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Abstract. We propose a simple mechanism based on taxes and subsidies to enhance high cooperation
in evolutionary networks. The interactions among agents are based on the Spatial Prisoners’ Dilemma
game in which each agent interacts with the same strategy with its local neighbors, collects an
aggregate payoff and imitates the strategy of its best neighbor. First we study the mechanism in a
regular lattice where it is well-known that the asymptotic fraction of cooperators fluctuates around a
constant value for almost all starting proportions and configurations of cooperators. We also explore
the mechanism in random and adaptive networks, where adaptability refers to the ability of agents to
change their local neighborhood. For theses networks it has been reported that the starting proportion
of cooperation has to be sufficiently high in order to obtain highly cooperative levels in the long-
run time. The implementation of our mechanism produces successful results in such evolutionary
networks, higher levels of cooperation are reached for all initial fractions of cooperation, including
the most adverse case of just one cooperator in the network. Additionally, we observe that the network
reaches a spatial configuration such that the fraction of cooperators remains in high level even when
the mechanism is switched off. As a result the mechanism can work as an ignition engine to achieve
highly cooperative level since it can be implemented for a finite period of time.
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1. Introduction

The one-shot two-person Prisoners’ Dilemma game is perhaps the most popular
model that has been used as the basis for many studies that try to give explana-
tions of how and why cooperation can emerge or persist in social, biological and
economic systems. The reason for selecting the PD game is due to its simplicity in
showing how a dominant individualistic action leads to the most inefficient collec-
tive outcome when all individuals adopt it. In the literature one can find extensions
of this game that lead to different results in which cooperation can be observed as
a collective phenomena. For instance, the Iterated PD, the Spatial PD, the Continu-
ous PD and combinations of them can be viewed as representing mechanisms that
promote cooperation. Doebeli and Hauert (2005) make a review of such models
of cooperation based on the PD game. In the Iterated PD game individuals meet
repeatedly. As a result cooperation can be obtained when one considers strategical
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complexities or memories of past encounters. Thus, the successful strategies are
those that embody the emergence or maintenance of cooperation. The most famous
example of this type of strategies is the “Tit-for-Tat” in which individuals cooperate
on the first move and then cooperate or defect exactly as the other player did on the
preceding move. The direct reciprocity based on retaliation, reputation and trust
plays a fundamental goal in promoting cooperative behavior.

When the Iterated PD game does not require memory the effect of spatial struc-
tures may be considered. In this context, Nowak and May (1992) introduce a spatial
version of the Prisoner’s Dilemma game (SPD) in which agents are placed on a
regular lattice, interact with their neighbors, collect an aggregate payoff and im-
itate the strategy of their most successful neighbor. The SPD in a lattice shows
chaotically changing spatial patterns in which individuals who always cooperate
coexist indefinitely with individuals that always defect. This rich spatiotempo-
ral dynamics reaches an asymptotic overall fraction of cooperators that fluctuates
around a constant value Nowak and May (1993). The SPD and its extensions,
including agents on small world and random network, has been widely explored
in computational simulations to study the complexity of cooperation (see Abram-
son and Kuperman (2001); Lindgren and Nordahl (1994) and Zimmermann et al.
(2001)).

Very recently, a subtle point of view in modeling social system refers to the
issue that individuals are able not only to modify their actions but also to modify
their interactions. Since the endogeneity is an ubiquitous feature of real social
interactions the question to be answered is whether cooperation could be sustained
or could enhance higher levels when endogenously determined interactions exist.
Vriend (2005) presents an overview of Agent-based Computational Economics
models that cover a wide range of possibilities to model endogenous interactions
in many different contexts. However in the context of social dilemmas there is a
limited number of works that has explored such that kind of dynamics. For instance,
Hanaki et al. (2005) and Eguı́luz et al. (2005) tackle the problem of how cooperation
can sustain or arise in a dynamically evolving network where interactions among
agents are based on a SPD but where each agent can decide with whom he will
interact. Hanaki et al. (2005) examine the co-evolution and collective behavior using
a stochastic learning approach and present an extensive analysis for a wide range of
parameter values. Under their co-evolutionary dynamics, they find that high levels
of cooperation in large population can be achieved in sparse networks and show that
there is an important trade-off between local reinforcement and global expansion.
By other side, Eguı́luz et al. (2005) enable agents to adapt their initial exogenous
local neighborhood according to their satisfaction level and the strategy played.
Their dynamics generate a social network that can have the topology of a small
world network. Moreover, the network reaches a strong hierarchical structure in
which the leaders play an essential role in sustaining a highly cooperative regime. A
remarkable point that is a common feature in both co-evolutionary networks and also
for the SPD in random networks is the fact that the initial fraction of cooperators in
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the system must be sufficiently high in order to observe an evolutionary network with
a higher fraction of cooperators. The argument used in literature is that cooperative
behavior will replicate throughout the network, only if the approximate average
payoff for agents that cooperate is larger than the one for agents that defect. Thus
the interacting dynamics promote higher levels of cooperation in the network only
when the initial level of cooperation is high enough.

