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1 Financial Time Series

Financial time series data may be classified in a compartment different from economic time

series. Not only because of their empirical features, but also because their study and analysis

is used as an input of a different decision making process. In fact, the financial world concerns

about how will be the risk of a given group of financial assets tomorrow and dismisses the

information about its mean value. The uncertainty of financial returns plays a central role

in many financial models of valuation of financial derivatives, risk management, efficient asset

allocation and so on. Thus, if we believe that valuing is the most important task for users of

financial time series data, then financial econometricians should put all their effort on analyzing

volatility. We just need to take a look over the past 20 years of research work on this area to

confirm this pattern.

This course attempts to make a brief survey of a model that is more and more considered

to analyze and forecast volatility, called stochastic volatility (SV) model. In particular, we will

discuss some of its statistical properties and the some estimation methods. We will intensively

use MATLAB for all the computations. Some of the working m-files, together with other

material for the course are available here. Let us begin by commenting the empirical properties

of financial time series data.

1.1 Empirical Properties of asset returns

In Figure 1, we find the typical features that most financial time series share:

1. Log prices seem to be non-stationary, but without any marked systematic trend... (ar-

guable!)

2. Returns (log-difference of the prices) exhibit a constant mean but with periods of clus-

tered volatility (almost axiomatic)

3. Returns are very weakly auto-correlated (emerging countries) or have no correlation at

all (highly developed financial markets)

4. Squared returns are highly (positively) correlated, and in general with a high persistence

(almost axiomatic)

5. Returns are negative skewed (arguable) and exhibit positive excess kurtosis (implying

fat tails)

http://halweb.uc3m.es/esp/Personal/personas/spellegr/esp/Curso_Cordoba/index.html
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MERVAL INDEX

YPF

MERVAL YPF
Mean 0.0467% 0.0711%

Standard Dev. 2.3076% 2.1978%
Skewness -0.1970 0.2674
Kurtosis 8.1329 16.0699
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Figure 1: Daily closing price of the MERVAL Index and YPF ORD stocks
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A few important conclusions emerge from these features. First, there is (almost) no room

for predicting the future mean value of stock returns. Second, there is a LARGE AMOUNT

OF INFORMATION COMING FROM LAGGED RETURNS to predict the volatility of stock

returns. Last but not least, Normality does not seem an adequate distributional assumption

for the log-returns because of the negative skewness and large kurtosis.

1.2 A short comparison between GARCH and SV models

As a “parametrician”, we can summarize the stylized facts just commented by modelling the

returns, yt as follows:

yt = µt + σtεt, (1)

where µt is often assumed to be either constant or an AR(1) with a parameter close to zero,

εt an independent random variable with zero mean and unit variance, and σt an either deter-

ministic or random process that depends on past values of the returns. When σt is expressed

as a deterministic function of lagged (squared) returns, we are within the ARCH models (En-

gle, 1982; Bollerslev, 1986), which have achieved widespread popularity in applied empirical

research; see Bollerslev et al. (1992, 1994) for an exhaustive survey of ARCH models. Alterna-

tively, volatility may be modelled as an unobserved component following some latent stochastic

process, such as an autoregression. The resulting models are called stochastic volatility (SV)

models created by Taylor (1986) and their interest has been increasing during the last years;

see Ghysels et al. (1996); Taylor (1994); Shephard (1996); Yu and Meyer (2006); Asai et al.

(2006).

We will follow Harvey et al. (1994) to briefly compare both types of models. Let’s assume

first that µt = 0 for all t in (1). Then, in the GARCH(1,1) model, we have that

σ2
t = γ + αy2

t−1 + βσ2
t−1, γ > 0, α + β < 1. (2)

Note that by letting the conditional variance be a function of squared previous returns and

past variances, it is possible to capture the changes in volatility over time. Moreover, since this

model is formulated in terms of the distribution of the one-step ahead prediction error, maxi-

mum likelihood estimation is straightforward. This property made GARCH models so popular

and widely used in applied research. Of course, the formulation given in (2) may be generalized

by adding more lags of both, the squared returns and the past variances. With respect to its

dynamics, the conditional volatility in GARCH models may be seen as an ARMA(1,1) to the

squared returns, where the AR coefficient is the sum p = α + β. Therefore, as this sum gets
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Figure 2: Relationship between autocorrelation, kurtosis and persistence in a GARCH(1,1)
model. Source: Carnero et al. (2004)

closer to one, the persistence of the squared observations increases. This means that the au-

tocorrelation function (ACF) of y2
t will decay quite slowly, as it is commonly seen in practice.

Another feature of the GARCH(1,1) process is the strong relationship between the persistence,

p and the kurtosis and lag-one autocorrelation of squares implied by this model. Carnero et al.

(2004) study this issue in detail and formulate the lag-one autocorrelation as a function of the

persistence and kurtosis to conclude that conditionally Normal GARCH models are not able to

simultaneously capture the plausible values of persistence, kurtosis and lag-one autocorrelation

of squares present in financial time series data. In other words, GARCH processes may model

one or two of the three empirical properties, but fails to capture them all together. Figure 2

extracted from this paper summarizes this issue. It is clear that distributions with fatter tails

(like the Student-t) need to be imposed on εt to account for the three features.

On the other hand, SV models consider that the dynamics of the logarithm of σ2
t , denoted

ht, is well described by a latent (unobserved) stochastic process, whose dynamics is normally

assumed to be autoregressive. That means

ht = φht−1 + ηt, 0 ≤ φ < 1 (3)
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where ηt ∼ NID(0, σ2
η). It is often assumed that ηt and εt are mutually independent, although

Harvey and Shephard (1996) show that a possible dependence between these two allows the

model to pick up the kind of asymmetric behavior that is often seen in stock prices.

