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Abstract—We consider a sensor scheduling model where a set
of identical sensors are used to hunt a larger set of heteroge-
neous targets, each of which is located at a corresponding site.
Target states change randomly over discrete time slots between
“exposed” and ‘hidden,” according to Markovian transition
probabilities that depend on whether sites are searched or not,
so as to make the targets elusive. Sensors are imperfect, failing
to detect an exposed target when searching its site with a positive
misdetection probability. We formulate as a partially observable
Markov decision process the problem of scheduling the sensors to
search the sites so as to maximize the expected total discounted
value of rewards earned (when targets are hunted) minus search
costs incurred. Given the intractability of finding an optimal
policy, we introduce a tractable heuristic search policy of priority-
index type based on the Whittle index for restless bandits.
Preliminary computational results are reported showing that such
a policy is nearly optimal and can substantially outperform the
myopic policy and other simple heuristics.

I. INTRODUCTION

In recent years, the investigation of effective dynamic poli-

cies for operating wireless sensor networks has become an

active research area. An issue that has received much attention

is the design of scheduling policies to allocate over time a set

of sensors to track a larger set of moving targets, to optimize

a system-wide performance objective. See, e.g., [1].

The sensors provide error-prone measurements of the sensed

targets, such as their location, or their presence or absence

at a given location. The current knowledge on each target

is represented by its information state, which evolves via

Bayesian updates depending on whether or not the target is

sensed at each time slot. This allows us to formulate the

optimal sensor scheduling problem as a partially observable

Markov decision process (POMDP) with special structure,

which often fits into the framework of the continuous-state

multi-armed bandit problem, either in its classic version or,

more often, in its restless variant. See [2].

Although the multi-armed restless bandit problem

(MARBP) is, generally, computationally intractable,

formulating a sensor scheduling problem in such a framework

allows us to use the general heuristic index policy proposed

by Whittle in [3] for the former problem. If M sensors are

available to track N > M targets, such a policy attaches
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an index λ∗
n(xn) to each target n = 1, . . . , N as a function

of its current information state xn, and then senses at each

time up to M targets with higher index values, among those

targets, if any, whose current index value exceeds or equals

the search cost cn i.e., such that λ∗
n(xn) > cn.

Such an approach has been used to address sensor schedul-

ing problems in, e.g., [4]–[9]. Besides a policy, it further

provides an upper bound on the optimal problem value, which

can be used to assess the optimality loss of heuristic policies. A

growing body of numerical work suggests that the performance

of the Whittle index policy is often nearly optimal.

The targets are typically assumed to follow dynamics that

are unaffected by sensing decisions. Yet, in certain applica-

tions, targets are smart, in that they react to sensing actions

by changing their dynamics to make them elusive. However,

few papers consider sensor scheduling with smart targets. [10]

uses reinforcement learning to obtain a non-myopic policy for

detection and tracking of smart targets, while [11] uses particle

filter methods, and [12] uses game theory. [13] uses agent-

based modeling to address a model similar to ours.

This paper extends such a line of research by investigating

a sensor scheduling model where a set of identical sensors

are used to hunt a larger set of heterogeneous targets, each

of which is located at a corresponding site. Target states

change randomly over discrete time slots between “exposed”

and ‘hidden,” according to Markovian transition probabilities

that depend on whether sites are searched or not, so as to

make the targets elusive. Sensors are imperfect, failing to

detect an exposed target when searching its site with a positive

misdetection probability.

As a specific motivating application, consider the problem

investigated in [13], where the targets are mobile platforms

(transporter-erector-launchers) for launching Scud missiles,

and the sites are areas where it is known that such platforms

are located. Sensors can be mounted on unmanned aerial

vehicles (UAV). The optimal sensor scheduling problem is to

devise a scheduling policy for minimizing the average time

until all missile launchers are detected and destroyed.

The remainder of the paper is organized as follows. Section

II describes and formulates the model. Section III reviews the

restless bandit indexation approach as it applies to the design

of index policies for the present model. Section IV outlines

how to deploy such a methodology to compute the index.
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Section V reports on several simulation experiments where the

proposed index policy is compared with alternative heuristic

policies. Finally, section VI ends the paper with concluding

remarks. Detailed analysis and proofs will be included in a

full version of this paper, which is currently under preparation.

