . . . , Xt+b−1) is

the estimator of T (ρ) based on the block or subsample (Xt, . . . , Xt−b+1). Let Jb(ρ)

be the sampling distribution of

τb(TN,1 − T (ρ)), (28)

where τb is the normalizing constant. Also define the corresponding cumulative dis-

tribution function

Jb(x, ρ) = Prρ {τb(TN,1 − T (ρ)) ≤ x} , (29)

and denote JN (ρ) the sampling distribution of τn(TN − T (ρ)). The approximation of

JN (ρ) proposed by subsampling is

LN (x) = (N − b + 1)−1
N−b+1∑

t=1

1 {τb(TN,t − TN ) ≤ x} . (30)

The only essential assumption in Politis and Romano’s approach is that there

exists a limiting law J(ρ) such that JN (ρ) converges weakly to a limit law J(ρ), as

n →∞.
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For simplicity, we only prove the consistency of MBJ for linear statistics, as the

sample mean

TN = n−1
n∑

t=1

f(Yt), (31)

where Yt = (Xt, . . . , Xt+m−1), n = N −m + 1 and f is a continuous function on Rm.

In the MBJ we have l deleted blocks (Yj+1, . . . , Yj+l) which corresponds to b =

l + m− 1 consecutive observations. Using (1), we have

T
(j)
N = (n− l)−1

∑n
t=1(1− wn(t− j))f(Yt)

= (n− l)−1nTN − (n− l)−1
∑j+l

t=j+1 f(Yt)

= (n− l)−1nTN − (n− l)−1TN,j+1.

(32)

Assuming without loss of generality that m = 1,

T
(j)
N − TN = −l(n− l)−1(TN,j+1 − TN ), (33)

−τll
−1(n− l)(T (j)

N − TN ) = τl(TN,j+1 − TN ), (34)

and

LN (x) = (n− l + 1)−1
n−l∑
j=0

1
{

τll
−1(n− l)(TN − T

(j)
N ) ≤ x

}
. (35)

The MBJ analogous to LN (x) is

HN (x) = (n− l + 1)−1
n−l∑
j=0

1
{

τll
−1(n− l)(T (j)

N − TN ) ≤ x
}

. (36)

We obtain consistency under the following assumption:

Assumption 1 There exists a symmetric limiting law J(ρ) such that Jn(ρ) converges

weakly to a limit law J(ρ), as n →∞.
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The following theorem shows that moving blocks jackknife-histograms are consis-

tent estimators of the distribution.

Theorem 2 Suppose that Assumption 1 holds and that τl/τn → 0, l/n → 0 and

l →∞ as n →∞. Also assume that the α-mixing sequence satisfies that αX(k) → 0

as k →∞.

1. If x is a continuity point of J(·, ρ), then HN (x) → J(x, ρ) in probability.

2. If J(·, ρ) is continuous, then supx |HN (x)− J(x, ρ)| → 0 in probability.

Also, we could use the M2BJ method as distribution estimator. We establish

consistency for the sample mean. The MBJ and the M2BJ statistics satisfy

T
(j)
N − TN = −(n− l)−1

n∑
t=1

wn(t− j)(Xt − TN ), (37)

and

T̃
(j)
N − TN = −n−1

n∑
t=1

wn(t− j)(Xt − X̂t,j). (38)

Therefore,

l−1/2n(T̃ (j)
N − TN ) = l−1/2(n− l)(T (j)

N − TN ) + l−1/2
n∑

t=1

wn(t− j)(X̂t,j − TN ). (39)

The following proposition proves that the second term in the right hand side of

(39) is oP (1).

Proposition 2 Suppose that wn(i) = 1 iff 1 ≤ i ≤ l,
∑∞

k=1 k|γk| < ∞, and ‖Σ−1‖col <

M < ∞. Also assume that l/n → 0 and l →∞ as n →∞. Then l−1/2
∑n

t=1 wn(t−

j)(X̂t,j − TN ) = oP (1) uniformly in j.
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Consistency follows now from Theorem 2.1 in Politis and Romano (1994), Propo-

sition 2, and the asymptotic equivalence lemma (cf. Lemma 4.7 of White (1984)),

i.e. having two random sequences satisfying An−Bn = oP (1) and Bn
d−→ B then we

conclude that An
d−→ B.

Theorem 3 Under the conditions in Proposition 2, for all x

H̃N (x) = (n− l + 1)−1
n−l∑
j=0

1
{

τll
−1(n− l)(T̃ (j)

N − TN ) ≤ x
}
→ J(x, ρ) (40)

in probability.

Remark 1 In the proof of Lemma 3 we obtained that n(T̃ (j)
N − TN )− n( ̂̃T (j)

N − TN )

is oP (l3/2 max(l, p)1/2(n/ log n)−1/3), thus (40) holds if we substitute Σ by Σ̂, and

l = o((n/ log n)2/9).

Now, we prove that the M2BB give consistent estimators of the variance and the

distribution of the sample mean. We have the following CBB and M2BB statistics:

X̄∗
n,s = (sl)−1

s∑
i=1

l∑
j=1

X∗
(i−1)l+j , (41)

and

˜̄X∗
n,s = (s(l + k))−1

s∑
i=1

 l∑
j=1

X∗
(i−1)(l+k)+j +

l+k∑
j=l+1

X̂∗
(i−1)(l+k)+j

 , (42)

where X̂∗
t is an estimate of the “missing observation” X∗

t , that takes into account the

dependence structure on the original process {Xt}.

18



We could write the M2BB analogous to (sl)1/2(X̄∗
n,s − X̄n) as follows:

(s(l + k))1/2
( ˜̄X∗

n,s − X̄n

)
= (s(l + k))−1/2

(∑s
i=1

∑l
j=1(X

∗
(i−1)(l+k)+j − X̄n)

+
∑s

i=1

∑l+k
j=l+1(X̂

∗
(i−1)(l+k)+j − X̄n)

)
= (l/(l + k))1/2(sl)1/2(X̄∗

n,s − X̄n)

+(s(l + k))−1/2
∑s

i=1

∑l+k
j=l+1(X̂

∗
(i−1)(l+k)+j − X̄n).

(43)

Notice that if k/l → 0 as n → ∞ we have that l/(l + k) → 1 and thus the first

term in (43) satisfies the conditions in Theorem 1 in Politis and Romano (1992). The

following proposition establishes that the second term in (43) is oP (1).

Proposition 3 Suppose that
∑∞

k=1 k|γk| < ∞,
∑∞

k=1 k2α
δ/(6+δ)
k < ∞, where αk

are the strong mixing coefficients, and ‖Σ−1‖col < M < +∞. Also assume that

l/n → 0, l → ∞, and k/l → 0 as n → ∞. Then (s(l + k))−1/2
∑s

i=1

∑l+k
j=l+1

(X̂∗
(i−1)(l+k)+j − X̄n) = oP (1).

The previous results assume that the matrix Σ is known; the next lemma is the

analogous to Lemma 3. Notice that in M2BJ the number of missing values is l and

in M2BB is sk.

Lemma 4 Under the conditions of Proposition 3, and assuming that ‖Σ−1‖col <

M < ∞, p = o((n/ log n)1/6) , and sk = o((n/ log n)2/9), it follows that

(s(l + k))1/2
( ˜̄X∗

n,s − X̄n

)
− (s(l + k))1/2

( ̂̃̄
X
∗

n,s − X̄n

)
= oP (1), (44)

where
̂̃̄
X
∗

n,s = (s(l + k))−1
∑s

i=1

(∑l
j=1 X∗

(i−1)(l+k)+j +
∑l+k

j=l+1
̂̂
X
∗
(i−1)(l+k)+j

)
, and

̂̂
X is obtained substituting Σ by its autoregressive estimator Σ̂−1 in (15).
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Now, using the statement (1) of Theorem 1 in Politis and Romano (1992), Propo-

sition 3 and the Cauchy-Schwarz inequality we have that

Theorem 4 Under the conditions in Proposition 3, for all x

Var∗
(
(s(l + k))1/2

( ˜̄X∗
n,s − X̄n

))
P−→ σ2

∞. (45)

And from statement (2) of Theorem 1 in Politis and Romano (1992), Proposition

3 and the asymptotic equivalence lemma, we obtain the consistency result.

Theorem 5 Under the conditions in Proposition 3, for all x

Pr∗
{

(s(l + k))1/2( ˜̄X∗
n,s−X̄n)≤ x|X1, . . . , Xn

}
− Pr

{
n1/2(X̄n−µ)≤ x

}
→ 0, (46)

for almost all sample sequences X1, . . . , XN .