Unlike GARCH models, the conditional variance in (3) is driven by an unpredicted shock.

Therefore, though more flexible than GARCH, SV models generally lack analytic one-step-

ahead forecasts densities yt|Yt−1 and thus also lack of a closed form likelihood. Hence, either

an approximation or a numerically intensive method is required to estimate these models.

On the other hand, SV models have several advantages that may eventually overcome the

estimation issue. First, their statistical properties are easier to find and understand. Second,

they are easier to generalize to the multivariate case. Third, they are attractive because

they are close to the models used in Financial Theory for asset pricing. Fourth, as stated in

Carnero et al. (2004), they capture in a more appropriate way the main empirical properties

often observed in daily series of financial returns (something we have just started to note above

and we will study in depth later). For example, we can show that the fourth moment always

exists when ht is stationary.

So, after this very brief comment of the two models, we should wander why practitioners

do not use SV parallel to GARCH models in their everyday work. The reason comes almost

entirely from the fact that the exact likelihood function is difficult to evaluate and Maximum

Likelihood (ML) estimation of the parameters is not straightforward. The main objective of

this course then is to give insights of two alternative ways of estimating the SV parameters,

in order to notice that SV models may be really very competitive with respect to GARCH

models for empirical applications, specially because (highly) computer intensive methods can

be (relatively) easy to handle in modern computers1. Before describing the two methods, it is

necessary to have a notion of State Space (SS) models because they are the framework usually

chosen to define and study unobserved (latent) component models, such as SV models.

2 State Space Models and SV Models

When analyzing time series, sometimes it is useful to decompose the series of interest into

trend, seasonal, cyclic and irregular components. These have a direct interpretation but they

are unobserved; see Harvey (1989) and Durbin and Koopman (2001) for a comprehensive de-

scription of the Unobserved Component (UC) models. We can deal with UC models in a State

Space (SS) model framework and using the Kalman filter. The empirical applications of these

models are very wide. Next, we mention just a few examples. The evolution of inflation could

1For a detailed review of these and other estimation procedures, see Ruiz and Broto (2004).



Financial Econometrics and SV models 9

be represented by a model with long-run level, seasonal and transitory components which may

be conditionally heteroscedastic; see, for example, Ball et al. (1990), Evans (1991), Kim (1993)

and Broto and Ruiz (2006). Cavaglia (1992) analyzes the dynamic behavior of ex-ante real

interest differentials across countries by a linear model in which the ex-post real interest differ-

ential is expressed as the ex-ante real interest differentials (underlying unobserved component)

plus the cross country differential inflation forecast error. When modelling financial returns,

the volatility can also be modelled as an unobserved component as in the Stochastic Volatility

(SV) models proposed by Taylor (1986) and Harvey et al. (1994).

2.1 Description and Properties of the SS Models

SS modelling provides a unified methodology for treating a wide range of problem in time series

analysis. In this approach it is assumed that the development over time of the system under

study is determined by an unobserved series of vectors α1, . . . , αT , with which are associated

a series of observations y1, . . . , yT . The relation between αt’s and the yt’s is specified by the

following linear SS model.

yt = Z tαt + d t + εt, t = 1, . . . , T, (4a)

αt = T tαt−1 + ct + Rtηt, t = 1, . . . , T. (4b)

where yt is the univariate time series observed at time t, Z t is a 1 ×m vector, d t is a scalar

and εt is a serially uncorrelated disturbance with zero mean and variance H t. On the other

hand, αt is the m × 1 vector of unobservable state variables, T t is an m × m matrix, ct is

an m × 1 vector, Rt is an m × g matrix and ηt is a g × 1 vector of serially uncorrelated

disturbances with zero mean and covariance matrix Q t. Finally, the disturbances εt and ηt

are uncorrelated with each other in all time periods. The Hyper-Parameters in the system of

matrices {Z t,T t,Q t,H t,Rt, ct,d t} can be time-varying, but for our purposes we will assume

to be known and time-invariant. The specification of the SS system is completed with the

initial state vector, α0, which has distribution with mean a0 and covariance matrix P0.

Examples:

Local Level Model (LLM)

The structural representation of the model is given by

yt = µt + εt, εt ∼ IID(0, σ2
ε), (5a)

µt = µt−1 + ηt, ηt ∼ IID(0, qσ2
ε), (5b)
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where the unobserved state, αt, is the level of the series, denoted by µt, that evolves over time

following a random walk. In this model Z = T = R = 1, c = d = 0, H = σ2
ε and Q = qσ2

ε ,

where q is known as the signal to noise ratio.

Local Linear Trend (LLT) Model

The structural representation of the model is given by

yt = µt + εt, εt ∼ IID(0, σ2
ε), (6a)

µt = µt−1 + υt + ηt, ηt ∼ IID(0, σ2
η), (6b)

υt = υt−1 + ξt, ξt ∼ IID(0, σ2
ξ ) (6c)
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In this model we have:

Z =
(

1 0
)

, T =

[
1 1

0 1

]
, R =

[
1 0

0 1

]
, Q =

[
σ2

η 0

0 σ2
ξ

]

Local Linear Trend (LLT) Model with Seasonal Component

Let s be the number of periods in a year; thus for monthly data s = 12, for quarterly data

s = 4, and so on. To model the seasonal component we use the term γt in (7a). The structural

representation of the model is given by,

yt = µt + γt + εt, εt ∼ IID(0, σ2
ε), (7a)

µt = µt−1 + υt + ηt, ηt ∼ IID(0, σ2
η), (7b)

υt = υt−1 + ξt, ξt ∼ IID(0, σ2
ξ ), (7c)

γt = −
s−1∑
j=1

γt−j + ωt, ωt ∼ IID(0, σ2
ω) (7d)

For the case in which s = 4 we have,

Z =
(

1 0 1 0 0
)