II. MODEL DESCRIPTION AND FORMULATION

We consider a model where M sensors are available to hunt

N > M elusive targets, where each target n is located at a

corresponding site n = 1, . . . , N . The target at site n changes

its visibility state sn,t at discrete time slots t = 0, 1, . . . over

an infinite horizon between the hidden state (sn,t = 0), in

which it is invisible to sensors but cannot perform its tasks,

and the exposed state (sn,t = 1), in which it can perform its

tasks but can be detected by a sensor searching the site.

The visibility state sn,t of target n evolves according to

Markovian transition probabilities depending on whether or

not its site is searched. We assume that only one sensor can

search a site at each time slot, and model sensing decisions by

binary actions an,t, where an,t = 1 if site n is searched at time

t, and an,t = 0 otherwise. When an,t = a the target moves

from the hidden to the exposed state (resp. from the exposed

to the hidden state, in case the target is not detected) with

probability p
(a)
n (resp. q

(a)
n ). Such probabilities are such that,

after a site is searched and the target on it is not detected, it is

more likely that the target moves into or remains in the hidden

state than if the site had not been searched, i.e., q
(1)
n > q

(0)
n

and p
(1)
n < p

(0)
n . We assume that the visibility state processes

have positive autocorrelation, i.e., ρ
(a)
n , 1− p

(a)
n − q

(a)
n > 0.

The target at site n is hunted when it is searched if it

is exposed, which yields a reward rn. Information on the

visibility state of target n is gained by sensing it, which

provides a sensing outcome on,t ∈ {0, 1}: on,t = 1 if the

target is detected and hunted, and on,t = 0 otherwise. Sensing

is imperfect, in that the target at site n will not be detected

when the site is searched and the target is exposed with a

positive misdetection probability αn = P{on,t = 0 | sn,t = 1}.

Hence, the visibility state sn,t is not observable, but it is

tracked by the information state Xn,t ∈ X , [0, 1], giving the

posterior probability that the target will be exposed in slot t,
conditioned on the history {Xn,s, an,s : 0 ≤ s < t} ∪ {Xn,t}.

Since we assume that a site n whose target that has been

hunted (xn = 0) is removed from further search, we partition

a target state space X into the set X̄ , (0, 1] of controllable

states, where both actions an ∈ {0, 1} are available, and the

uncontrollable state 0, where only action an = 0 is available.

The dynamics of the information state for target n under

each sensing action are obtained via Bayesian updates. If the

site is searched in slot t (an,t = 1), with its information

state being Xn,t, and the target is detected (on,t = 1), which

happens with probability (1 − αn)Xn,t, then the target is

hunted, and the site is removed. We model such a situation

by letting the target information state drop to Xn,t+1 = 0.

On the other hand, if the target is not detected (on,t = 0),

which happens with probability 1− (1−αn)Xn,t, it is readily

calculated that the information state changes to

Xn,t+1 = p(1)n +
ρ
(1)
n αnXn,t

1− (1 − αn)Xn,t

.

Thus, if site n is searched, its next information state is obtained

in a randomized fashion depending on the sensing outcome.

Finally, if site n is not searched (an,t = 0) in slot t, with its

information state being Xn,t, then, as long as the target has not

yet been hunted (i.e., if Xn,t > 0), its next information state

is determined by Xn,t+1 = p
(0)
n (1−Xn,t)+

(
1− q

(0)
n

)
Xn,t =

p
(0)
n + ρ

(0)
n Xn,t. Yet, if the target has already been hunted

(Xn,t = 0), its information state remains at 0, i.e., Xn,t+1 = 0.

Actions are prescribed by a scheduling policy π from the

class Π(M) of admissible policies. The class Π(M) consists

of the nonanticipative policies (i.e., based on the history of

states and actions) that search at most M sites per slot:

N∑

n=1

an,t 6 M, t = 0, 1, . . . (1)

As for the economic consequences of the actions, taking

action an on site n when it occupies the information state xn

yields the expected one-slot net reward Rn(xn, an) ,
(
rn (1−

αn)xn − cn
)
an, where cn > 0 is the cost of searching site n.