We are interested in mechanisms that promote higher levels of cooperation for
the SPD no matter the initial proportions of cooperators or network setups. For
our exploratory analysis, we consider the two dimensional lattice, as an exam-
ple of high clustered structure, random networks, as the opposite case, and co-
evolutionary networks, as an important case of hierarchical structure that model
real social networks. It can be shown that for the studies reported for the SPD in
the lattice the fraction of cooperators falls down from initial high fractions of co-
operators. By other hand, from initial fraction of cooperator lower than 1/2 there
is a high probability to reach full defecting state in random and adaptive networks.
We provide a mechanism based on taxes and subsidies that significantly enhances
higher level of cooperations in the lattice for all starting proportions and configura-
tions of cooperators. In the case of random or adaptive networks similar successful
results are observed from low initial fraction of cooperators, including the most
adverse case of just one cooperative agent in the network. Additionally, our mech-
anism leads to robust configurations in a finite period of time such that the frac-
tion of cooperators remains unchanged even when the mechanism is switched off.
Thus the mechanism can work as an ignition engine to achieve highly cooperative
level.

After this brief introduction, we will describe the mechanism in detail. Section
3 and 4 are devoted to study the effects of the mechanism on the lattice, random
and adaptive networks. For our analysis we follow the general framework of the
SPD presented in Nowak and May (1992), Hanaki et al. (2005) and Eguı́luz et al.
(2005). For the interaction dynamics in which agents decide with whom they will
interact we use the framework in Eguı́luz et al. (2005).

2. A Mechanism of Taxes and Subsidies

The general framework of the SPD game in a fixed (non adaptive) network is
formally described with an action rule performed at each time step that consists in
two stages:

Stage 1: Each agent interacts with other partners using the same strategy (C or
D) and collecting a total individual payoff according to the PD payoff bi-matrix
shown in Table I, where b > σ > δ > 0 and b/2 < σ .
Stage 2: Each agent revises his current strategy and updates it by imitating the
strategy of his partner with the highest payoff. All strategies are updated at the
same time in a synchronous updated process.
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Table I. Prisoners Dilemma
payoff bi-matrix.

C D
C σ, σ 0, b
D b, 0 δ, δ

We remark that in stage 1 each agent i simply recollects his total payoff #i

which can be defined by

#i = siµiσ + (1 − si )(µi b + (Ki − µi )δ), (1)

where Ki is the total number of neighbors of agent i , µi is the number of neighbors
of agent i that are cooperators, and si = 0 or 1 depending on whether agent i is a
defector or not.

We want to introduce now a compensation mechanism based on taxes and sub-
sidies in this evolutionary rule by modifying stage 1. The motivation behind this
is to avoid social catastrophes characterized by stationary states with low fractions
of cooperators. For expository purposes, let us imagine one individual out of the
spatial structure acting as a central planner collecting an involuntary tax to each
agent and paying subsidies to reward cooperation. Thus, agent i is taxed with a
fixed share t of his total payoff, that is t#i , where 0 ≤ t < 1. Let # = (

∑
i #i )

be the total payoff on the system. The planner rewards C-agents (agents who play
cooperation) paying them a subsidy β that comes from the recollected taxes. That
is, β = t#/C where C is the number of cooperator at present time step. Since the
parameter b represents the incentive to defect in the PD game, we consider the sub-
sidy β as an incentive to cooperate in the network formation. The planner action is
performed between stages 1 and 2, where agents are taxed and cooperators receive
their compensations. This happens after they play with their partners but before
they imitate the strategy of the partner with the highest total payoff. Formally, the
total payoff of agent i at present time step in the evolutionary dynamics we are
considering is

#′
i = (1 − t)(siµiσ + (1 − si )(µi b + (Ki − µi )δ)) + siβ. (2)

It is important to notice that agents are not necessarily awake about the existence
of a central planner. In fact, since each agent solely seeks the largest possible benefit
from local interactions imitating the strategy of his most successful neighbor what
the mechanism does is a straightforward modification of the total payoff recollected
by agent i in stage 1. This total payoff changes from the one defined in equation (1)
to the one defined in (2).
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3. The Mechanism in a Lattice