, T =



1 1 0 0 0

0 1 0 0 0

0 0 −1 −1 −1

0 0 1 0 0

0 0 0 1 0


, R =



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0


, Q =


σ2

η 0 0

0 σ2
ξ 0

0 0 σ2
ω
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ARIMA(p,q) Models

Autoregressive moving average (ARMA) time series models were introduced by Box and Jenk-

ins in their pathbreaking (1970) book; see Box et al. (1994) for a current version of this book.

yt =

p∑
j=1

φjyt−j +

q∑
i=1

θiat−i + at (8)

where at is a serially uncorrelated disturbance with zero mean and variance σ2
a. For the

particular case in which p = 1 and q = 1 we have,

yt = φyt−1 − θat−1 + at (9)

In general, we can express any ARMA model in a SS framework, see for instance Harvey

(1989) and Durbin and Koopman (2001). For this particularized case that expression is given

by,

yt = yt (10a)

yt = φyt−1 − θat−1 + at, (10b)

yt−1 = yt−1, (10c)

at = at (10d)

In this model we have:

Z =
(

1 0 0
)

, T =


φ 0 −θ

1 0 0

0 0 0

 , R =


1

0

1

 , Q = σ2
a, H = 0
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Autoregressive Stochastic Volatility (ARSV) Model

In the simplest case, the conditional log-volatility follows an AR(1) process, given by,

yt = εtσt, (11a)

log
(
σ2

t

)
= µ + φ log

(
σ2

t−1

)
+ ηt, (11b)

where εt is a strict white noise process with variance 1 and the noise in the conditional log-

volatility equation, ηt, is assumed to be a Gaussian white noise process with variance σ2
η

independent of εt. Finally, the parameter µ is related with the marginal variance of yt.
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2.2 The Kalman filter

Let Y and X be two random vectors, where Y only is observable. We want to know about X

using the information of Y = y. This can be done using the conditional probability density.

pX|Y (x|y) =
pX,Y (x, y)

pY (y)
(12)

assuming that pY (y) 6= 0.

The conditional probability density pX|Y (x|y) with a particular value substituted for y and

with x regarded as a variable sums up all the information with knowledge that Y = y conveys

about X. Since it is a function rather than a single real number or vector of real numbers, it

makes sense to ask if we can obtain a simpler entity. One such estimate would be namely the

conditional minimum variance (or minimum Mean Square Error - MSE) estimate.

Let x̂ be an estimate of the value taken by X when we know that Y = y. Then, x̂ is

uniquely specified as the conditional mean of X given that Y = y, i.e.,

x̂ = E[X|Y = y] =

∫ ∞

−∞
xpX|Y (x|y)dx. (13)

Among the different algorithms for estimating the state vector in (4b), the Kalman filter

is in the center. It is a recursive procedure for computing the optimal estimator for the state

vector at time t, based on the information available at time t. This information consists

of the observations up to and including yt. System of hyper-parameters together with at

and P0 are assumed to be known in all time periods and so do not need to be explicitly

included in the information set. The derivation of the Kalman filter rests on the assumption

that the disturbances and the initial state vector are normally distributed. A standard result

on the multivariate normal distribution allows to calculate recursively the distribution of αt,

conditional on the information set at time t. These conditional distribution are themselves
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normal and hence are completely specified by their means and covariance matrices. It is these

quantities which Kalman filter computes. When the normality assumption is dropped, there

is no longer any guarantee that the Kalman filter will give the conditional mean of the state

vector. However, it is still an optimal estimator in the sense that it minimizes the MSE within

the class of all linear estimators.

Under the normality distribution, the initial state vector, α0, has a multivariate normal

distribution with mean a0 and covariance matrix P0. The distribution of ηt and εt also have

multivariate normal distribution for t = 1, . . . , T and are distributed independently of each

other and of the α0.

The state vector at time t = 1 is given by,

α1 = Tα0 + c + Rη1

Thus α1 is a linear combination of two vectors of random variables, both with multivariate

normal distribution, and a vector of constants. Hence it is itself multivariate normal with mean

equal to,

a1|0 = Ta0 + c,

and a covariance matrix given by,

P1|0 = TP0T + RQR.

The notation a1|0 indicates the mean of the distribution of α1 is conditional on the information

at time t = 0.

In order to obtain the distribution of α1 conditional on y1, write,

α1 = a1|0 + (α1 − a1|0), (14a)

y1 = Za1|0 + d + Z (α1 − a1|0) + ε1, (14b)

The equation (14b) is simply a rearrangement of the measurement equation in (4a). From (14)

it can be seen that the vector [α′1 y′1]
′ has a multivariate normal distribution with mean equal

to [a′1|0 (Za1|0 + d)′]′ and a covariance matrix given by,

[
P1|0 P1|0Z

′

ZP1|0 ZP1|0Z
′ + H

]

Applying the multivariate normal properties it turns out that α1, conditional on a particular
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value of y1, has also a multivariate normal distribution with mean given by,

a1 = a1|0 + P1|0Z
′F−1

1 (y1 − Za1|0 − d),

with covariance matrix given by,

P1 = P1|0 − P1|0Z
′F−1

1 ZP1|0,

where F1 = ZP1|0Z
′ + H.