Consider the problem of finding a discounted-reward opti-

mal policy,

max
π∈Π(M)

E
π

x0

[
∞∑

t=0

N∑

n=1

βtRn

(
Xn,t, an,t

)
]
, (2)

where 0 < β 6 1 is the discount factor, x0 = (xn,0)
N
n=1, and

E
π

x0
[·] denotes expectation under policy π conditioned on the

initial joint state being equal to x0. Note that the case β = 1
(total expected reward criterion) is well defined here.

Problem (2) is a POMDP of MARBP type. Since such

problems are hard to solve, our main goal is to develop

tractable policies that are close to optimal.

Given their intuitive appeal and tractability, we will focus

on heuristics of priority-index type. Such policies attach an

index λn(xn) to each site n as a function of its state xn. At

time t, the index policy selects at most M sites to sense, using

λn(xn,t) as a priority index for sensing site n (where a larger

index value means a higher priority), among those sites, if any,

at which the current index value exceeds or equals the search

cost (λn

(
xn,t

)
> cn), breaking ties arbitrarily.

III. MARBP FORMULATION AND THE WHITTLE INDEX

We will deploy the approach developed and applied in other

real-state MARBP models in [6]–[8], as reviewed next.

A. Relaxed Problem, Lagrangian Relaxation and Performance

Bound

Along the lines introduced in [3] for the equality-

constrained case, we first construct a relaxation of (2), replac-

ing the sample-path activity constraint (1) with the weaker
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constraint that the expected total discounted (ETD) number of

sensed sites does not exceed M/(1− β), i.e.,

E
π

x0

[
∞∑

t=0

N∑

n=1

βtan,t

]
6

M

1− β
. (3)

Denoting by Π̂ the class of nonanticipative scheduling policies

that are allowed to search any number of sites at any time, the

relaxed primal problem is

max
(3),π∈Π̂

E
π

x0

[
∞∑

t=0

N∑

n=1

βtRn

(
Xn,t, an

)
]
. (4)

Note that the optimal value V R(x0) of (4) gives an upper

bound on the optimal value V ∗(x0) of (2).

To address the constrained MDP (4) we use a Lagrangian

analysis, dualizing the constraint (3) using a multiplier λ > 0.

The resulting problem

max
π∈Π̂

E
π

x0

[
∞∑

t=0

N∑

n=1

βt
{
Rn

(
Xn,t, an,t

)
− λan,t

}
]
+

Mλ

1− β

(5)

is a Lagrangian relaxation of (4), whose optimal value

V L(x0;λ) gives an upper bound on V R(x0). The Lagrangian

dual problem is to find a value λ∗(x0) of λ giving the best

such upper bound, which we denote by V D(x0):

V D(x0) = min
λ>0

V L(x0;λ) (6)

Note that (6) is a scalar convex optimization problem, since

λ 7→ V L(x0;λ) is convex. Under suitable regularity condi-

tions, strong duality holds, i.e., V D(x0) = V R(x0).

B. Indexability and the Whittle Index Policy

Since target state transitions are independent, problem (5)

decomposes into the N single-sensor single-site subproblems

max
πn∈Πn

E
πn

xn,0

[
∞∑

t=0

βt{Rn

(
Xn,t, an,t

)
− λan,t}

]
, (7)

where Πn denotes the class of admissible policies for operating

a single sensor on site n. Note that the Lagrange multiplier λ
plays the role of an additional search cost.

Denoting by V L
n (xn,0;λ) the optimal value of subproblem

(7), the optimal value V L(x0;λ) of (5) is decomposed as

V L(x0;λ) =
Mλ

(1 − β)
+

N∑

n=1

V L
n (xn,0;λ). (8)

We will say that the single-site subproblem (7) is indexable

if there exists an index λ∗
n(xn) attached to the controllable

information states xn ∈ X̄ , (0, 1], which is such that, for any

value of λ ∈ R, it is optimal to search the site when it occupies

state xn, regardless of the initial state, iff λ∗
n(xn) > λ.We

will refer to λ∗
n(xn) as the Whittle index, or the marginal

productivity (MP) index for site n.

If each subproblem (7) is indexable, then we can use the

Whittle indices λ∗
n(xn) to obtain a corresponding priority-

index policy, as described above.

C. Sufficient Indexability Conditions and Index Evaluation

The indexability property for restless bandits, introduced in

[3], cannot be taken for granted, needing to be established for

the model at hand. The introduction in [14], [15] of sufficient

indexability conditions for discrete-state restless bandits, along

with an index algorithm, based on satisfaction of partial

conservation laws (PCLs), provided a methodology for such a

purpose. See the review [16]. Such conditions were extended

to real-state restless bandits in [6], as reviewed next.