In the next section we present an extensive simulations comparing the proposed

missing moving blocks procedures with the MBJ and MBB methods. The theoretical

comparison and confirmation of the superiority of the proposed methods, even in the

case of linear processes, involve some unmanageable expressions that made difficult

those comparison. On the other hand, notice that using the nonparametric approach

mentioned at end of Section 3 it is possible to implement the missing moving blocks

methods without the linearity assumption.

5 Simulations

In this section, we compare the performance of the moving blocks jackknife (MBJ)

and moving blocks jackknife with missing values replacement (M2BJ), and the moving
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blocks bootstrap (MBB) and moving blocks bootstrap with missing values replace-

ment (M2BB). We consider the following autoregressive models Xt =
∑p

i=1 φiXt−i +

et:

• (M1) AR(1) φ1 = 0.8, et i.i.d. N (0, 1).

• (M2) AR(2) φ1 = 1.372, φ2 = −0.677, et i.i.d. N (0, 0.4982).

• (M3) AR(5) φ1 = 0.9, φ2 = −0.4, φ3 = 0.3, φ4 = −0.5, φ5 = 0.3, et i.i.d.

N (0, 1).

• (M4) AR(1) φ1 = −0.8, et i.i.d. N (0, 1).

Models M1-M3 are the same as in Bühlmann (1994) and Bühlmann and Künsch

(1994). In all of them the largest root is around 0.8. M4 is included because it

presents a considerable amount of repulsion, and Carlstein et al. (1998) show that

this feature causes problems for the matching block bootstrap. The models M2-M4

exhibit a “damped-periodic” autocorrelation function, where the correlations can be

negative. In M1 all the autocorrelations are positive. We also consider the following

“dual” moving average models Xt = et +
∑q

i=1 θiet−i:

• (M5) MA(1) θ1 = −0.8, et i.i.d. N (0, 1).

• (M6) MA(2) θ1 = −1.372, θ2 = 0.677, et i.i.d. N (0, 0.4909).

• (M7) MA(5) θ1 = −0.9, θ2 = 0.4, θ3 = −0.3, θ4 = 0.5, θ5 = −0.3, et i.i.d.

N (0, 1).

• (M8) MA(1) θ1 = 0.8, et i.i.d. N (0, 1).
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For M2BJ and M2BB, we use an autoregressive estimator for the autocovariance

matrix Σ, choosing the order p of the approximating autoregressive process by mini-

mizing the BIC (cf. Schwarz (1978)) in a range 0 ≤ p ≤ 10 log10 n. As in Bühlmann

and Künsch (1994) we choose the sample size N = 480 and N = 120. Our results are

based on 1000 simulations, and block size range from l = 1 to l = 95 for N = 480,

and from l = 1 to l = 30 for N = 120. The statistics TN included in the simulation

study are the sample mean, median, variance, and autocovariance of order 1 and 5.

Notice that in the case of h-th autocovariance, a block size l corresponds to l blocks

of size h in MBJ, and l+h−1 missing observations in M2BJ. We report the estimates

for the variance of these statistics and, as recommended in Carlstein et al. (1998),

we measure the accuracy using the mean square error (MSE) of the logarithm of the

variance.

The simulations have been carried out as follows. First, for each model Mi (i =

1, . . . , 8), NT = 1000 replications have been generated. In each replication the value

of the statistic TN is computed and the “true” value of the variance of this statistic

is calculated by

σ2
N = N

∑NT
1 (T (i)

N − TN )2

NT

where TN =
∑NT

1 T
(i)
N /NT . The log of this value, log σ2

N , is reported in all the tables

for each model and sample size N .

Second, in the jackknife simulations (Tables 1 to 5) an estimate of the variance

is computed by the following steps: (1) For each model Mi (i = 1, . . . , 8) generate

a sample of size N ; (2) Select the length l, build the N − l + 1 jackknifed series,

and compute in each series the value of the statistic TN ; (3) Compute the estimated
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jackknife variance by (2) and (4), multiply by the sample size N and call them σ̂2
N and

σ̃2
N respectively; and, (4) repeat the steps (1) to (3) 1000 times for each possible value

l. The statistics given are E1, SD1, the average and standard deviation of the statistic

log Nσ̂2
N in the 1000 replications, and MSE1 = (log σ2

N −E(log σ̂2
N ))2 +SD(log σ̂2

N )2,

the mean squared error. The value of l given in L1 is the block size producing the

minimum MSE. The values E2, SD2,MSE2, L2 have the same interpretation and are

computed for the proposed method based on σ̃2
N . The results with the relative mean

square error RMSE = MSE(σ̂2
N )/σ4

N are similar and therefore are omitted from the

tables.

Third, in the bootstrap simulations (Tables 6 to 10) the estimate of the variance

of the statistic is computed as follows: (1) For each model Mi (i = 1, . . . , 8) generate

a sample of size N ; (2) Choose the block length l (l and k in M2BB), build B = 250

bootstrap samples by randomly selecting blocks with replacement among the blocks

of observations and compute in each bootstrap sample the value of the statistic TN ;

(3) Obtain the estimated bootstrap variance by (8) and (10), multiply by the sample

size N and call them σ̂2
N and σ̃2

N , respectively; and (4) repeat the steps (1) to (3) 1000

times. The values reported in the tables have the same interpretation as the jackknife

ones. The only difference is that for the method M2BB in the column corresponding

to L2, we report also the value of k, the optimal length of the missing value block (k

takes values in {1, . . . , 5}). Note that the MBB is equivalent to M2BB with k = 0.

Due to the large number of simulations, we find a significant difference between the

two methods in almost all cases. However, we are interested in large differences, e.g.

MSE(σ̂2
N )/MSE(σ̃2

N ) > 1.25, i.e., gain of at least a 25 percent. Also, we could use
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a smaller number of simulations, as in Bühlmann and Künsch (1994) and Bühlmann

(1997); in such a case, the results are similar to those of the previous approach.

Our main conclusions for jackknife methods are as follows: (a) In the cases where

there exists a substantial difference between the two methods, the missing values

replacement generally gives the least MSE. In particular, only in the case of the sample

mean and models M3 and M8, has the MBJ a better performance; (b) for the median,

and models M1 and M5-M8, the M2BJ outperforms the MBJ; (c) the methods are

“equivalent” for the variance, but for the first autocovariance the proposed method

gives a large improvement in three cases; and, (d) for the autocovariance of order 5,

which is the statistic that depends on the largest m-dimensional marginal distribution,

in all cases and sample sizes the M2BJ has a significant smaller MSE than MBJ.

We can conclude that the proposed method works better in general than previous

procedures and that the advantages are especially large for autocovariance, especially

for lags greater than 2. Other simulation studies (not shown here) have confirmed

this advantage of the proposed method in estimating the variance of autocovariance

for lags larger than 2. As for the optimal value of l, it is larger in MBJ than in M2BJ.

In Figures 1 - 3, columns 1 and 2, we illustrate the performance of MBJ and M2BJ

methods in different scenarios. It is observed that M2BJ tends to reduce the bias or

to reduce the variability or both.

In the comparison of bootstrap methods, we observe that: (a) In the cases where

there exists a substantial difference between the two methods, the missing values

replacement always gives least MSE; (b) for the mean, in almost all models, and for

the median, in all models, the M2BB outperforms the MBB; (c) the methods are
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“equivalent” in the variance and the autocovariance of order 5 (although the M2BB

outperforms the MBB when the sample size is large, 480) but for the first order

autocovariance the M2BB outperforms the MBB in all the cases and the differences

are significantly larger for moving average models. In Figures 1 - 3, columns 3 and 4,

we illustrate the performance of MBB and M2BB methods in different scenarios. It

is observed that M2BB tends to reduce the bias or to reduce the variability or both.

Similar conclusions are obtained using optimal order block length l = n1/3 and k = 1

missing value in each block.

6 Conclusions

We have presented a modification of the idea of using blocks for jackknife and boot-

strapping estimation in time series. In the jackknife method, instead of deleting

observations, we propose to assume that these observations are missing values. For

independent data both procedures are equivalent, but for correlated data they are

not. It has been shown that with this procedure, better results can be obtained in

the model free estimation of the variance of the autocovariance of a stationary pro-

cess. The advantages are especially important for larger lags. The consistency of the

estimation of the variance and distribution of the sample mean has been established.

In the block bootstrap case we propose assuming that there are missing observa-

tions between two consecutive blocks. In this way, the dependence structure among

observations is better preserved and it has been shown that this procedure leads in

general to better estimation than previous procedures, especially for large sample

size. Consistency of the estimation of the variance and distribution of the sample
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mean has been proved.

One additional advantage of this approach is that we are always dealing with

complete series and, therefore, the usual routines for computing statistics in a time

series can be applied to the jackknife or bootstrap samples generated with the missing

value approach. In particular, previous bootstrap procedures can be seen as particular

cases in which the length of the missing values block is equal to zero.