Repeating the steps for t = 2, . . . , T yields the Kalman filter. For a general time t we get

the prediction equations,

at|t−1 = Tat−1 + c, (15a)

whit covariance matrix given by,

Pt|t−1 = TPt−1T
′ + RQR, for t = 1, . . . , T. (15b)

Once the new observation, yt, become available we use the update equations for estimate

at and Pt,

at = at|t−1 + Pt|t−1Z
′F−1

t vt, (16a)

where vt = (yt − Zat|t−1 − d) is the one-step ahead innovation. Finally, its covariance matrix

is given by,

Pt = Pt|t−1 − Pt|t−1Z
′F−1

t ZPt|t−1, for t = 1, . . . , T. (16b)

Let show an example using the LLM as in (5). Assuming a diffuse prior distribution, we

obtain a0 = 0 and P0 −→∞. Using the prediction equations, (15a) and (15b), we get,

a1|0 = 0,

P1|0 = P0 + qσ2
ε −→∞, as k →∞

F1 = P1|0 + σ2
ε = P0 + qσ2

ε + σ2
ε −→∞, as k →∞.

Once the y1 become available, using the update equations, (16a) and (16b), we get,

a1 = a1|0 +
P1|0

F1

(y1 − a1|0) = lim
k→∞

[
a1|0 +

P0 + qσ2
ε

P0 + qσ2
ε + σ2

ε

(y1 − a1|0)

]
= y1, (17a)

P1 = P1|0 − P1|0F
−1
1 P1|0 = lim

k→∞
(P0 + qσ2

ε)

(
1− P0 + qσ2

ε

P0 + qσ2
ε + σ2

ε

)
= σ2

ε . (17b)
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Then, using recursively the prediction and the update equations it is possible to obtain one-step

ahead estimates of αt, at|t−1, and update estimates at for t = 2, . . . , T .

3 SV Models

ARCH-type models assume that the conditional volatility can be observed s steps ahead.

However, a more realistic model for the conditional volatility can be based on modelling it

having a predictable component that depends on past information and an unexpected noise.

In this case, the conditional volatility is a latent unobserved variable, see Taylor (1986). One

interpretation of the latent volatility is that it represents the arrival of new information into

the market; see for instance Clark (1973). The main statistical properties of SV models have

been reviewed by Taylor (1994), Ghysels et al. (1996) and Shephard (1996).

Usually, εt in (11) is specified to have a standard distribution so its variance σ2
ε is known.

Thus for a normal distribution σ2
ε is one while for a Student-t distribution with ν degree of

freedom it will be ν/(ν − 2). Following a convention often adopted in the literature we write

ht ≡ log (σ2
t ),

yt = σεt exp

(
1

2
ht

)
(18a)

where σ is a scale parameter, which removes the need for a constant term in the stationary

first-order autoregressive process,

ht = φht−1 + ηt, (18b)

where ηt is assumed to be a gaussian white noise process with zero mean and variance σ2
η,

independent of εt. The assumption that the conditional log-volatility has a Normal distribution

has several supports in empirical studies for both exchange rate and stock returns; see for

example Andersen et al. (2001) and (Andersen et al., 2001, 2003).
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3.1 Description and Properties

The following properties of the ARSV model hold even if εt and ηt are contemporaneously

correlated. First, yt is a martingale difference. Second, stationarity of ht implies stationarity

of yt. Third, if ηt is normally distributed, it follows from the properties of the lognormal

distribution that E[exp(ht)] = exp (σ2
h/2), where σ2

h = σ2
η/ (1− φ2) is the variance of ht. Hence,

if εt has a finite variance, the variance of yt is given by,

V(yt) = σ2σ2
ε exp

(
σ2

h/2
)

(19)

Similarly if the fourth order moment of εt exists, the kurtosis of yt is κ exp (σ2
h/2), where κ is

the kurtosis of εt, so yt exhibits more kurtosis than εt. Notice that if κ is finite, the condition

for the existence of the kurtosis is the stationarity condition, i.e. φ < 1. Therefore, as far

as the model is stationary, the dynamic evolution of the volatility is not further restricted to

guarantee the existence of the fourth order moment. However, it is also important to notice

that given the kurtosis of returns, the parameter σ2
η, that allows the volatility to evolve over

time, should decrease as the autoregressive parameter, φ increases. Therefore, if the kurtosis

is constant, the model approaches homoscedasticity as the persistence increases, see Harvey

and Streibel (1998).

The ACF of squared observations, derived by Taylor (1986), is given by,

ρ2(τ) =
exp (σ2

hφ
τ )− 1

κ exp (σ2
h)− 1

, for τ ≥ 1 (20)

If σ2
h is small and/or φ close to one, Taylor (1986) shows that the ACF in Equation (20) can

be approximated by,

ρ2(τ) ' exp (σ2
h)− 1

κ exp (σ2
h)− 1

φτ (21)

The pattern of the approximated autocorrelations in Equation (21) is the same as for the

autocorrelations of an ARMA(1,1) model. Consequently, this approximation has often been

used to argue that the ACF of squares in GARCH(1,1) and ARSV(1) models are similar.

However, in general, the approximated autocorrelations are larger than the true ones and, for

small lags, τ , their rate of decay is smaller than the rate of decay of the autocorrelations in

Equation (20). As an illustration, Figure 3 plots the true and approximated ACF of squares

together with their rates of decay for three alternative ARSV(1) models with parameters

(φ = 0.95, σ2
η = 0.1), (φ = 0.98, σ2

η = 0.05), and (φ = 0.99, σ2
η = 0.05), respectively.

This figure shows that the use of the approximation could lead to a very distorting picture

of the shape of the true ACF. However, since α + β and φ can be interpreted as measures of
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Figure 3: ACF of squared observations and rate of decay of such ACF for symmetric ARSV(1)
models with gaussian innovations.

persistence in GARCH(1,1) and ARSV(1) models, respectively, many authors have compared

their estimates, see Taylor (1994) and Shephard (1996) for instance. Following them and given

that, as Figure 3 illustrates, the rate of decay of the autocorrelations in Equation (20) tends

for long lags to φ, we also consider this parameter as a measure of the persistence of shocks to

volatility in ARSV(1) models, see Kim and Shephard (1998) and Meyer and Yu (2000).