We focus here on a generic site and target, dropping

the subscript n from the notation. We will evaluate sensing

policies π ∈ Π along two dimensions: the work measure

g(x, π), giving the ETD number of times the site is searched

under policy π starting from X0 = x; and the reward measure

f(x, π), giving the ETD reward earned:

g(x, π) , E
π
x

[
∞∑

t=0

βtat

]
, f(x, π) , E

π
x

[
∞∑

t=0

βtR(Xt, at)

]
.

The single-site subproblem (7) is thus formulated as

max
π∈Π

f(x, π)− λg(x, π). (9)

By standard results, there exists an optimal policy for the

discounted real-state MDP (9) that is stationary deterministic.

Such policies are conveniently represented by their active

(state) sets, i.e., the set of information states where the active

action (search the site) is prescribed. For an active set B ⊆ X̄,

we will thus refer to the B-active policy.

We will further focus on the family of threshold policies.

Given a threshold z ∈ R , the z-threshold policy prescribes to

search the site in information state x iff x > z, so its active

set is B(z) , {x ∈ X̄ : x > z}. Note that B(z) = (z, 1] for

0 6 z < 1, B(z) = X̄ = (0, 1] for z < 0, and B(z) = ∅ for

z > 1. We denote by g(x, z) and f(x, z) the work and reward

measures under the z-threshold policy.

In the sequel, we will write b(x) , 1− (1− α)x, and

φ(0)(x) , p(0) + ρ(0)x, φ(1)(x) , p(1) +
ρ(1)αx

b(x)
. (10)

Given threshold z, the performance measures g(x, z) and

f(x, z) are characterized as the unique solutions to the fol-

lowing functional equations:

g(x, z) =





1 + βb(x)g
(
φ(1)(x), z

)
, x ∈ (z, 1]

βg
(
φ(0)(x), z

)
, x ∈ (0, z]

0 x = 0,

(11)

f(x, z) =





R(x, 1) + βb(x)f
(
φ(1)(x), z

)
, x ∈ (z, 1]

βf
(
φ(0)(x), z

)
, x ∈ (0, z]

0 x = 0.
(12)

Given threshold z and action a, denote by 〈a, z〉 the policy

that takes action a in the initial time slot and then follows

the z-threshold policy thereafter. Define the marginal work
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measure w(x, z) and the marginal reward measure r(x, z) for

x ∈ X̄ by

w(x, z) , g(x, 〈1, z〉)− g(x, 〈0, z〉) (13)

= 1 + βb(x)g(φ(1)(x), z)− β g(φ(0)(x), z),

r(x, z) , f(x, 〈1, z〉)− f(x, 〈0, z〉)

= R(x, 1) + βb(x)f(φ(1)(x), z)

−β f(φ(0)(x), z). (14)

If w(x, z) 6= 0, define the marginal productivity measure

λ(x, z) ,
r(x, z)

w(x, z)
. (15)

We say that subproblem (9) is PCL-indexable (with respect

to threshold policies) if:

(i) positive marginal work: w(x, z) > 0, x ∈ X̄, z ∈ R;

(ii) nondecreasing index: the index defined by

λ∗(x) , λ(x, x), x ∈ X̄. (16)

is monotone nondecreasing in x

Theorem 1. If subproblem (9) is PCL-indexable, then it is

indexable and the λ∗(x) in (16) is its Whittle index.

IV. INDEX COMPUTATION

To apply the PCL-indexability conditions, we must first

calculate the evaluation measures g(x, z) and f(x, z).

In some cases (see [6]), such measures can be evaluated

in closed form, which allows for direct verification of the

PCL-indexability conditions, and yields a closed-form index

formula. Such is not the case, however, with the present model.

This section outlines how to solve the evaluation equations to

perform a PCL-indexability analysis, and further shows how

to use such solutions to compute in practice the index λ∗(x).