We randomly place C-agents and D-agents on a two-dimensional n × n (= N )
square lattice with periodical boundaries. We assume that at least one C-agent must
exist in the initial configuration. Let K be the number of immediate neighbors of
each agent. The choice of K = 4 or 8, depends on what type of neighborhood
we are considering, von Newman or Moore respectively. It is easy to see that
when the number of cooperators consists on exactly one C-agent the minimal
value of the share t∗ such that the mechanism enhances some level of cooperation
is

t > t∗ =
(

K + 1 + (N − (K + 1))δK
b + (K − 1)δ

)−1

(3)

We observe that t∗ decreases as N increases. Also, as δ → 0 then t∗ → 1/(K + 1)
that decreases as K increases.

To make suitable comparisons with previous works, we set N between 10 × 10
and 100×100, δ = 0.1 and σ = 1. The parameter b which controls the incentive to
defect varies in the range 1 < b < 2. Hence for all values that we are considering , t∗

varies between 0.0003 and 0.05. We examine the mechanism setting t = 0.05, the
minimal value of share that enhances some level of cooperation for any N ≥ 100,
b ∈ (1, 2), K = 4 or 8 and any initial proportion of C-agents.

In a square lattice individuals who always cooperate coexist indefinitely with
individuals that always defect showing chaotically spatial patterns that even thought
depend on the magnitude of the parameter b it is almost always independent of
the initial proportions of C-agents. Moreover, the asymptotic overall fraction of
cooperators fluctuates around a relative low value for almost all starting proportions
and configurations. For instance, when N = 100 × 100 and K = 4 the asymptotic
fraction of cooperators fluctuates around 0.3961 after 100 time steps when we set
b = 1.35 and the initial fraction of C-agents is around or bigger than 0.1. However,
for the same initial configurations and parameter values, the mechanism of taxes
and subsidies significantly enhances higher proportion on the asymptotic state for
all starting proportions and configurations, see Figure 1.

Even though the mechanism always leads to significantly higher proportion of
cooperation versus the non-taxed case, we observe how the asymptotic fraction
slightly decreases as the initial proportion of cooperators increases. This happens
for initial proportions under 0.7. However, on this range the asymptotic fractions
are higher than the initial fractions of cooperators. Out of this range, specifically
for initial proportions over 0.7 and under 0.9, the asymptotic fraction slightly fluc-
tuates around 0.7, after that we note how this behavior changes and the asymptotic
fraction increases as the initial proportion of cooperators increases but it does not
achieve values higher than the initial fraction. This suggest the existence of thresh-
olds for effective taxation levels that promote higher levels of cooperation than



20 H. LUGO AND R. JIMÉNEZ

Figure 1. Asymptotic fraction of cooperators as function of initial fraction.

initial ones. In our study case where the share value is 0.05 this threshold value is
around 0.7.

In order to study the robustness of the configuration reached under the mecha-
nism, we switch it off after 200 generations observing that the asymptotic behavior
concerning to the fraction of cooperators remains unchanged. Figure 2 shows the
stationary spatial patterns after 500 time steps of a non-taxed lattice (left side) and of
a taxed lattice (right side) with the same initial proportion of cooperators equal 0.6.
The fraction of cooperators chaotically fluctuates around 0.3961 for the non-taxed
lattice while it slightly fluctuates around 0.7150 for the taxed lattice.

The stationary regime is reached in both cases at a short period of time. After
that, the mechanism can be eliminated without observable changes on the stationary
regime. Figure 3 shows the time series of the fraction of cooperators for the non-
taxed lattice and taxed lattice during 200 generations.

For low initial numbers cooperators the asymptotical behavior reaches the full
defect state in the non-taxed scheme. We show the power of the incentive by ex-
amining the asymptotic behavior when we place only 1, 4 and 5 C-agents on their
respectively initial lattices. In Figure 4 we can observe the spread action of the C-
agents for such lattices. In all of them the total reproduction of cooperators reaches
around 500 agents.
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Figure 2. Asymptotic spatial patterns from random initial configuration with 60% of cooper-
ation for a non-taxed and a taxed lattice.

Figure 3. Time series of the fractions of cooperators.