The relationship between kurtosis, persistence of shocks to volatility and first order au-

tocorrelation of squares is different in GARCH and ARSV models. This relationship for a

GARCH(1,1) and an ARSV(1) model is given by,

ρ2(1) =

√
(κy−κ)(1−p2)

(κ−1)κy

[
1− p2 + p

√
(κy−κ)(1−p2)

(κ−1)κy

]
1− p2 + p (κy−κ)(1−p2)

(κ−1)κy

(22a)

where p is the persistence in GARCH(1,1) models, i.e. α + β, and by

ρ2(1) =

(κy

κ

)φ − 1

κy − 1
. (22b)



Pellegrini & Rodriguez 20

Figure 4: Relationship between kurtosis, first-order autocorrelation of squared observations,
and persistence for GARCH(1,1) and ARSV(1) models with gaussian errors. Source: Carnero
et al. (2004)

This relationship is plotted in Figure 4 for the Normal ARSV(1) model, together with the corre-

sponding relationship for the Normal GARCH(1,1) and a Student-GARCH(1,1) with 7 degrees

of freedom models. Several conclusions can be drawn from this figure. First, it is rather clear

that ARSV(1) models are able to generate series with simultaneously higher kurtosis and lower

ρ2(1) than the GARCH(1,1) model for a larger range of values of the persistence. Second, it is

possible to observe that, for the same kurtosis and persistence, the autocorrelations of squared

observations implied by the Normal ARSV(1) model are smaller than the autocorrelations of

the Normal GARCH(1,1) model, except when the volatility approaches the non-stationary re-

gion, where both autocorrelations are the same. Furthermore, in ARSV(1) models, for a given

kurtosis, the first-order autocorrelation of squares increases with the persistence parameter,

φ, while in GARCH(1,1) models the first-order autocorrelation decreases with α + β. Con-

sequently it could be expected that, for a given series of returns with a given kurtosis, if the

first-order autocorrelation of squares is small, the persistence estimated in ARSV(1) models is

usually lower than in GARCH(1,1) models; see the values of κy and ρ2(1) within the box usu-

ally observed in empirical applications. Therefore it is possible to have ARSV(1) models with

high kurtosis, low ρ2(1), and persistence far from the non-stationary region, while in a Normal

GARCH(1,1) model, the persistence would be high because it is the only way to achieve both

high kurtosis and low ρ2(1).

Alternatively, as we mentioned before, the GARCH model can generate higher kurtosis

without increasing the first-order autocorrelation of squares by having a conditional heavy-

tailed distribution. For example, comparing the surfaces of the relationship between κy and

ρ2(1) and persistence for the Student- GARCH(1,1) model with 7 degrees of freedom and the
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Normal ARSV(1) models, it is possible to observe that these two models are able to generate

series with values of the kurtosis and ρ2(1) within the region defined by the box, where the

typical values would be found. Therefore both models may have similar fits when implemented

to represent the dynamic evolution of volatility of the same real-time series, see, for instance,

Shephard (1996). However, remember that the restrictions on the α parameter of the Student-

GARCH model, needed to guarantee that the fourth-order moment is finite, restrict severely

the dynamic evolution of the volatility.

3.2 Estimation

Given that the conditional distribution of yt is, in general, far from the Normality, then the

Maximum Likelihood (ML) estimator cannot be obtained by traditional methods. This is

the reason why there is a large list of alternative methods to estimate SV models. Next, we

describe some of the more promising from an empirical point of view.

3.2.1 Method of Moments

These methods have the difficulty that their efficiency depends on the choice of moments. Fur-

thermore, a particular distribution needs to be assumed for εt. Finally, its efficiency is reduced

as the process approaches the non-stationarity as it is often the case in the empirical appli-

cation to financial returns. Melino and Turnbull (1990) proposed to estimate the stationary

SV models by Generalized Method of Moments (GMM). However, there is any closed form or

criteria to choice the unconditional moments that can be computed, therefore this procedure is

relatively inefficient. The Efficient Method of Moments (EMM) seeks efficiency improvements,

while maintaining the general flexibility of GMM, by letting the data guide the choice of an

auxiliary quasi-likelihood which serves to generate an efficient set of moments; see Andersen,

Andersen et al. (1999).

3.2.2 Quasi-Maximum Likelihood (QML) principle

The QML estimator was independently proposed by Nelson (1988) and Harvey et al. (1994)

and is based on the Kalman filter.

Model (18) is nonlinear, however, transforming yt by taking logarithms of the squares we
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obtain the following system,

y∗t ≡ log (y2
t ) = γ + ht + ξt, (23a)

ht = φht−1 + ηt, (23b)

where γ = log (σ∗2) + E [log (ε2
t )], ξt = log (ε2

t ) − E [log (ε2
t )]. ξt is a non-Gaussian zero mean

white noise process, and its statistical properties depend on the distribution of εt. If, for

example, εt ∼ N(0, 1), as it is often assumed in the literature, then, E [log(ε2
t )] ≈ −1.27 and

V [log(ε2
t )] = π2/2. Moreover, when εt is assumed to be Student-t, then log (ε2

t ) has also a

determined distribution.