Appendix

Proof of Lemma 1: Using (19) and (22), we obtain:

n(T̃ (j)
N − TN ) = −w′

n,jHj

(
H ′

jΣ
−1Hj

)−1
H ′

jΣ
−1(X − µ) (47)

and

E[n2(T̃ (j)
N − TN )2] = w′

n,jHj

(
H ′

jΣ
−1Hj

)−1
H ′

jwn,j . (48)

Let αj = {j +1, j +2, . . . , j + l}. Using the formula for the inverse of a partitioned

matrix,

(
H ′

jΣ
−1Hj

)−1 = (Σ−1(αj))−1 = Σ(αj)− Σ(αj , α
′
j)Σ(α′j)

−1Σ(α′j , αj), (49)

where Σ(αj) is the principal submatrix of Σ with the elements indexed by αj , and

Σ(αj , α
′
j) is the result of taking the rows indicated by αj and deleting the columns

indicated by αj . Σ(α′j , αj) and Σ(α′j) are defined analogously, cf. Horn and Johnson

(1990). Note that Σ−1(αj) is a submatrix of Σ−1, while Σ(αj)−1 is the inverse of a

submatrix of Σ.
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Using (4), and (48)-(49), we get:

E[nσ̃2
Jack] = (n− l + 1)−1l−1

∑n−l
j=0 E[n2(T̃ (j)

N − TN )2]

= l−1w′
nΣllwn − (n− l + 1)−1l−1

n−l∑
j=0

w′
nΣ(αj , α

′
j)Σ(α′j)

−1Σ(α′j , αj)wn,

(50)

where wn = (wn(1), . . . , wn(l))′ = H ′
jwn,j = 1l×1, and Σ(αj) = Σll is the l × l

autocovariance matrix.

We now prove that l−1w′
nΣllwn → σ2

∞. We have that

l−1w′
nΣllwn = l−1 (lγ0 + 2(l − 1)γ1 + · · ·+ 2γl−1)

=
∑l−1

k=−l+1 γk − 2l−1
∑l−1

k=1 kγk,

(51)

which has limit σ2
∞ using that l(n) →∞ and

∑+∞
k=1 k|γk| < ∞.

Now we prove that the second term in (50) goes to 0. First, note that

‖w′
nΣ(αj , α

′
j)‖2 ≤ ‖w′

nΣ(αj , α
′
j)‖1

=
∑j

k=1 |
∑l

i=1 γk+i−1|+
∑n−l−j

k=1 |
∑l

i=1 γk+i−1|

≤ 2
∑max{j,n−l−j}

k=1 |
∑l

i=1 γk+i−1|

≤ 2
∑n−l

k=1

∑l
i=1 |γk+i−1|

≤ 2
∑n

k=1 k|γk|.

(52)

Second, we can write Σ =


A B C

B′ Σ(αj) D

C ′ D′ E

, then Σ(α′j) =

 A C

C ′ E

. Define

Σ̃ =


Σ(αj) B′ D

B A C

D′ C ′ E

.
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Note that Σ̃ is also symmetric and x′Σx = x̃′Σ̃x̃, where x′ = (x1, x2, . . . , xn) and

x̃′ = (xj+1, . . . , xj+l, x1, . . . , xj , xj+l+1, . . . , xn). Then

λmax(Σ) = max
{

x′Σx

x′x
: x 6= 0

}
= max

{
x̃′Σ̃x̃

x̃′x̃
: x̃ 6= 0

}
= λmax(Σ̃)

and the same is true for λmin(Σ). Thus, we have

2πF1 ≤ λmin(Σ̃) ≤ λmax(Σ̃) ≤ 2πF2

(2πF2)−1 ≤ λmin(Σ̃−1) ≤ λmax(Σ̃−1) ≤ (2πF1)−1.

Since Σ(α′j) is a principal symmetric submatrix of Σ̃, we have:

λmin(Σ̃) ≤ λmin(Σ(α′j)) and λmax(Σ(α′j)) ≤ λmax(Σ̃)

λmax(Σ(α′j)
−1) ≤ λmax(Σ̃−1) and λmin(Σ̃−1) ≤ λmin(Σ(α′j)

−1).

Finally,

w′
nΣ(αj , α

′
j)Σ(α′j)

−1Σ(α′j , αj)wn ≤ ‖Σ(α′j)
−1‖spec‖w′

nΣ(αj , α
′
j)‖2

2

≤ (2πF1)−1 (2
∑n

k=1 k|γk|)2 ,

and thus the second term in (50) goes to 0 as l goes to infinity.�

Proof of Lemma 2: Let Σ−1 =


A1 B1 C1

B′
1 Σ−1(αj) D1

C ′
1 D′

1 E1

; then, using (16),

Zj = Σ−1Hj

(
H ′

jΣ
−1Hj

)−1
H ′

j =


0j×j B1(Σ−1(αj))−1 0j×N−l−j

0l×j Il×l 0l×N−l−j

0N−l−j×j D′
1(Σ

−1(αj))−1 0N−l−j×N−l−j

 ,

(53)
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and

w̃n,j =


B1(Σ−1(αj))−11l×1

1l×1

D′
1(Σ

−1(αj))−11l×1

 . (54)

The elements in positions j+1, . . . , j+l are all 1’s, and the remaining elements de-

pend on the product Σ−1(α′j , αj)(Σ−1(αj))−1, because

 B1

D′
1

 = Σ−1(α′j , αj). Using

the expressions for the inverse of a partitioned matrix, we obtain

Σ−1(α′j , αj) =
(
Σ(α′j , αj)Σ(αj)−1Σ(αj , α

′
j)− Σ(α′j)

)−1
Σ(α′j , αj)Σ(αj)−1

(Σ−1(αj))−1 = Σ(αj)− Σ(αj , α
′
j)Σ(α′j)

−1Σ(α′j , αj).

Let’s denote Qj =
(
Σ(α′j , αj)Σ(αj)−1Σ(αj , α

′
j)− Σ(α′j)

)−1
; then

Σ−1(α′j , αj)(Σ−1(αj))−1 = QjΣ(α′j , αj)− (I + QjΣ(α′j))Σ(α′j)
−1Σ(α′j , αj)

= −Σ(α′j)
−1Σ(α′j , αj).

(55)

Thus, we can concentrate our attention on −Σ(α′j)
−1Σ(α′j , αj). We have that

Σ(α′j , αj) =



γj γj+1 · · · γj+l−1

γj−1 γj · · · γj+l−2

...
...

...

γ1 γ2 · · · γl

γl γl−1 · · · γ1

...
...

...

γn−2−j γn−3−j · · · γn−l−1−j

γn−1−j γn−2−j · · · γn−l−j


n−l×l

. (56)
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Let Σ̃(α′j , αj)n−l×l be the matrix obtained by substituting 0 in every position of

matrix Σ(α′j , αj) where the index k of γk satisfies k > dl1/2e. The difference between

Σ(α′j , αj) and Σ̃(α′j , αj) satisfies

‖
(
Σ(α′j , αj)− Σ̃(α′j , αj)

)
wn‖2 ≤ ‖

(
Σ(α′j , αj)− Σ̃(α′j , αj)

)
wn‖1

≤ 2
∑n−1

k=dl1/2e+1
k|γk| = o(l−1/2),

(57)

since
∑∞

k=1 k2|γk| < ∞ implies
∑n−1

k=dl1/2e+1
k|γk| = o(l−1/2).

On the other hand, Σ(α′j) =

 Σj−1,j−1 F

F ′ Σn−l−j−1,n−l−j−1

, where Σh,h is the

h × h autocovariance matrix. Define Σ̃(α′j) =

 Σj−1,j−1 0

0′ Σn−l−j−1,n−l−j−1

; as

earlier, we have that

‖Σ(α′j)
−1−Σ̃(α′j)

−1‖spec = ‖Σ(α′j)
−1
(
Σ(α′j)−Σ̃(α′j)

)
Σ̃(α′j)

−1‖spec

≤ ‖Σ(α′j)
−1‖spec‖Σ(α′j)−Σ̃(α′j)‖spec‖Σ̃(α′j)

−1‖spec

≤ (2πF1)−2(‖Σ(α′j)−Σ̃(α′j)‖col‖Σ(α′j)−Σ̃(α′j)‖row)1/2

≤ (2πF1)−2
∑n−1

k=l+1 |γk|,
(58)

and
∑∞

k=1 k2|γk| < ∞ implies
∑n−1

k=l+1 |γk| = o(l−2). Let Σa
h,h = [γa]h×h be the h× h

covariance matrix of an AR(dl1/2e) process such that Σa
dl1/2e,dl1/2e = Σdl1/2e,dl1/2e.