A. Total and Marginal Evaluation Measures

As a preliminary step for solving (11) and (12), we define

φ
(a)
t (x) for a ∈ {0, 1} as the t-th iterate of the recursion

φ
(a)
0 (x) , x and φ

(a)
t (x) , φ(a)(φ

(a)
t−1(x)). Note that, for any

x ∈ X̄, limt→∞ φ
(a)
t (x) = φ

(a)
∞ , where

φ(0)
∞ =

p(0)

1− ρ(0)
, φ(1)

∞ =
γ −

√
γ2 − 4(1− α)p(1)

2(1− α)
,

with γ , 1 − ρ(1) + (1 − α)(p(1) + ρ(1)). The above

assumptions on the transition probabilities for the target

visibility state ensure that φ
(1)
∞ < φ

(0)
∞ . Hence, to solve the

evaluation equations we must distinguish three cases, as

discussed below. In the sequel we assume, without loss of

generality, that the search cost is c = 0.

Case I: z ∈
[
0, φ

(1)
∞

]
: In this case, once the target state Xt

reaches the active set B(z) = (z, 1], it remains in B(z) as

long as the target is not hunted. Thus, given the initial state

x 6 z, let t∗0(x, z) , min{t > 1: Xt > z} be the first hitting

time to B(z), which can be computed as t∗0(x, z) , min{t >

1: φ
(0)
t (x) > z}, and let y , φ

(0)
t∗
0
(x,z)(x). Also, denote by

θ(x, z, t) the survival probability that the target has not been

hunted before time slot t under the z-threshold policy, starting

from state x. Note that, for x > z,

θ(x, z, t) =

t−1∏

s=0

[
1− (1 − α) φ(1)

s (x)
]
, t > 1,

and θ(x, z, 0) = 1. We have the work measure evaluation

g(x, z) =





∞∑

t=0

βtθ(x, z, t), x ∈ (z, 1]

βt∗
0
(x,z)g(y, z), x ∈ (0, z].

(17)

Similarly, we obtain the reward measure evaluation

f(x, z) =





∞∑

t=0

βtθ(x, z, t)R
(
φ
(1)
t (x, z), 1

)
, x ∈ (z, 1]

βt∗
0
(x,z)f(y, z), x ∈ (0, z].

(18)

The above infinite series are convergent, yet they do not

admit closed form formulae. Hence, they must be truncated in

practice to approximate w(x, z) and r(x, z) via (13)–(14), and

for approximating the index λ∗(x) in (16) for 0 < x 6 φ
(1)
∞ .

Case II: z ∈
(
φ
(1)
∞ , φ

(0)
∞

)
: In this case, the state Xt jumps

above and below the threshold z until the target is found.

Following the argument introduced in [7], define the map

φ(x, z) , 1{x>z}φ
(1)(x) + 1{x6z}φ

(0)(x), and let φ0(x, z) =
x, φt(x, z) = φ(φt−1(x, z), z) for t > 1. Then, writing

at(x, z) , 1{φt(x,z)>z}, (φa)t(x, z) , φt(x, z)at(x, z). In

this case, the survival probability θ(x, z, t) has the evaluation

θ(x, z, t) =

t−1∏

s=0

[
1− (1 − α) (φa)s(x, z)

]
, t > 1,

with θ(x, z, 0) = 1. We have that

g(x, z) =

∞∑

t=0

βtθ(x, z, t)at(x, z), (19)

f(x, z) =

∞∑

t=0

βtθ(x, z, t)(φa)t(x, z). (20)

Since the series (19) and (20) cannot be calculated in closed

form, we must evaluate them numerically by truncating them.

From this, we can approximately compute the index λ∗(x) via

(16) for φ
(1)
∞ < x < φ

(0)
∞ .

Case III: z ∈
[
φ
(0)
∞ , 1

]
: In this case, Xt remains in the

passive set Bc(z) = (0, z] after first hitting it. For x > z, let

τ∗(x, z) , min{t > 1: Xt 6 z} be the first hitting time to

Bc(z) starting from x. Note that τ∗(x, z) is a random variable
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with maximum value t∗1(x, z) , min{t > 1: φ
(1)
t (x) 6 z}.