System (23) can be thought as a linear SS model. As it has been mentioned above, the

distribution of ξt is far from the Normality, however, we can still use the Kalman filter for

construct the one-step ahead innovations vt and use them for calculate the likelihood function

as ξt were Normal. Due to the fact that the true distribution of ξt is non-Normal the QML

estimator is inefficient, in spite of that, Ruiz (1994) shows that the QML estimator is consistent

and asymptotically Normal. The log-likelihood for the ARSV(1) model is given by

log(L) = −T

2
log(2π)− 1

2

T∑
t=1

Ft −
1

2

T∑
t=1

v2
t

Ft

, (24)

where Ft = Pt|t−1+σ2
ξ , vt = log(y2

t )−mt|t−1 and mt|t−1 is the one-step ahead estimates of the log

volatility ht. Table 1 shows the asymptotic standard errors (ASEs) of the GMM and the QML

estimator, together with the square root of the relative efficiency of the GMM estimator with

respect to the QML estimator. Comparing the ASEs of both estimators, it is possible observe

that, in terms of efficiency, the QML estimation method performs better when φ is close to one

and σ2
η is relatively big. On the other hand, when σ2

η and φ are small, the GMM estimator is

more efficient. This result could be expected, because when σ2
η and φ are small, the variance

of the log volatility process, given by σ2
η/(1−φ2), is very small in relation to the variance of ξt.

Therefore, the transformation log (y2
t ) is dominated by ξt, and the approximation to normality

used by the Kalman filter is very poor. However, in most empirical application with very high

frequency financial time series (hourly or daily), it has been observed that the parameter φ is

very close or exactly one. The estimated values of σ2
η are usually between 0.01 and 2.77; see

Taylor (1994). With this range of parameter values, there is a little doubt about the better

performance of the QML estimator. However, note that there exists an important drawback

with the QML estimator. As it has been mentioned above, in most empirical applications with

very high frequency financial time series, the parameter φ is very close or exactly one. For this

range of values of the parameter φ the log-likelihood function tends to have a flat shape close
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Table 1: Asymptotic standard deviations of the QML and GMM estimator. Source: Ruiz
(1994)

QML GMM (Rel. Eff.)1/2

φ = 0.9 0.68 12203.65 0.00
σ2

η = 1 6.45 28903.37 0.00

φ = 0.7 2.31 29.17 0.08
σ2

η = 1 10.74 20.13 0.53

φ = 0.9 1.77 3.77 0.47
σ2

η = 0.09 2.24 0.86 2.60

φ = 0.7 15.12 13.94 1.08
σ2

η = 0.09 7.62 1.02 7.47

φ = 0.95 0.92 3.00 0.31
σ2

η = 0.04 0.95 0.61 1.56

φ = 0.97 0.47 3.54 0.13
σ2

η = 0.04 0.69 1.17 0.59

φ = 0.99 0.18 74.36 0.00
σ2

η = 0.04 0.47 73.98 0.01

to the optimum point, therefore, sometimes, the algorithm used to optimize the function may

not converge to the optimum point. Figure 5 shows the log-likelihood function for different

values of φ and σ2
η. It is possible to observe in the figure that, when φ is close to one or σ2

η is

close to zero the shape of the function become more flat close to the maximum. First, when φ

is close to one the process is close to the non-stationarity then it should be treated as a random

walk. Second, when σ2
η is close to zero the process is close to the homoscedasticity.

3.2.3 Bayesian Markov Chain Monte Carlo (MCMC) methods

We have already commented that estimation procedures for SV models have grown signifi-

cantly in the last decades. The increasing use of computer intensive programs based on the

development of more powerful computers was one the main factors explaining this growth.

Among the frequentist methods briefly described above, Bayesian inference has also found its

place. In particular Markov Chain Monte Carlo (MCMC) procedures for computing poste-

rior distributions of the parameters have been extensively studied and used in many empirical

applications. As Meyer and Yu (2000) point out, the difficulties of multidimensional numeri-

cal integration involved in posterior calculations have been overcome with the development of

MCMC techniques, as in Jacquier et al. (1994). Together with the development of classical

frequentist and Bayesian estimation procedures, a vast literature has been devoted to com-

pare the statistical properties of the estimators; see, for instance, Ruiz and Broto (2004). In
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φ = 0.9 and σ2
η = 0.1 φ = 0.9 and σ2

η = 0.04

φ = 0.99 and σ2
η = 0.1 φ = 0.99 and σ2

η = 0.04

Figure 5: Log-Likelihood of the Autoregressive Stochastic Volatility Model for different values
of parameter φ and σ2

η

general, results are not very much conclusive but in any case, Bayesian-based estimators have

good properties, specially in relatively small samples. Moreover, with the availability of special

software devoted to calculate numerical integration, such as BUGS (Bayesian Analysis Using

Gibbs Sampling)2, the calculation is no longer a disadvantage of Bayesian estimators.

The following development will be based mainly on Meyer and Yu (2000), who make a

detailed description of Bayesian numerical methods for estimating ARSV models. In particular,

the use of Markov Chain Monte Carlo (MCMC) methods and the Gibbs sampler. First, let’s

2BUGS is available free of charge from http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml

http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
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redefined the ARSV(1) given in (18) in the following way:

yt|ht = εt exp

(
1

2
ht

)
, εt ∼ N(0, 1) (25a)

ht|ht−1, ω, φ, σ2
η = ω + φ(ht−1 − ω) + ηt, ηt ∼ N(0, σ2

η) (25b)

where h0 ∼ N(ω, σ2
η). Note that ω is now the scale parameter. A full Bayesian model for (25)

consists of the joint prior distribution of all unobservable parameters, i.e. ω, φ, σ2
η and ht,

and the observables, yt. Bayesian inference is then based on the posterior distribution of the

unobservables given the data. From now on, the probability density distribution of a random

variable x will be denoted by p(x). By successive conditioning, the joint prior density is given

by

p(ω, φ, σ2
η, h0, h1, . . . , hT ) = p(ω, φ, σ2

η)
T∏

t=1

p(ht|ht−1, ω, φ, σ2
η). (26)

It is usually assumed in the literature that the parameters have independent priors, i.e.

p(ω, φ, σ2
η) is equal to the product of the three marginal densities. For these priors it is com-

monly assumed that

• ω ∼ N(0, 20) (a slightly informative prior)

• φ = 2φ∗ − 1, φ∗ ∼ Beta(20, 1.5) (which gives a prior mean for φ around 0.86)