We can assume that
∑∞

k=1 k2|γa
k | < ∞, see Bühlmann (1995). Define Σ̄(α′j) = Σa

j−1,j−1 0

0′ Σa
n−l−j−1,n−l−j−1

, then we have the following results:

‖Σ̃(α′j)
−1−Σ̄(α′j)

−1‖spec = ‖Σ̃(α′j)
−1
(
Σ̃(α′j)− Σ̄(α′j)

)
Σ̄(α′j)

−1‖spec

≤ ‖Σ̃(α′j)
−1‖spec‖Σ̃(α′j)−Σ̄(α′j)‖spec‖Σ̄(α′j)

−1‖spec

≤ 2(2πF1)−2
∑n−1

k=dl1/2e+1
(|γk|+ |γa

k |),

(59)
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and
∑∞

k=1 k2|γk| < ∞ and
∑∞

k=1 k2|γa
k | < ∞ imply that

∑n−1
k=dl1/2e+1

|γk| = o(l−1)

and
∑n−1

k=dl1/2e+1
|γa

k | = o(l−1).

Note that Σ̄(α′j)
−1 is a dl1/2e-diagonal matrix; then Σ̄(α′j)

−1Σ̃(α′j , αj)wn has at

most 4dl1/2e non zero elements. Define w̄n,j replacing in w̃n,j the matrices Σ(α′j)
−1

and Σ(α′j , αj) with Σ̄(α′j)
−1 and Σ̃(α′j , αj), then w̄n,j has at most l +4dl1/2e non zero

elements.

Finally,

‖w̃n,j − w̄n,j‖2 = ‖Σ(α′j)
−1Σ(α′j , αj)wn − Σ̄(α′j)

−1Σ̃(α′j , αj)wn‖2

≤ ‖Σ(α′j)
−1Σ(α′j , αj)wn − Σ̄(α′j)

−1Σ(α′j , αj)wn‖2

+ ‖Σ̄(α′j)
−1Σ(α′j , αj)wn − Σ̄(α′j)

−1Σ̃(α′j , αj)wn‖2

= ‖(Σ(α′j)
−1 − Σ̄(α′j)

−1)Σ(α′j , αj)wn‖2

+ ‖Σ̄(α′j)
−1(Σ(α′j , αj)− Σ̃(α′j , αj))wn‖2

≤ ‖Σ(α′j)
−1 − Σ̄(α′j)

−1‖spec‖Σ(α′j , αj)wn‖2

+ ‖Σ̄(α′j)
−1‖spec‖(Σ(α′j , αj)− Σ̃(α′j , αj))wn‖2,

and using (57) - (59) we have that ‖w̃n,j − w̄n,j‖2 = o(l−1/2).�

Proof of Corollary 1: We have

nσ̃2
Jack = n2‖wn‖−2

2

(n− l + 1)−1
n−l∑
j=0

(
T̃

(j)
N − TN

)2
−
(
T̃

(·)
N − TN

)2

 , (60)

and it is enough to prove that S̃N = n
(
T̃

(·)
N − TN

)
= (n− l + 1)−1

∑n−l
j=0 w̃n,j(X −µ)

is op(1). It’s clear that E[S̃N ] = 0, and

E[S̃2
N ] = (n− l + 1)−2

n−l∑
j=0

n−l∑
i=0

w̃′
n,jΣw̃n,i. (61)
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As in Lemma 2, we can concentrate our attention on

(n− l + 1)−2
n−l∑
j=0

n−l∑
i=0

w̄′
n,iΣw̄n,j . (62)

Replace γk by a 0 in each position of the matrix Σ where k > l. Let Σ̃ denote the

resulting matrix. Since ‖Σ− Σ̃‖spec = o(l−1), then

(n− l + 1)−2
n−l∑
j=0

n−l∑
i=0

w̄′
n,jΣw̄n,i = (n− l + 1)−2

n−l∑
j=0

n−l∑
i=0

w̄′
n,jΣ̃w̄n,i + o(1). (63)

On the other hand, note that w̄′
n,jΣ̃w̄n,i is equal to a sum of between 1 and

l + 4dl1/2e non zero summands, where the size of the sum depends on the different

values of i and j. Then

n−l∑
i=0

|w̄′
n,jΣw̄n,i| ≤ 2C

(
1 + 2 + . . .

(
l + 4dl1/2e

))
= O(l2), (64)

and

(n− l + 1)−2
n−l∑
j=0

n−l∑
i=0

w̄′
n,jΣ̃w̄n,i = O

(
(n− l + 1)−1l2

)
, (65)

where C =
∑l

k=−l |γk|max
{
1, (πF1)−1

∑∞
k=1 k|γk|

}
. Finally, if l = o(n1/2), we obtain

that S̃N
P−→ 0.�

Proof of Lemma 3: Under these assumptions, we have that (c.f. Hannan and

Kavalieri (1986) and Bühlmann (1995))

max
0≤k≤p

|γ̂k − γk| = O((n/ log n)−1/2) a.s., (66)

and there exists a random variable n1 such that:

sup
n≥n1

∞∑
k=0

k2|γk| < +∞ a.s. (67)
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Thus, we have that:

‖Σ− Σ̂‖col ≤ 2
∑∞

k=0 |γ̂k − γk|

= 2
(
|
∑p

k=0 |γ̂k − γk|+
∑∞

k=p+1 |γ̂k − γk|
)

= O((n/ log n)−1/2)p + o(p−2) a.s. = o((n/ log n)−1/3) a.s.

(68)

and

‖Σ−1 − Σ̂−1‖col ≤ ‖Σ−1‖col‖Σ− Σ̂‖col‖Σ̂−1‖col

= o((n/ log n)−1/3) a.s.

(69)

Define Bj , Aj , B̂j and Âj by

Bj = A2
j = n2(T̃ (j)

N − TN )2 (70)

and

B̂j = Â2
j = n2( ̂̃T (j)

N − TN )2. (71)

Note that |Bj − B̂j | = |Aj − Âj ||Aj + Âj |. Next, we find a bound that does not

depend on j.

Using vector w̄n,j defined in Lemma 2, we have

|Aj | = |w̃′
n,j(X−X̄)| ≤ |w̄′

n,j(X−X̄)|+|(w̃n,j−w̄n,j)′(X−X̄)| = OP (l1/2)+OP (l−1/2).

(72)

For |Âj |, we can proceed in a similar way. Note that Σ̂ is an autoregressive

estimator and then Σ̂−1 is a (2p + 1)-diagonal matrix. Therefore, ŵn,j has at most

O(max(l, p)) non zero elements.

Lets denote α(p) the indexes of non zero elements in ŵn,j and define a vector

w̃
(p)
n,j such that w̃

(p)
n,j,α(p) = w̃

(p)
n,j and w̃

(p)
n,j,α(p)′ = 0. By definition, w̃

(p)
n,j has at most

O(max(l, p)) non zero elements and ‖w̃n,j − ̂̃wn,j‖1 = ‖w̃(p)
n,j − ̂̃wn,j‖1 + ‖w̃n,j − w̃

(p)
n,j‖1.
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Now,

|Aj − Âj | =
∣∣∣∣(w̃n,j − ̂̃wn,j

)′ (
X − X̄

)∣∣∣∣
≤
∣∣∣∣(w̃(p)

n,j − ̂̃wn,j

)′ (
X − X̄

)∣∣∣∣+ ∣∣∣∣(w̃n,j − w̃
(p)
n,j

)′ (
X − X̄

)∣∣∣∣ , (73)

‖w̃n,j − ̂̃wn,j‖1 = ‖Σ−1Hj

(
H ′

jΣ
−1Hj

)−1
H ′

jwn,j −Σ̂−1Hj

(
H ′

jΣ̂
−1Hj

)−1
H ′

jwn,j‖1

≤ l
(
‖Σ−1 − Σ̂−1‖col‖(Σ−1(αj))−1‖col

+ ‖Σ̂−1‖col‖(Σ−1(αj))−1 − (Σ̂−1(αj))−1‖col

)
(74)

and

‖Σ−1(αj)−1−Σ̂−1(αj)−1‖col ≤ ‖Σ(αj)−Σ̂(αj)‖col+‖Σ(αj , α
′
j)Σ(α′j)

−1Σ(α′j , αj)

− Σ̂(αj , α
′
j)Σ̂(α′j)

−1Σ̂(α′j , αj)‖col

≤ O(l1/2)‖Σ−Σ̂‖col = oa.s.

(
l1/2(n/ log n)−1/3

)
.

(75)

Then,

‖w̃n,j − ̂̃wn,j‖1 = oa.s.

(
l3/2(n/ log n)−1/3

)
, (76)

|Aj − Âj | = oa.s.