4. The Mechanism in Random and Adaptive Networks

In random networks the neighbors for each agent are randomly chosen from the
whole network. Therefore K now represents a coordination number defined as the
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Figure 4. Stationary spatial patterns for initial numbers of 1, 4 and 5 cooperators respectively.

expected average of neighbors per agent,

K = E

(∑N
i=1 Ki

N

)

where N is the number of agents on the network and Ki the number of neighbors
of agent i ∈ {1, 2, . . . , N }. The number of links in the network, L =

∑N
i=1 Ki/2,

is a Binomial random variable with expected value K N/2.
In random networks the fraction of cooperators can either fluctuate slightly or the

system can reach a full defect state where all agents play the D strategy. Actually the
fraction of cooperators fluctuates slightly when the initial fraction of cooperators in
the network is sufficiently high. An initial fraction of 0.6 of C-agents has been used
in previous works (e.g Zimmermann et al. (2001) and Zimmermann et al. (2004))
and it is a suitable value for coordination numbers K = 4 and K = 8.

For a fixed network size, if the characteristic coordination number K is large
enough, there exists a critical value b∗, which depends on the network structure at
initial time, such that for b > b∗ the system reaches a state of all D-agents and
partial cooperation is supported for b < b∗. In Table II, we consider N = 100, and
the averages over 10 random initial networks. We observe that for the 10 studied
cases, K = 4 was not large enough to observe b∗ > 1. However, for K = 8, we
observed the existence of critical values. Table II showed that the average of theses
critical values lied in (1.55, 1.75).

In the tax scheme, we did not observe a critical b∗ for any K = 4 or K = 8.
As in previous section we set t = 0.05. The network with exactly one C-agent at
initial time never reaches a full defect state. The fraction of cooperators is quite
robust from increasing value of the incentive to defect b and from increasing value
of the average number of links per agent K . It is important to remark that by (3)
t∗ decreases as N increases then for greater sizes of the network we can find lower
values of t such that the mechanism is still working.

We illustrate in Figure 5(a) the asymptotic dynamics of the fraction of cooper-
ators with a time series of fC evolving for a non-taxed network (t = 0), and for
a taxed network (t = 0.05). We observe that the fraction of cooperators fluctuates
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Table II. Averages of the fractions of C-agents in random networks.

0.6N C-agents at initial time One C-agent at initial time

K = 4 K = 8 K = 4 K = 8

b t = 0 t = .05 t = 0 t = .05 t = 0 t = .05 t = 0 t = .05

1.05 0.920 0.944 0.972 0.992 0 0.937 0 0.968
1.15 0.887 0.910 0.710 0.929 0 0.948 0 0.923
1.35 0.626 0.789 0.325 0.754 0 0.753 0 0.652
1.55 0.322 0.457 0.057 0.383 0 0.596 0 0.489
1.75 0.177 0.352 0.000 0.238 0 0.375 0 0.219
1.95 0.046 0.264 0.000 0.215 0 0.198 0 0.155

Figure 5. Time series of fC and #/N in full non-adaptive networks.

slightly after some transient time for both cases (tax and non-tax). Here, the initial
fraction of C-agents is 0.6 and b = 1.35. Table II illustrates this behavior for other
values of b. In the case of an initial network of solely one C-agent, Figure 5(c)
shows an extremely different result between taxes and non-taxes case. In the
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Figure 6. Time series of fC and #/N in full adaptive networks.

non-taxes case, the only cooperator switches to defect and a full defective net-
work is reached, in contrast in the taxes case, the mechanism enhances a highly
cooperative network. The mechanism of taxation preserves the dynamics that set-
tles onto a fluctuated fraction of cooperators after some transient time starting when
the fraction of cooperators reaches a value greater than 0.6.

Figure 5 (b) and (d), show the effect that the mechanism of taxation has over
the average payoff of the whole network. When the initial fraction of C-agents is
0.6, the mechanism produces a slight effect over the average of payoff per agent.
However, this mechanism has a strong influence in the social macrostructure of
network with a small initial fraction of cooperators because not only cooperators
want to keep cooperating but also defectors switch to imitate successful cooperators
producing an increasing average payoff per agent.

Now we consider the co-evolutionary dynamics discussed in the sequel (Eguı́luz,
et al. (2005), Zimmermann et al. (2001) and Zimmermann et al. (2004)). The stage
evolution of this adaptive network is as follows:

Stage 3: Each D-agent may adapt its local neighborhood. This is performed if a
D-agent is an unsatisfied agent, that means he does not have the highest payoff.
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Table III. Averages of the fractions of C-agents of full adaptive networks.

0.6N C-agents at initial time One C-agent at initial time

K = 4 K = 8 K = 4 K = 8

b t = 0 t = .05 t = 0 t = .05 t = 0 t = .05 t = 0 t = .05

1.05 0.951 0.966 0.898 0.995 0 0.968 0 0.996
1.15 0.943 0.943 0.697 0.992 0 0.942 0 0.996
1.35 0.819 0.948 0.395 0.884 0 0.920 0 0.990
1.55 0.526 0.777 0.196 0.785 0 0.812 0 0.685
1.75 0.443 0.639 0.100 0.578 0 0.630 0 0.598
1.95 0.346 0.514 0.000 0.371 0 0.335 0 0.396

Then with probability p, he breaks each link with each of his D-neighbor, and
will replace it with a new agent randomly chosen from network.