• σ2
η ∼ Gamma(0.25, 0.25) (which gives a prior mean and standard deviation of around

0.05 and 0.13, respectively)

On the other hand, the conditional probability distribution is straightforwardly found to be

p(ht|ht−1, ω, φ, σ2
η) ∼ N(ω+φ(ht−1−ω), σ2

η) from (25b) and the likelihood is specified according

to the observation equation (25a) as

p(y1, y2, . . . , yT |ω, φ, σ2
η, h0, h1, . . . , hT ) =

T∏
t=1

p(yt|ht). (27)

Then, by Bayes’ theorem, the joint posterior distribution of the unobservables given the

data is proportional to the prior times the likelihood, i.e.:

p(ω, φ, σ2
η, h0, h1, . . . , hT |y1, y2, . . . , yT ) ∝ p(ω)× p(φ)× p(σ2

η)× p(h0|ω, σ2
η)×

T∏
t=1

p(ht|ht−1, ω, φ, σ2
η)×

T∏
t=1

p(yt|ht), (28)
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where ∝ indicates “proportional to”. Unfortunately, although the distributions of the right

hand side of (28) are easily derived, it is not sufficient to obtain the full posterior probability.

It is also necessary to calculate the normalization constant to make (28) an identity. A general

technical difficulty encountered in any application of Bayesian inference is how to find this

constant because it often demands the numerical resolution of an integral of high dimension

(in this case is T+4: T+1 unobserved log-volatilities, and the three parameters). However,

the Gibbs sampler, a special MCMC algorithm, generates a sample of the posterior (28) by

iteratively sampling from each of the univariate full conditional distributions. These univariate

distributions can be easily constructed from the joint posterior distribution by conditioning

properly. Let’s define θ = (ω, φ, σ2
η)
′ and h−t = (h0, h1, . . . , ht−1, ht+1, . . . , hT )′. Then, the

Gibbs algorithm can be summarized in the following set of steps:

Step 1 Set i = 0 and initialize θ and ht, t = 0, 1, . . . , T .

Step 2 Sample ht from p(ht|h−t, θ, y1, y2, . . . , yT ) for t = 1, . . . , T .

Step 3 Sample θ from p(θ|h0, h1, . . . , hT , y1, y2, . . . , yT ).

Step 4 Update the counter i, go back to Step 2 and continue.

The algorithm above is usually quoted a single-move sampler because the components of h

are updated one by one sequentially. Each iteration of the algorithm consists of updating T

components of h, and it will run a large number N of iterations before the sampler terminates.

Step 3 follows the standard Bayesian linear regression model theory that starts from a

non-informative conjugate prior for θ

p(ω, φ, σ2
η) ∝ σ−2

η (29)

and observing that θ and y are conditionally independent given h, the posterior for θ given h

is given by

p(θ|h) = N2

(
µ, (H ′H)−1σ2

η

)
IG
(
(T − 2)/2, T s2/2

)
, (30)

where Nk denotes the k-variate Normal distribution, and IG the inverse gamma distribution;

µ = (H ′H)−1H ′h2,T with h2,T = (h2, h3, . . . , hT )′, H is a (T − 1) × 2 matrix whose row t is

(1, ht), t = 1, 2, . . . , T − 1, and Ts2 is the standard sum of squared errors. This comes directly

from the fact that we are regressing ht versus ht−1 like in Gaussian AR(1) models.

In Step 2, we need to simulate, for each t, from the single-site conditional distribution
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Figure 6: History, trace and kernel estimates of the posterior draws of the SV parameters for
the MERVAL returns.

p(ht|h−t, θ, y1, y2, . . . , yT ), expressed as

p(ht|h−t, θ, y1, y2, . . . , yT ) ∝ exp

{
−1

2

[
ht + y2

t /e
ht + (ht −mt)

2/b
]}

, (31)

where mt = [ω + φ(ht−1 + ht+1)]/(1 + φ2) and b = σ2
η/(1 + φ2). Applying the Metropolis

algorithm locally at each t to (31), Jacquier et al. (1994) propose an inverse gamma proposal

density q to approximate the true probability. Other proposal densities such as the Normal

distribution have been suggested in the literature; see Kim and Shephard (1998). However,

the great deal of this method is how to find the posterior in (31) in an efficient way. Meyer and

Yu (2000) state that perhaps a combination of single and block-move sampling strategy may

be suitable for ARSV models, specially when the parameter vector is close to the boundary of

the parameter space (i.e close to non-stationarity and/or homoscedasticity). BUGS software

is able to do this in a relatively easy way. Another drawback of the method described above

is the high correlation that appears between consecutive draws in a given chain. This implies

that we should either enlarge the chains or pick s-consecutive draws, with s generally between

5 and 20. Figure ?? shows some plots of the posterior draws of φ, ω and σ2
η for the MERVAL

returns.
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Figure 7: Forecasts of the MERVAL and YPF returns two months ahead

3.3 Prediction

Prediction in simple SV models is almost straightforward with either the quasi maximum

likelihood or Bayesian MCMC approach. In the former, once the unobserved volatility, ht have

been estimated the Kalman Filter (or Smoother) provides k-step-ahead forecasts by simply

noting that

hT+k|T = φhT+k−1|T , k = 1, 2, . . . (32)

where hT |T is directly given by the Kalman Filter applied to the whole sample, and the. The

k step volatility forecast of yt for the SV model is calculated by means of the log-normal

properties and it is given by

E(y2
T+1|T ) = σ2 exp

(
hT+1|T + 0.5 pT+1|T

)
(33a)

E(y2
T+k|T ) = E(y2

T+1|T ) +

σ2

k∑
j=2

exp

[
φj−1hT+1|T + 0.5

(
φ2(j−1)pT+1|T +

k−2∑
i=0

φ2iσ2
η

)]
, k > 1 (33b)

where pT+1|T is the variance of hT+1|T and it is also a by-product of the Kalman Filter; see

Hol et al. (2004) for further details. As an illustration, Figure 7 shows the 3-months-ahead

forecasts of the MERVAL and YPF returns.
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Under the Bayesian MCMC framework, forecasting is straightforward once we have ob-

tained the posteriors of each parameter and the volatilities. One strategy is simply to obtain

the mean of each posteriors and work as in the QML case. However, it seems more interesting

to use all the information to find the distribution of the s-steps-ahead forecast of both, h and

y. Following Jacquier et al. (1994), it is necessary first to compute the predictive density of

a vector of future volatilities given the sample data, p(hf |y), where hf = (hT+1, . . . , hT+k)
′.