(
l3/2(n/ log n)−1/3

)
OP (max(l, p)1/2), (77)

|Bj − B̂j | =
(
OP (l1/2) + OP (max(l, p)1/2)

)
op

(
max(l, p)1/2l3/2(n/ log n)−1/3

)
= oP

(
max(l, p)1/2l2(n/ log n)−1/3

)
+ oP

(
max(l, p)l3/2(n/ log n)−1/3

)
,

(78)

and
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|nσ̃2
Jack−n̂̃σ2

Jack| = oP

(
max(l, p)1/2l1(n/ log n)−1/3

)
+oP

(
max(l, p)l1/2(n/ log n)−1/3

)
(79)

To finish the proof, we only need to consider the two possible cases l ≤ p and

l > p. In the first case, we need that l = O((n/ log n)1/4) which is trivially satisfied

since l = O(p), and in the second case we need that l = O((n/ log n)2/9). Just rest to

impose that l = O((n/ log n)2/9).�

Proof of Theorem 2: We use extensively the relation between HN and LN and the

symmetry of J(ρ), i.e. J(x, ρ) = 1 − J(−x, ρ) and the following result from Politis

and Romano (1994):

Theorem Assume that there exists a limiting law J(ρ) such that JN (ρ) converge

weakly to a limit law J(ρ), as n → ∞, and that τb/τn → 0, b/n → 0 and b → ∞ as

n →∞. Also assume that the α-mixing sequence satisfies that αX(k) → 0 as k →∞.

1. If x is a continuity point of J(·, ρ), then LN (x) → J(x, ρ) in probability.

2. If J(·, ρ) is continuous, then supx |LN (x)− J(x, ρ)| → 0 in probability.

By symmetry, if x is a continuity point of J(·, ρ), then −x is also a continuity

point. Then, using statement (1) of the theorem, we have

HN (x) = 1− LN (−x) → 1− J(−x, ρ) = J(x, ρ) in probability. (80)

Using statement (2) of the theorem, we obtain convergence to 0 in probability,
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since

supx |HN (x)− J(x, ρ)| = supx |1− LN (−x)− (1− J(−x, ρ))|

= supx |LN (−x)− J(−x, ρ)| .
(81)

Notice that if τl =
√

l, using the fact that l/n → 0, then the coefficient τll
−1(n− l)

is close to
√

n(n− l)l−1 which is the standardizing constant of Wu (1990).�

Proof of Proposition 2: We have that

l−1/2
∑n

t=1 wn(t−j)(X̂t,j−TN ) = l−1/2
∑n

t=1 wn(t−j)(X̂t,j−µ)−l1/2(TN−µ)

= l−1/2
∑n

t=1 wn(t−j)(X̂t,j−µ) +OP (l1/2n−1/2)

= l−1/2w′
n,j(X̂j−µ)+OP (l1/2n−1/2),

(82)

where w′
n,j = (wn(1− j), . . . , wn(n− j)) and X̂ ′

j = (X̂1,j , . . . , X̂n,j). Now,

l−1/2w′
n,j(X̂j −µ) = l−1/2w′

n,j

(
I −Hj(H ′

jΣ
−1Hj)−1H ′

jΣ
−1
)

(X −µ)

= l−1/2(wn,j − w̃n,j)′(X − µ).
(83)

From the proof of Lemma 2 we have that

w̃n,j = Σ−1Hj(H ′
jΣ

−1Hj)−1H ′
jwn,j =


B(Σ−1(αj))−11l×1

1l×1

D′
1(Σ

−1(αj))−11l×1

 (84)

and

‖Σ−1(α′j , αj)(Σ−1(αj))−1‖1 = ‖ − Σ(α′j)
−1Σ(α′j , αj)‖1

≤ 4M
∑∞

k=1 k|γk|.
(85)

Notice that bound (85) does not depend on j. Then,

‖wn,j − w̃n,j‖1 =

∥∥∥∥∥∥∥∥
 B(Σ−1(αj))−11l×1

D′
1(Σ

−1(αj))−11l×1


∥∥∥∥∥∥∥∥

1

≤
∥∥Σ−1(α′j , αj)(Σ−1(αj))−1

∥∥
1
, (86)
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and for some 0 < ε < 1/2,

l−1/2(wn,j − w̃n,j)′(X − µ) = oP (l−1/2+ε). (87)

Therefore,

l−1/2
n∑

t=1

wn(t− j)(X̂t,j − TN ) = OP (l1/2n−1/2) + oP (l−1/2+ε). (88)

Then, only rest to use that l = o(n).�

Proof of Proposition 3: Assuming that n = s(l + k), we have that

(s(l + k))−1/2
∑s

i=1

∑l+k
j=l+1(X̂

∗
(i−1)(l+k)+j − X̄n)

= (s(l + k))−1/2W ′ (Is(l+k) −H(H ′Σ−1H)−1H ′Σ−1
)
(X∗ − X̄),

(89)

where Is(l+k) is the s(l + k) × s(l + k) identity matrix, X∗ = (X∗
1 , . . . , X∗

s(l+k))
′,

X̄ = X̄n1n×1, and W is a s(l + k)× 1 vector defined as

W ′ = (0, . . . , 0︸ ︷︷ ︸
l times

, 1, . . . , 1︸ ︷︷ ︸
k times

, . . . . . . , 0, . . . , 0︸ ︷︷ ︸
l times

, 1, . . . , 1︸ ︷︷ ︸
k times

),

i.e., W indicates the missing observations positions.

Analogously to M2BJ, the matrix H(H ′Σ−1H)−1H ′Σ−1 have submatrices equal

to the k× k identity matrix in the missing observations positions, and the remaining

non-zero elements are elements of −Σ(α′)−1Σ(α′, α), where α = (l + 1, . . . , l + k, 2l +

k + 1, . . . , 2(l + k), . . . , . . . , sl + (s− 1)k + 1, . . . , s(l + k)). Therefore,

W ′ (I −H(H ′Σ−1H)−1H ′Σ−1
)

= (a1, . . . , al, 0, . . . , 0︸ ︷︷ ︸
k times

, . . . , a(s−1)(l+k)+1, . . . . . . , a(s−1)(l+k)+l, 0, . . . , 0︸ ︷︷ ︸
k times

),
(90)

where the a’s are 0 or are the sum of one column of −Σ(α′)−1Σ(α′, α), and they

satisfy
∑s(l+k)

t=1 |at| ≤ 4M
∑∞

k=1 k|γk|. Then,

E∗
[
(s(l + k))−1/2

∑s(l+k)

t=1
at(X∗

t − X̄n)
]

= 0, (91)

37



and

E∗
[(

(s(l + k))−1/2
∑s(l+k)

t=1 at(X∗
t − X̄n)

)2
]

= (s(l + k))−1
∑s(l+k)

t=1

∑s(l+k)
r=1 atarE∗ [(X∗

t − X̄n)(X∗
r − X̄n)

]
≤ (s(l + k))−1

∑s(l+k)
t=1

∑s(l+k)
r=1 |atar|E∗ [(X∗

1 − X̄n)2
]

= (s(l + k))−1O(1)Oa.s.(1) = oa.s.((s(l + k))−1+ε),

(92)

for some 0 < ε < 1.

Finally, (91) and (92) imply that (s(l + k))−1/2
∑s(l+k)

t=1 at(X∗
t −X̄n) = oP (1) for

almost all sample sequences X1, . . . , XN .�

Proof of Lemma 4: We have,

(s(l + k))1/2
( ˜̄X∗

n,s − X̄n

)
= (s(l + k))−1/2

(∑s
i=1

∑l
j=1(X

∗
(i−1)(l+k)+j − X̄n)

+
∑s

i=1

∑l+k
j=l+1(X̂

∗
(i−1)(l+k)+j − X̄n)

)
,

(93)

and

(s(l + k))1/2
( ̂̃̄
X
∗

n,s − X̄n

)
= (s(l + k))−1/2

(∑s
i=1

∑l
j=1(X

∗
(i−1)(l+k)+j − X̄n)

+
∑s

i=1

∑l+k
j=l+1(

̂̂
X
∗
(i−1)(l+k)+j − X̄n)

)
,

(94)

Then,

(s(l + k))1/2
( ˜̄X∗

n,s − X̄n

)
− (s(l + k))1/2

( ̂̃̄
X
∗

n,s − X̄n

)
= (s(l + k))−1/2W ′

(
H(H ′Σ̂−1H)−1H ′Σ̂−1 −H(H ′Σ−1H)−1H ′Σ−1

)
(X∗ − X̄),

(95)
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E∗
[
(s(l + k))1/2

( ˜̄X∗
n,s − X̄n

)
− (s(l + k))1/2

( ̂̃̄
X
∗

n,s − X̄n

)]
= E∗

[
(s(l + k))−1/2

∑s(l+k)
t=1 (ât − at)(X∗

t − X̄n)
]

= (s(l + k))−1/2
∑s(l+k)

t=1 (ât − at)E∗ [X∗
t − X̄n

]
= 0,

(96)

and

E∗

[(
(s(l + k))1/2

( ˜̄X∗
n,s − X̄n

)
− (s(l + k))1/2

( ̂̃̄
X
∗

n,s − X̄n

))2
]

= (s(l + k))−1/2
∑s(l+k)

t=1

∑s(l+k)
r=1 (ât − at)(âr − ar)E∗ [(X∗

t − X̄n)(X∗
r − X̄n)

]
≤ (s(l + k))−1

∑s(l+k)
t=1

∑s(l+k)
r=1 |(ât − at)(âr − ar)|E∗ [(X∗

1 − X̄n)2
]

= (s(l + k))−1oa.s.((sk)3(s(l + k) log(s(l + k)))2/3)Oa.s.(1) = oa.s.(1).