Then, we have that, for x > z,

g(x, z) =

t∗
1
(x,z)−1∑

t=0

βtθ(x, z, t), (21)

f(x, z) =

t∗
1
(x,z)−1∑

t=0

βtθ(x, z, t)R(φ
(1)
t (x), 1), (22)

where θ(x, z, t) is the survival probability as in Case I. From

the above and (13)–(14), we can compute the w(x, z) and

r(x, z) for x > z by computing finite sums. Further, for x 6 z
it is readily seen that w(x, z) = 1 and r(x, z) = R(x, 1).
Therefore, the index in (16) reduces to

λ∗(x) = R(x, 1), φ(0)
∞ 6 x 6 1 (23)

B. Verification of PCL-indexability and Index Evaluation

Based on the results in Section IV-A and on further work

not shown here, we present the following conjecture.

Conjecture 1. The single-site search problem (9) is PCL-

indexable for β ∈ [0, β∗), with

β∗ = (1−α)

(
1−

[
1− (1− α)(p(1) + ρ(1))

]
(1− α)φ

(1)
∞

(1− (1 − α)φ
(1)
∞ )

)
.

Therefore, under Conjecture 1, the index λ∗(x) calculated

above is the Whittle index.

V. COMPUTATIONAL EXPERIMENTS

A. Index Evaluation

The index was computed using a Matlab script based on the

results in Sec. IV for a target instance with q(0) = 0.1, p(0) =
0.5, q(1) = 0.5, p(1) = 0.3, r = 1, and α = 0.05. The fixed

points are thus φ
(1)
∞ = 0.3043 and φ

(0)
∞ = 0.8333. The discount

factor β varied over the range β ∈ {0, 0.1, 0.2, . . . , 0.9, 0.99}
and β∗ = 0.7472. For each β, the index λ∗(x) was evaluated

on a grid of x values of width 10−2, and the infinite sums

of Cases I and II were approximately evaluated by truncating

them to T = 104.

Fig. 1 plots the results. Note that the index λ∗(x) is continuous

in x and piecewise differentiable, converging as β ր 1 to

a limiting index. Note also that, for small enough x, the

index λ∗(x) is negative, reflecting the intuition that it is

counterproductive to search a site when it is very unlikely

that the target is visible, as doing so will only drive the target

into hiding, delaying the hunt. For each x, the time expended

to compute λ∗(x) was negligible.

B. PCL-indexability

This section presents computational evidence for the va-

lidity of Conjecture 1 for the target instance analyzed in

Sec. V-A. As required by the PCL-indexability condition

(ii), Fig. 1 shows that in each case the index λ∗(x) is

strictly increasing in x. Regarding condition (i), Fig. 2 shows

the marginal work measure w(x, z) for fixed threshold val-

ues z in {0.05, 0.5, 0.85}, letting x vary in X̄, analyzing

Β = 0

Β = 0 .9 9

Β = 1 Φ¥
0Φ¥

1 1
x

Λ*HxL

Fig. 1: The index λ∗(x) for different discount factors β.

a z value for each of the three cases described in Sec.

IV-A. The discount factor β varies over the range β ∈
{0, 0.1, 0.2, . . . , 0.9, 0.99, 0.999}. For each β and z, the index

w(x, z) was evaluated on a grid of x values of width 10−2,

and the infinite sums of cases I and II were approximately

evaluated by truncating them to T = 104. Fig. 2 illustrates how

w(x, z) differs for each threshold case considered. Further,

notice that, in the examples for Case I (z = 0.05) and Case

II (z = 0.5), the marginal work measure positivity condition

only holds for β 6 0.8.

C. Benchmarking the Whittle Index Policy

We have performed some small-scale preliminary

simulation studies, where the performance of the proposed

Whittle index policy is compared against simpler policies:

the myopic policy, based on index λM (x) = R(x, 1), which

corresponds with the case β = 0, the belief state policy,

based on index λB(x) = x, and the random selection policy

which picks a site at random, with each site having the same

probability of being selected.