To achieve it, the authors compute the joint posterior distribution of the h vector including

both the sample and future h′s and simply marginalize on the future values. Finally, after

obtaining hf |y, they find the values of yf |hf , θ easily obtained from i.i.d. normal draws. With

these values, it is possible to obtain not only the point and interval predictions, but also the

entire prediction density for each k.

4 Extensions

There is a broad variety of different SV models in the literature that go beyond the simple

ARSV(1) considered in this course. These models have also been constructed, tested and ap-

plied in many financial time series. We will only review how these models deal with asymmetry

(remember, one of the empirical stylized facts we have seen at first) and the multivariate case.

For a deep and exhaustive survey of asymmetric SV models, see Yu (2005), and for multivariate

SV models, see Yu and Meyer (2006); Asai et al. (2006).

4.1 Asymmetry

The usual claim in finance is that when there is bad news, which decreases the price and

hence increases the debt-to-equity ratio (i.e. financial leverage), it makes the firm riskier and

tends to increase future expected volatility. As a result, the leverage effect must correspond

to a negative relationship between volatility and price/return. The empirical evidence of this

leverage effect regards as the asymmetric response in the volatility when there is bad news

(stronger response) or good news (weaker response). In our examples, we see the MERVAL

having a negative skewness. Harvey and Shephard (1996) derive a model that captures this

leverage effect within the SV framework. They show that by allowing the noises εt and ηt in

(18) to be mutually correlated. This simple change to the basic SV model proves to be useful

for capturing the leverage effect in asset returns. In order to estimate this model, the authors

use the QML approach of an SS model that changes a bit with respect to the one considered

previously.

For other alternative ways of modelling the leverage effect in SV models, see Yu (2005).
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4.2 Multivariate SV Models

As Asai et al. (2006) point out, the Euler scheme of time diffusion models for a vector of m

continuous time log-prices, St, leads to the discrete time version of the Multivariate stochastic

volatility model

yt = H
1/2
t εt, εt ∼ N(0, Im) (34a)

f(vech(Ht))) = a(vech(Ht−1)) + f(vech(Ht−1)) + b(vech(Ht−1))ηt−1, ηt ∼ N(0, Ση),(34b)

where yt = St − St−1, vech(.) is the operator that stacks each column of the lower triangular

matrix, and f, a, b are all known functions. Without further restrictions, Ht may not be positive

definite, and thus the validity of a well-defined econometric model is not guaranteed. The paper

of Harvey et al. (1994) is seminal in this area because the authors specify a multivariate version

of the SV model by imposing (34) to be of the form

yt = H
1/2
t εt, (35a)

H
1/2
t = diag{exp(h1t/2), . . . , exp(hmt/2)} = diag{exp(ht/2)}

ht+1 = µ + φ ◦ ht + ηt, (35b)(
εt

ηt

)
∼

[(
0

0

)
,

(
Pε O

O Ση

)]
,

where ht = (h1t, . . . , hmt)
′ is an m × 1 vector of unobserved log-volatility, µ and φ are m × 1

parameter vectors, the operator ◦ denotes the Hadamard (or element-by-element) product, Ση

is a positive definite covariance matrix, and Pε = {ρij} is the correlation matrix, that is, Pε is

a positive definite matrix with ρii = 1 and |ρij| < 1 for any i 6= j, i, j = 1, . . . ,m. It can be

seen that the positive definiteness of Ht and parsimony are achieved by restricting Ht to be a

diagonal matrix, with the diagonal element following the exponential function of a Gaussian

vector AR(1) process. The number of parameters in the basic model is 2m + m2. In Asai

et al. (2006), a great number of other more complex multivariate SV models are reviewed. For

example, it is possible to account for leverage effects, factor models, or time-varying correlation

models. Of course, the complexity increases significantly while dealing with large m, and so

the estimation procedures to make inference from them. In any case the QML or Bayesian

MCMC approaches are still valid as estimation procedures; see Yu and Meyer (2006) for a

review of them, focusing mainly in Bayesian inference.

As an illustration, Table 2 shows the estimation results of a bivariate model of the two

returns considered in this course, using the Bayesian MCMC of BUGS.
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Coefficient Std. Error z-Statistic p-value.

φ(M) 0.9302 0.0111 83.8881 0.0000
σ2

η(M) 0.1627 0.0147 11.1058 0.0000
φ(Y) 0.9689 0.006677 145.11 0.0000

σ2
η(Y) 0.0476 0.0054 8.8895 0.0000

ρε(M,Y) 0.8354 0.1067 7.8291 0.0000
ρη(M,Y) 0.5272 0.1234 4.2726 0.0000

Log likelihood -15229.9 Akaike info criterion 9.2060
Parameters 6 Schwarz criterion 9.2170

Diffuse priors 0 Hannan-Quinn criter. 9.2099

Table 2: Estimations of the Bivariate SV model of Harvey et al. (1994) fitted to the Merval
and YPF returns.
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