(97)

Finally, (96) and (97) imply (44) for almost all sample sequences X1, . . . , XN .�
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Table 1: MBJ and M2BJ to estimate σ2
N in the case of the sample mean. (+) denotes

cases where the MBJ outperforms the M2BJ. (*) denotes cases where the M2BJ

outperforms the MBJ.

Model N log σ2
N E1 SD1 L1 MSE1 E2 SD2 L2 MSE2

M1 480 3.21 2.95 0.25 35 0.130 (0.011) 2.90 0.24 45 0.152 (0.011)

M1 120 3.18 2.57 0.36 15 0.502 (0.030) 2.51 0.34 20 0.568 (0.032)

M2 480 1.68 1.61 0.09 2 0.012 (0.001) 1.65 0.09 7 0.009 (0.001) *

M2 120 1.70 1.57 0.18 2 0.050 (0.004) 1.55 0.18 7 0.056 (0.006)

M3 480 1.82 1.67 0.14 15 0.045 (0.003) 1.64 0.16 20 0.056 (0.004)

M3 120 1.83 1.52 0.17 4 0.119 (0.006) 1.38 0.23 10 0.251 (0.020) +

M4 480 -1.16 -1.09 0.16 25 0.030 (0.003) -1.13 0.12 10 0.017 (0.002) *

M4 120 -1.13 -1.09 0.22 15 0.050 (0.005) -1.07 0.16 4 0.029 (0.003) *

M5 480 -3.14 -3.04 0.22 85 0.057 (0.005) -3.09 0.22 35 0.048 (0.005)

M5 120 -2.93 -2.57 0.18 30 0.166 (0.008) -2.89 0.31 15 0.100 (0.012) *

M6 480 -3.05 -2.96 0.21 60 0.054 (0.004) -3.03 0.10 5 0.011 (0.001) *

M6 120 -2.92 -2.85 0.21 30 0.051 (0.006) -2.88 0.19 2 0.038 (0.004) *

M7 480 -1.81 -1.72 0.19 40 0.043 (0.004) -1.71 0.15 15 0.032 (0.003) *

M7 120 -1.76 -1.64 0.24 20 0.073 (0.007) -1.67 0.25 8 0.073 (0.007)

M8 480 1.18 1.09 0.11 8 0.020 (0.001) 1.05 0.11 10 0.030 (0.002) +

M8 120 1.17 0.99 0.16 4 0.058 (0.005) 0.90 0.22 7 0.118 (0.011) +

E1, SD1 and MSE1 denotes the average, standard deviation and the mean square error of

the statistic log Nσ̂2
N in the 1000 replications using MBJ method. E2, SD2 and MSE2 are

the corresponding statistics using M2BJ method.

43



Table 2: MBJ and M2BJ to estimate σ2
N in the case of the median. (*) denotes cases

where the M2BJ outperforms the MBJ.

Model N log σ2
N E1 SD1 L1 MSE1 E2 SD2 L2 MSE2

M1 480 3.31 3.04 0.36 35 0.202 (0.022) 3.37 0.31 15 0.101 (0.010) *

M1 120 3.29 2.67 0.52 20 0.654 (0.054) 2.81 0.48 15 0.458 (0.054) *

M2 480 2.04 2.02 0.43 35 0.183 (0.023) 1.93 0.42 20 0.187 (0.024)

M2 120 2.05 1.97 0.56 15 0.315 (0.035) 1.98 0.52 10 0.273 (0.033)

M3 480 2.05 1.91 0.42 20 0.194 (0.024) 1.90 0.39 15 0.177 (0.022)

M3 120 2.03 1.71 0.50 10 0.356 (0.038) 1.77 0.52 6 0.337 (0.036)

M4 480 0.33 0.24 0.56 40 0.329 (0.049) 0.28 0.49 30 0.243 (0.045) *

M4 120 0.34 0.29 0.65 15 0.426 (0.070) 0.18 0.57 15 0.352 (0.050)

M5 480 -0.10 -0.20 0.53 40 0.295 (0.037) -0.15 0.42 20 0.180 (0.024) *

M5 120 -0.10 -0.22 0.72 15 0.528 (0.056) -0.05 0.56 10 0.317 (0.035) *

M6 480 -0.28 -0.45 0.57 50 0.349 (0.036) -0.36 0.53 20 0.288 (0.029)

M6 120 -0.28 -0.35 0.70 15 0.501 (0.060) -0.12 0.54 10 0.321 (0.034) *

M7 480 0.18 0.06 0.52 55 0.285 (0.042) 0.17 0.45 25 0.201 (0.025) *

M7 120 0.19 -0.01 0.68 20 0.497 (0.071) 0.09 0.58 15 0.342 (0.062) *

M8 480 1.45 1.33 0.44 30 0.208 (0.026) 1.38 0.44 15 0.200 (0.023)

M8 120 1.43 1.25 0.57 10 0.360 (0.039) 1.24 0.47 8 0.263 (0.030) *

E1, SD1 and MSE1 denotes the average, standard deviation and the mean square error of

the statistic log Nσ̂2
N in the 1000 replications using MBJ method. E2, SD2 and MSE2 are

the corresponding statistics using M2BJ method.
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Table 3: MBJ and M2BJ to estimate σ2
N in the case of the variance.

Model N log σ2
N E1 SD1 L1 MSE1 E2 SD2 L2 MSE2

M1 480 4.22 3.91 0.33 20 0.209 (0.016) 3.94 0.34 30 0.197 (0.017)

M1 120 4.11 3.31 0.55 9 0.941 (0.050) 3.43 0.59 15 0.810 (0.052)

M2 480 3.98 3.73 0.26 15 0.134 (0.010) 3.71 0.28 25 0.151 (0.011)

M2 120 3.98 3.38 0.46 9 0.576 (0.035) 3.35 0.47 15 0.616 (0.040)

M3 480 3.04 2.86 0.19 10 0.069 (0.005) 2.86 0.20 15 0.072 (0.006)

M3 120 3.02 2.58 0.36 7 0.327 (0.021) 2.59 0.37 10 0.327 (0.026)

M4 480 4.25 3.95 0.36 20 0.217 (0.016) 3.94 0.36 30 0.220 (0.018)

M4 120 4.25 3.51 0.58 10 0.883 (0.049) 3.50 0.56 15 0.891 (0.050)

M5 480 2.07 1.94 0.16 6 0.043 (0.003) 1.93 0.16 7 0.047 (0.003)

M5 120 2.08 1.82 0.29 4 0.149 (0.011) 1.79 0.31 5 0.178 (0.013)

M6 480 2.39 2.24 0.20 7 0.059 (0.005) 2.22 0.21 15 0.073 (0.006)

M6 120 2.40 2.10 0.34 5 0.205 (0.018) 2.05 0.37 8 0.255 (0.020)

M7 480 3.47 3.28 0.28 20 0.112 (0.009) 3.26 0.27 20 0.116 (0.009)

M7 120 3.48 3.04 0.47 9 0.423 (0.030) 2.97 0.43 7 0.447 (0.030)

M8 480 2.08 1.95 0.17 7 0.046 (0.004) 1.95 0.18 9 0.049 (0.004)

M8 120 2.06 1.83 0.33 4 0.162 (0.011) 1.82 0.33 5 0.168 (0.012)

E1, SD1 and MSE1 denotes the average, standard deviation and the mean square error of

the statistic log Nσ̂2
N in the 1000 replications using MBJ method. E2, SD2 and MSE2 are

the corresponding statistics using M2BJ method.
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Table 4: MBJ and M2BJ to estimate σ2
N in the case of the autocovariance of order

1. (*) denotes cases where the M2BJ outperforms the MBJ.