Experiment #1: Cautious and Reckless Targets

In this experiment we assess the relative performance of the

Whittle index policy against the other heuristics distinguishing

target instances between reckless and cautious. We call reck-

less those targets that “after not being searched, are highly

likely to expose themselves”, i.e., with p(0) ≈ 1, while cautious

targets display the opposite behavior, i.e., have p(0) ≈ 0 (while

having p(0) > p(1)).
Each base instance has a single sensor M = 1 for N = 30

sites. In one instance all targets are reckless with p
(0)
n = 0.95,

while in the other instance all targets are cautious with

p
(0)
n = 0.35. In both instances, p

(1)
n = 10−3, q

(1)
n = 0.97,

q
(0)
n = 0.003, αn = 0.30 and rn = 1 for all n. Also, we take

the initial state xn = 1, which corresponds to exact knowledge

of N exposed targets at the start of the search. Sensing costs

were taken to be zero and we consider two possible discount

factors β ∈ {0.7, 0.99}, where β∗ is equal to 0.9491 both for

the reckless and cautious instance. Both base instances were

modified, letting the number of sensors increase from M = 1
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Fig. 2: Marginal work measure for the three threshold cases.
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Fig. 3: Experiment 1: (3a) & (3b) Reckless Targets instances and (3c) & (3d): Cautious Targets instances

up to M = N = 30. For each instance, 103 independent runs

were performed on a horizon of T = 104 time slots.

Fig 3 shows the ETD net rewards under each policy as

the number of sensors in the network grows. The upper

bound from the relaxation for all the instances with reckless

targets was of 24.510 and 29.735 for discount factors 0.7
and 0.99, respectively, whereas for cautious targets those

values were 22.767 and 29.374 . The Whittle index policy

outperforms other heuristic policies for any number of sensors

with the performance improvement increasing as M → N . An

interesting result is that the Whittle index policy optimality

loss goes to 0 for a relatively small number of sensors when

β → 1, while the largest sensor network size is required

for the Whittle index policy to be nearly optimal for smaller

β (i.e., when hunting targets is urgent). Notice that as the

number of sensors grows, all other policies perform worse,

since they overuse the network resources thus making targets

more elusive and hence, more difficult to hunt.

Table I shows the average time that the system takes to hunt

all targets operated under each policy. Such results illustrate
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TABLE I: Average Time to Hunt All Targets

M / Reckless T̄MP T̄My T̄B T̄R

1 6.175 9.768 7.083 31.039
2 5.778 18.994 12.021 42.475
3 2.405 49.074 45.718 95.318
4 3.344 36.678 33.071 70.652
5 3.034 90.074 76.949 102.643
15 1.928 122.554 155.053 371.901
30 1.924 373.586 366.239 458.258

M / Cautious T̄MP T̄My T̄B T̄R

1 10.770 43.833 37.630 44.864
2 6.384 29.845 33.414 80.638
3 4.841 66.301 55.581 87.306
4 3.828 74.822 76.426 138.993
5 3.970 135.726 86.134 182.447
15 3.277 281.945 264.044 410.706
30 3.073 448.593 465.127 423.586

the fact that a large sensor network which is constantly

searching will spend a larger slot of time to hunt targets.

However, all policies succeed at finding the N targets at some

slot. The Whittle index policy takes significantly less time to

hunt targets than the alternative polices for both Reckless and

Cautious targets, yet hunting the Cautious targets naturally

takes longer for all policies. These results also show the

overuse under other heuristics since their average operating

time substantially increases as the number of sensors grows.

Experiment #2: Sensing Cost & Sensor Network Size

In this experiment we assess the relative performance of the

Whittle index policy against the other heuristics when the

sensing cost increases. We consider two base instances of

N = 30 sites with M = 1 and N = 5 sensors. In both

instances targets parameters are: p
(1)
n = 10−3, q

(1)
n = 0.97,

p
(0)
n = 0.05, q

(0)
n = 0.003, αn = 0.30, xn = 1, β = 0.99 and

rn = 1 for all n. Both base instances were modified, letting

sensing costs vary as c ∈ {0, 0.3, 0.5, 0.75}. For each instance,

103 independent runs were performed on a horizon of T = 104

time slots. Fig 4 shows the ETD net rewards under each policy

and the upper bound as c grows. Results show that the Whittle

index policy outperforms the other policies in all instances.

The resulting performance and its upper bound decrease with

c with all policies yielding 0 rewards for c > 0.75. Notice

that the Whittle index policy is nearly optimal for all values

of the sensing cost when M = 5 while the optimality loss of

the other heuristics is larger for M = 5 than for M = 1.

VI. CONCLUDING REMARKS

This paper has introduced a novel dynamic index policy for

a relevant sensor network scheduling problem where the goal

is to hunt a fixed number of smart targets, in which the theory

of restless bandit indexation is applied to a POMDP setting.

The resulting policy has been shown in simulation experiments

to outperform simpler heuristics.
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