With this adaptive rule the coordination number K remains constant: for each
unsatisfied D-agent, it will replace on average D-neighbors by new neighbors ran-
domly chosen from the whole network, and thus its number of neighbors Ki will
not change. The total number of links in the network is conserved since the replaced
D-agents will lose one link and the new selected ones will gain one link. There-
fore, a C-agent may increase its number of neighbors by receiving new links from
searching D-agents. Destruction or spontaneous creation of links are not taking into
account in this model. In order to make suitable comparisons with results presented
in Eguı́luz et al. (2005); Zimmermann et al. (2001) and Zimmermann et al. (2004),
we consider as well random initial network with coordination number K = 4 and
K = 8 and full adaptive network p = 1.

Table III shows the averages of the fractions of C-agents, at the steady state, of
full adaptive networks (p = 1) with and without taxation. The averages are taking
over 10 different initial conditions after 30 time steps of evolution.

First, let us examine the case of initial 0.6N C-agents without taxation (t = 0).
We can observe how the average of the fractions of C-agents, at the steady state,
decreases with an increasing value of the incentive to defect. The numerical results
also show that increasing the coordination number, K , the average fraction of
C-agents decreases faster with b. Now, if we apply the mechanism of taxes and
subsidies described above with t = 0.05, we observe that an increasing value of the
average number of links per agent K , does not significantly decrease the average
fraction of C-agents. That means, the mechanism is quite robust from changes of
K .

As we can see, the most remarkable result occurs in networks with only one
C-agent in the initial time step. We observe how the mechanism of taxes and
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subsidies has a successful effect in such networks, the initial cooperator positively
responds to the incentive to keep cooperating and produces the effect for defectors
to change their strategies. The mechanism enhances highly cooperative networks
for both initial fractions of C-agents.

Figure 6 illustrates the asymptotic behaviors of taxed and non-taxed networks
for b = 1.35 and K = 4. We show in Figure 6 (a) the time series of fC with initial
fraction of 0.6N C-agents. We observe that the fraction of cooperators increases in
both cases (taxed and non-taxed). Similar results were observed for the different
values of b and K considered in Table III. We conclude that the taxation enhances a
highly cooperative network comparable with the non-taxed scheme. In the case of
initial one C-agent, the results are extremely different between taxes and non-taxes
case. Figure 6 (c) shows how the only cooperator switches to defect and a full
defective network is reached in the non-taxes case, in contrast with the taxes case,
where the mechanism enhances a highly cooperative network. The mechanism of
taxation not only preserves the dynamics that settles onto a steady state after some
transient time, also preserves the properties described in Eguı́luz et al. (2005) such as
the emergence of a leader and a cooperator with maximum number of connections.

The graphics (b) and (d), in Figure 6, show the effect that the mechanism of
taxation has over the average payoff of the whole network.

Although the mechanism could be seem to be socially unfair, because all agents
are taxed but only C-agents receive the incentive, the increasing number of coop-
erators makes the incentive negligible and dispensable at short time. The taxation
may be used as an ignition engine in networks with low initial fraction of C-agents.
This mechanism of redistribution of wealth has a strong influence in the social
macrostructure of the network because not only cooperators want to keep cooper-
ating but also defectors want to change their strategies to cooperate.

5. Concluding Remarks

In this paper, we have proposed a mechanism of taxes and subsidies to arise high
cooperation in the SPD game. We examined the mechanism in different well-
studied structures as lattice, random and adaptive networks. Our results show that
the mechanism works as an ignition engine to achieve highly robust cooperative
level for any value of the incentive to defect. When the initial structure consists
of just one cooperative agent, the mechanism not only allows the coexistence of
cooperators and defectors but also can enhance a highly cooperative state for a
suitable taxation level contrasting with the results in the non-taxes scheme. Under
the mechanism of taxation the studied systems reach stationary states at short period
of time that remain invariants even when the mechanism is turned off.

We finally remark that the mechanism described can be easily explained in an
economic or social context where we can assume the existence of a benevolent
central planner who redistributes wealth among agents searching for improving
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collective outcomes in the long-run time of this network formation. The idea here
is not to discuss over the existence or not of such planner, we just explore a solution
to avoid inefficient macrostructure in evolutionary networks.
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