Model N log σ2
N E1 SD1 L1 MSE1 E2 SD2 L2 MSE2

M1 480 4.17 3.85 0.34 20 0.216 (0.018) 3.85 0.32 20 0.205 (0.016)

M1 120 4.04 3.24 0.58 9 0.960 (0.056) 3.31 0.53 10 0.808 (0.050)

M2 480 3.69 3.45 0.26 15 0.124 (0.010) 3.43 0.28 25 0.147 (0.011)

M2 120 3.67 3.08 0.46 8 0.553 (0.034) 3.06 0.47 15 0.579 (0.040)

M3 480 2.66 2.51 0.21 9 0.067 (0.006) 2.49 0.19 10 0.066 (0.005)

M3 120 2.62 2.21 0.38 5 0.317 (0.022) 2.22 0.39 8 0.317 (0.025)

M4 480 4.20 3.91 0.38 25 0.232 (0.018) 3.90 0.37 30 0.229 (0.018)

M4 120 4.19 3.43 0.58 10 0.914 (0.052) 3.38 0.52 10 0.927 (0.049)

M5 480 1.52 1.40 0.19 6 0.054 (0.004) 1.40 0.14 2 0.035 (0.003) *

M5 120 1.51 1.25 0.29 2 0.150 (0.012) 1.29 0.28 2 0.124 (0.011)

M6 480 2.05 1.91 0.21 9 0.064 (0.006) 1.88 0.21 10 0.074 (0.006)

M6 120 2.04 1.69 0.36 3 0.250 (0.020) 1.70 0.41 8 0.290 (0.025)

M7 480 3.34 3.13 0.29 20 0.125 (0.011) 3.12 0.28 20 0.127 (0.010)

M7 120 3.33 2.85 0.52 9 0.501 (0.035) 2.83 0.49 7 0.484 (0.035)

M8 480 1.52 1.39 0.18 4 0.050 (0.004) 1.46 0.17 3 0.032 (0.003) *

M8 120 1.48 1.21 0.32 2 0.173 (0.014) 1.26 0.29 2 0.135 (0.012) *

E1, SD1 and MSE1 denotes the average, standard deviation and the mean square error of

the statistic log Nσ̂2
N in the 1000 replications using MBJ method. E2, SD2 and MSE2 are

the corresponding statistics using M2BJ method.
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Table 5: MBJ and M2BJ to estimate σ2
N in the case of the autocovariance of order

5. (*) denotes cases where the M2BJ outperforms the MBJ.

Model N log σ2
N E1 SD1 L1 MSE1 E2 SD2 L2 MSE2

M1 480 3.79 3.39 0.40 25 0.319 (0.022) 3.52 0.33 15 0.176 (0.014) *

M1 120 3.55 2.72 0.59 7 1.041 (0.055) 2.97 0.49 9 0.578 (0.042) *

M2 480 3.50 3.22 0.29 20 0.157 (0.012) 3.30 0.24 15 0.097 (0.008) *

M2 120 3.43 2.78 0.48 8 0.651 (0.039) 2.91 0.44 10 0.469 (0.031) *

M3 480 2.39 2.20 0.20 10 0.078 (0.006) 2.42 0.17 5 0.029 (0.003) *

M3 120 2.30 1.92 0.38 6 0.278 (0.022) 2.22 0.37 6 0.144 (0.016) *

M4 480 3.84 3.46 0.41 20 0.311 (0.019) 3.56 0.34 15 0.198 (0.013) *

M4 120 3.79 2.92 0.58 7 1.109 (0.053) 3.18 0.55 10 0.684 (0.042) *

M5 480 1.37 1.25 0.14 4 0.031 (0.003) 1.46 0.12 2 0.023 (0.002) *

M5 120 1.33 1.14 0.29 3 0.121 (0.009) 1.33 0.27 2 0.072 (0.007) *

M6 480 1.69 1.55 0.18 6 0.050 (0.004) 1.77 0.15 4 0.029 (0.003) *

M6 120 1.65 1.40 0.35 5 0.185 (0.016) 1.61 0.32 4 0.102 (0.010) *

M7 480 2.78 2.54 0.27 10 0.133 (0.009) 2.74 0.22 7 0.048 (0.005) *

M7 120 2.73 2.28 0.44 6 0.399 (0.029) 2.53 0.39 6 0.193 (0.021) *

M8 480 1.36 1.26 0.15 5 0.033 (0.003) 1.45 0.13 2 0.025 (0.002) *

M8 120 1.28 1.12 0.31 3 0.122 (0.011) 1.27 0.27 2 0.073 (0.008) *

E1, SD1 and MSE1 denotes the average, standard deviation and the mean square error of

the statistic log Nσ̂2
N in the 1000 replications using MBJ method. E2, SD2 and MSE2 are

the corresponding statistics using M2BJ method.

47



Table 6: MBB and M2BB to estimate σ2
N in the case of the sample mean. (*) denotes

cases where the M2BB outperforms the MBB.

Model N log σ2
N E1 SD1 L1 MSE1 E2 SD2 L2 MSE2

M1 480 3.21 2.93 0.24 30 0.135 (0.010) 3.00 0.19 5 15 0.079 (0.006) *

M1 120 3.18 2.56 0.36 15 0.521 (0.031) 2.76 0.31 5 9 0.275 (0.018) *

M2 480 1.68 1.60 0.11 2 0.018 (0.001) 1.70 0.10 1 1 0.011 (0.001) *

M2 120 1.70 1.83 0.20 3 0.055 (0.005) 1.65 0.19 1 1 0.040 (0.004) *

M3 480 1.82 1.66 0.16 15 0.052 (0.004) 1.87 0.11 3 5 0.014 (0.001) *

M3 120 1.83 1.51 0.18 4 0.130 (0.007) 1.86 0.17 2 3 0.028 (0.003) *

M4 480 -1.16 -1.08 0.16 25 0.033 (0.003) -1.09 0.16 1 15 0.029 (0.003)

M4 120 -1.13 -1.10 0.24 15 0.057 (0.005) -1.03 0.20 1 8 0.049 (0.004)

M5 480 -3.14 -2.84 0.17 60 0.117 (0.006) -3.12 0.22 1 55 0.050 (0.005) *

M5 120 -2.93 -2.57 0.19 30 0.167 (0.008) -2.90 0.24 2 30 0.056 (0.007) *

M6 480 -3.05 -2.96 0.22 60 0.056 (0.005) -2.96 0.11 1 10 0.020 (0.002) *

M6 120 -2.92 -2.85 0.21 30 0.049 (0.006) -2.94 0.22 1 15 0.047 (0.004)

M7 480 -1.81 -1.74 0.20 40 0.045 (0.004) -1.76 0.18 1 25 0.035 (0.004) *

M7 120 -1.76 -1.79 0.27 25 0.072 (0.007) -1.72 0.26 1 15 0.068 (0.007)

M8 480 1.18 1.09 0.13 9 0.025 (0.002) 1.17 0.08 1 1 0.006 (0.001) *

M8 120 1.17 0.98 0.17 4 0.064 (0.005) 1.15 0.12 1 1 0.015 (0.002) *

E1, SD1 and MSE1 denotes the average, standard deviation and the mean square error of

the statistic log Nσ̂2
N in the 1000 replications using MBB method. E2, SD2 and MSE2 are

the corresponding statistics using M2BB method.
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Table 7: MBB and M2BB to estimate σ2
N in the case of the median. (*) denotes cases

where the M2BB outperforms the MBB.

Model N log σ2
N E1 SD1 L1 MSE1 E2 SD2 L2 MSE2

M1 480 3.31 3.06 0.29 30 0.147 (0.013) 3.10 0.19 5 9 0.084 (0.006) *

M1 120 3.29 2.76 0.44 15 0.471 (0.035) 2.90 0.36 5 10 0.277 (0.021) *

M2 480 2.04 2.08 0.24 15 0.058 (0.007) 1.98 0.14 1 1 0.023 (0.002) *

M2 120 2.05 2.07 0.33 9 0.111 (0.013) 1.94 0.23 1 1 0.066 (0.006) *

M3 480 2.05 1.89 0.23 15 0.075 (0.008) 2.06 0.14 3 5 0.021 (0.003) *

M3 120 2.03 1.80 0.29 4 0.137 (0.013) 2.06 0.22 2 3 0.051 (0.006) *

M4 480 0.33 0.44 0.29 8 0.097 (0.009) 0.26 0.18 3 5 0.037 (0.004) *

M4 120 0.34 0.45 0.38 4 0.156 (0.016) 0.26 0.27 3 5 0.077 (0.009) *

M5 480 -0.10 -0.04 0.30 15 0.093 (0.009) -0.22 0.16 3 5 0.038 (0.003) *

M5 120 -0.10 0.05 0.37 7 0.162 (0.016) -0.12 0.23 3 5 0.054 (0.005) *

M6 480 -0.28 -0.23 0.30 15 0.092 (0.009) -0.25 0.21 2 5 0.046 (0.004) *

M6 120 -0.28 -0.18 0.40 9 0.168 (0.019) -0.37 0.27 3 5 0.084 (0.007) *

M7 480 0.18 0.20 0.29 20 0.085 (0.011) 0.14 0.18 3 5 0.033 (0.003) *

M7 120 0.19 0.27 0.40 9 0.167 (0.019) 0.15 0.24 3 5 0.061 (0.007) *

M8 480 1.45 1.36 0.21 6 0.053 (0.005) 1.39 0.12 1 1 0.017 (0.001) *

M8 120 1.43 1.27 0.28 3 0.105 (0.010) 1.39 0.16 1 1 0.028 (0.003) *

E1, SD1 and MSE1 denotes the average, standard deviation and the mean square error of

the statistic log Nσ̂2
N in the 1000 replications using MBB method. E2, SD2 and MSE2 are

the corresponding statistics using M2BB method.
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Table 8: MBB and M2BB to estimate σ2
N in the case of the variance.

Model N log σ2
N E1 SD1 L1 MSE1 E2 SD2 L2 MSE2

M1 480 4.22 3.88 0.33 20 0.219 (0.017) 3.86 0.33 3 20 0.233 (0.018)

M1 120 4.11 3.28 0.53 8 0.970 (0.050) 3.24 0.51 3 7 1.026 (0.054)

M2 480 3.98 3.73 0.27 15 0.139 (0.011) 3.74 0.29 3 20 0.139 (0.011)

M2 120 3.98 3.34 0.47 10 0.622 (0.036) 3.38 0.47 3 10 0.581 (0.037)

M3 480 3.04 2.83 0.20 9 0.082 (0.006) 2.83 0.20 1 10 0.081 (0.006)

M3 120 3.02 2.55 0.37 8 0.353 (0.023) 2.55 0.36 1 7 0.350 (0.022)

M4 480 4.25 3.94 0.35 20 0.222 (0.017) 3.92 0.36 4 25 0.238 (0.019)

M4 120 4.25 3.50 0.56 9 0.875 (0.050) 3.46 0.56 4 7 0.948 (0.053)

M5 480 2.07 1.95 0.17 9 0.044 (0.004) 1.95 0.17 1 8 0.043 (0.004)

M5 120 2.08 1.81 0.28 3 0.152 (0.012) 1.80 0.26 1 2 0.146 (0.011)

M6 480 2.39 2.24 0.20 7 0.062 (0.005) 2.25 0.18 2 4 0.050 (0.005)

M6 120 2.40 2.09 0.36 6 0.225 (0.019) 2.10 0.33 2 4 0.199 (0.017)

M7 480 3.47 3.26 0.27 15 0.118 (0.009) 3.26 0.27 1 15 0.115 (0.009)

M7 120 3.48 3.01 0.46 8 0.438 (0.030) 2.98 0.46 1 7 0.464 (0.029)

M8 480 2.08 1.93 0.18 5 0.052 (0.004) 1.95 0.18 1 5 0.048 (0.004)

M8 120 2.06 1.80 0.31 3 0.168 (0.012) 1.79 0.30 1 4 0.163 (0.012)

E1, SD1 and MSE1 denotes the average, standard deviation and the mean square error of

the statistic log Nσ̂2
N in the 1000 replications using MBB method. E2, SD2 and MSE2 are

the corresponding statistics using M2BB method.

50



Table 9: MBB and M2BB to estimate σ2
N in the case of the autocovariance of order

1. (*) denotes cases where M2BB outperforms the MBB.

Model N log σ2
N E1 SD1 L1 MSE1 E2 SD2 L2 MSE2

M1 480 4.17 3.79 0.35 25 0.268 (0.019) 3.80 0.32 3 20 0.245 (0.019)

M1 120 4.04 3.13 0.61 15 1.195 (0.065) 3.14 0.53 3 7 1.081 (0.059)

M2 480 3.69 3.41 0.27 20 0.153 (0.011) 3.43 0.24 3 9 0.125 (0.009)

M2 120 3.67 2.99 0.46 10 0.678 (0.036) 3.11 0.45 3 7 0.519 (0.034) *

M3 480 2.66 2.45 0.23 20 0.098 (0.007) 2.48 0.22 2 10 0.080 (0.006)

M3 120 2.62 2.11 0.39 8 0.414 (0.025) 2.18 0.37 2 5 0.336 (0.025)

M4 480 4.20 3.84 0.37 20 0.263 (0.019) 3.86 0.37 4 25 0.247 (0.019)

M4 120 4.19 3.35 0.62 15 1.081 (0.058) 3.37 0.57 4 7 1.002 (0.056)

M5 480 1.52 1.36 0.19 9 0.065 (0.005) 1.39 0.18 1 5 0.049 (0.004) *

M5 120 1.51 1.20 0.32 5 0.194 (0.013) 1.24 0.30 1 3 0.159 (0.012)

M6 480 2.05 1.88 0.24 15 0.086 (0.008) 1.90 0.19 2 4 0.057 (0.005) *

M6 120 2.04 1.65 0.40 8 0.315 (0.025) 1.73 0.35 2 3 0.217 (0.020) *

M7 480 3.34 3.09 0.30 20 0.151 (0.011) 3.10 0.28 2 15 0.133 (0.010)

M7 120 3.33 2.77 0.50 10 0.564 (0.037) 2.81 0.53 2 10 0.544 (0.037)

M8 480 1.52 1.34 0.20 8 0.073 (0.005) 1.41 0.20 1 8 0.051 (0.005) *

M8 120 1.48 1.09 0.29 3 0.231 (0.014) 1.16 0.28 1 1 0.179 (0.013) *

E1, SD1 and MSE1 denotes the average, standard deviation and the mean square error of

the statistic log Nσ̂2
N in the 1000 replications using MBB method. E2, SD2 and MSE2 are

the corresponding statistics using M2BB method.
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Table 10: MBB and M2BB to estimate σ2
N in the case of the autocovariance of order

5.

Model N log σ2
N E1 SD1 L1 MSE1 E2 SD2 L2 MSE2

M1 480 3.79 3.30 0.39 35 0.389 (0.022) 3.31 0.37 3 25 0.366 (0.022)

M1 120 3.55 2.60 0.47 5 1.133 (0.045) 2.59 0.53 2 10 1.204 (0.054)

M2 480 3.50 3.16 0.29 30 0.201 (0.013) 3.18 0.29 4 25 0.189 (0.012)

M2 120 3.43 2.68 0.38 5 0.702 (0.032) 2.76 0.44 3 10 0.643 (0.035)

M3 480 2.39 2.15 0.18 15 0.092 (0.006) 2.19 0.20 2 15 0.081 (0.006)

M3 120 2.30 1.94 0.30 5 0.212 (0.015) 1.92 0.31 1 9 0.241 (0.016)

M4 480 3.84 3.40 0.39 30 0.351 (0.020) 3.40 0.39 2 25 0.337 (0.019)

M4 120 3.79 2.89 0.46 5 1.034 (0.045) 2.92 0.54 3 10 1.053 (0.050)

M5 480 1.37 1.29 0.14 5 0.025 (0.002) 1.29 0.13 1 6 0.022 (0.002)

M5 120 1.33 1.24 0.25 5 0.070 (0.006) 1.22 0.24 1 4 0.069 (0.006)

M6 480 1.69 1.56 0.15 5 0.038 (0.003) 1.60 0.17 2 9 0.034 (0.003)

M6 120 1.65 1.51 0.27 5 0.095 (0.011) 1.50 0.28 2 6 0.100 (0.012)

M7 480 2.78 2.52 0.24 15 0.124 (0.008) 2.54 0.26 2 15 0.124 (0.008)

M7 120 2.73 2.40 0.41 5 0.273 (0.018) 2.34 0.37 1 4 0.292 (0.019)

M8 480 1.36 1.26 0.13 5 0.027 (0.002) 1.28 0.13 1 9 0.024 (0.002)

M8 120 1.28 1.18 0.25 5 0.073 (0.007) 1.17 0.24 1 4 0.069 (0.007)

E1, SD1 and MSE1 denotes the average, standard deviation and the mean square error of

the statistic log Nσ̂2
N in the 1000 replications using MBB method. E2, SD2 and MSE2 are

the corresponding statistics using M2BB method.
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Figure 1: Moving blocks methods to estimate σ2
N in the case of the sample mean.
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Figure 2: Moving blocks methods to estimate σ2
N in the case of the median.
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Figure 3: Moving blocks methods to estimate σ2
N in the case of the autocovariance

of order 1.
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